Measuring Neutron Separation Energies Far from Stability

William A. Friedman

Department of Physics, University of Wisconsin, Madison WI 53706

M.B. Tsang

NSCL, Michigan State University, East Lansing, MI 48824

Introduction

- Asymmetry energy drives neutron separation energy to zero at the drip line.
- Need information about neutron separation going to very rich nuclides where production is weak and little is known. Important for r-process and a challenge for microscopic models.
- Abrasion-Ablation "cold fragmentation" efficient in producing the most neutron rich nuclides.
- P-removal chains developed with the fast fragmentation removal of increasing numbers of protons and no loss of neutrons.
- Recent example-production of ⁴¹Al (N=28, Z=13) from 48Ca with removal of 7 protons. What is the Neutron Separation Energy?

One Neutron Removal Energy (MeV)

Neutron Separation Energies (MeV)

Abrasion-Ablation Model p-removal chain

Assume the cross section for the removal of x protons consists of two factors one for each stage.

$$\sigma_x = Abr_x \cdot Abl_x \tag{1}$$

where x specifies the number of protons removed.

Abrasion:

 Abr_x consists of two factors:

One, providing the cross section for removing x particles, modeled by the the geometrical overlap of projectile with target.

The other, the probability that all of these be protons, modeled by the uncorrelated statistical factor, (Z!/(Z-x)!)/((N+Z)!/(N+Z-x)!).

The excitation energy of the residue is given by a distribution function $F_x(E^*)$ to be discussed below.

Ablation:

 Abl_x gives the probability that no neutron evaporation occurs following the abrasion. It is provided by the integral of $F_x(E^*)$ from zero to neutron separation energy.

$$Abl_x = \int_0^{S_n} F_x(E^*) dE^* \tag{2}$$

Excitation Energy Distribution

To obtain distribution function for the excitation energy $F_x(E^*)$ following the the removal of x protons, we assume a convolution of x distribution functions for the removal of a single proton, $f_1(c^*)$:

$$F_x(E^*) = \int \prod_{i=1}^x (de_i^* f_1(e_i^*)) \, \delta(\sum_{i=1}^x e_i^* - E^*)$$
 (1)

We considered two different distributions, $f_1(e^*)$: one having an exponential form, the other having a a triangle form. Each is characterized by a respective mean value, $< e^* >$.

The convolution of each of these two forms can be calculated analytically using Fourier transforms to obtain the full excitation distribution $F_x(E^*)$.

ന *

Two Forms of Abl_x

Triangle distribution

$$Abl_x = C_{tri}(x) \cdot (2S_x/(3 < e^* >))^x/x!, \tag{1}$$

where

$$C_{tri}(x) = \sum_{s=0}^{x-s} (-S_x/(3 < e^* >))^s \cdot (x!^2/(s!(x+s)!(x-s)!))$$
 (2)

Exponential distribution

$$Abl_x = C_{exp}(x) \cdot (S_x / < e^* >)^x / x!, \tag{3}$$

where

$$C_{exp}(x) = \sum_{s=0} (-S_x/\langle e^* \rangle)^s (x/((x+s)s!))$$
 (4)

	Reaction	χ^2/dof	< e* >		4.	χ^2/dof	$< e^* >$	_	+
	·	tri.	tri.			ехр.	ехф.		
•	$^{208}Pb + Cu[19]$	0.38	18.4	1:1	1.5	0.42	26.6	1.8	2.1
	197Au + 27Al[22]	0.87	22.4	1.6	3.6	0.88	32.2	3.8	5.2
	$^{197}Au + ^9Be[10]$	1.87	25.0	1.4	1.8	1,58	36.3	2.2	2.6
	$^{136}Xe + ^{9}Be[22]$	0.36	23.8	2.8	2.6	0.36	34.2	3.8	5.6
· · ·	86Kr + 9Be[16]	1.45	11.7	0.3	0.25	0.99	16.6	0.4	0.45
	⁴⁸ Ca + ⁹ Be[20]	1.24	7.70	0.35	0.4	1.81	10.80	0 .4 5	0.60

. .

I.

· -

n-removal chains

The situation for reaching proton rich nuclides by n-removal is quite different concerning the measurement of proton removal energies.

- Coulomb barriers affect the practical threshold for protons.
- Neutrons can be removed by both the abrasion process and also by evaporation (which can strongly compete with the proton evaporation).
- Abrasion-Ablation model can predict n-removal chains but this involves model dependent complications (coulomb barrier, and evaporation treatment) which are absent in the p-removal chains.

Conclusions

- 1. Illustrated examples show simple Abrasion-Ablation model for p-removal chains provides excellent agreement with fragment cross sections.
- 2. The calculated cross sections depends on an excitation parameter ($< e^* >$) and neutron separation energy.
- 3. Each p-removal chain seems to be characterized by a single $\langle e^* \rangle$, which can be fit. Equally good fits are obtained with Triangle and Exponential distributions. (Mean energies approximately 2:3)
- 4. From some of the data in the the literature we suggest the power of the p-removal chains for observing unknown separation energies for ^{204}Pt and ^{41}Al in different chains.
- 5. Some puzzling disagreement appears in ^{197}Au data.
- 6. Ongoing work with ^{58}Ni with a measured chain up 8 protons, suggests further success. Comparison with with known separation energies, suggest a precision for the neutron separation energy of a few hundred keV.
- Neutron removal chains are more uncertain regarding proton separation energies.
- 8. Work is ongoing to understand the variation of the energy parameter with projectile choice. This can suggest the situations in which longest chains may be measured practically.