Charm hadrons from parton coalescence

Dénes Molnár

The Ohio State University, Columbus, OH, USA

Talk at Conf. on Topics in Heavy Ion Collisions (HIC'03) June 25-28, 2003, McGill University, Montréal, Canada

references: Z.W. Lin & D.M. - nucl-th/0304045
 D.M. & S.A. Voloshin - nucl-th/0302014
 D.M. & M. Gyulassy - NPA 697, 495

Why do we need parton coalescence?

Elliptic flow puzzle

STAR, PRL 90, 032301 ('03)

VS.

Theoretical expectations^b

2

3 pT (GeV/c)

0.00

• large and saturating anisotropy $v_2(p_{\perp})$

5

• difficult to explain

$\mathbf{v_2}(\mathbf{p_T})$ from parton transport

D.M. & Gyulassy, NPA 697 ('02):

• $15 \times$ larger opacities required to reproduce saturation pattern $\sigma_{el} \times dN_g/d\eta \approx 45000 \text{ mb} \gg \text{ pQCD (3 mb} \times 1000)$

Baryon (non)suppression puzzle

d'Enterria (PHENIX) - INT, June '03: p, π^0 Sorensen (STAR) - SQM2003: K_S^0 , Λ $\frac{25}{0}$ $\frac{(p+\bar{p})/2}{\pi^0}$ $\frac{Yield^{(0-10\%)}/(SN_{coll}^{0-02\%})}{Yield^{(60-92\%)}/(Sn_{coll}^{0-92\%})}$ $\frac{1}{0}$ $\frac{0}{0}$ $\frac{0}{$

• $p_{\perp} > 2$ GeV, pQCD jet quenching works well for pions, kaons (see talks by Wang, Jacobs & Bathe on Wednesday)

but does not for baryons?

Good news: coalescence helps explain both puzzles

Ok, but what is coalescence?

Coalescence

- original problem: $n + p \rightarrow d$

Sato & Yazaki, PLB98 ('81) Dover, Heinz, Schedemann & Zimányi PDR44 ('91) Scheibl & Heinz, PRC59 ('99) ...

- recently applied to hadronization in heavy ion collisions

hadron yields: Biró et al PLB347 ('95); Csizmadia & Lévai JPG28 ('02)

elliptic flow ordering: Ko & Lin, PRL89 ('02)

proton/pion ratio: <u>Hwa</u> & Yang, PRC65 ('02); <u>Greco</u> et al & Fries et al, PRL90 ('03)

flow amplification and elliptic flow ordering: D.M. & Voloshin, nucl-th/0302014

charm hadron elliptic flow: Lin & D.M., nucl-th/0304045

Parton coalescence

An alternative to independent fragmentation

- picture: coalescence of massive "dressed" valence quarks
 no dynamical gluons
- basic equations: $qq \rightarrow meson$, $qqq \rightarrow baryon$

$$E\frac{dN_{M}(\vec{p})}{d^{3}p} = \int d\sigma^{\mu} p_{\mu} \int d^{3}q |\psi_{\vec{p}}(\vec{q})|^{2} f_{\alpha}(\vec{p}_{\alpha}, x) f_{\beta}(\vec{p}_{\beta}, x)$$

$$E\frac{dN_{B}(\vec{p})}{d^{3}p} = \int d\sigma^{\mu} p_{\mu} \int d^{3}q_{1} d^{3}q_{2} |\psi_{\vec{p}}(\vec{q}_{1}, \vec{q}_{2})|^{2} f_{\alpha}(\vec{p}_{\alpha}, x) f_{\beta}(\vec{p}_{\beta}, x) f_{\gamma}(\vec{p}_{\gamma}, x)$$

hadron yield space-time wave-fn. quark distributions

assumes: rare process, weak binding, factorizable 2-body density matrix, smooth spacetime distributions, 3D hypersurface

Coalescence window

Coalescence competes with fragmentaton and wins below $p_{\perp} < p_{\perp}^{crit}$

 $dN/p_\perp dp_\perp dy \; [\text{GeV}^{-2}]$

[red: central Au+Au @ 200 GeV, mesons GRV98LO, BKK95, $K=2, Q^2=p_{\perp}^2$]

• momentum shift:

frag: $p_{\perp} \rightarrow z p_{\perp} \ (z < 1)$ DOWN coal: $p_{\perp} \rightarrow n p_{\perp} \ (n = 2, 3)$ UP

• phasespace density dependence:

frag: linear $dN_{had} \propto dN_{part}$ coal: nonlinear $dN_{had} \propto [dN_{part}]^n$

\Downarrow

coalescence yield drops steeper than fragmentation yield

 p_{\perp}^{crit} : decreases with incr. centrality may be large $\sim 5~{\rm GeV}$ (Greco et al, Fries et al)

Amplification of elliptic flow

[D.M & Voloshin ('03)]

1+2e+... in narrow wave fn. limit $(\vec{q} = 0)$: $1+\varepsilon$ $1+\epsilon$ $v_2^M(p_\perp) \approx v_2^a(rac{p_\perp}{2}) + v_2^{\overline{a}}(rac{p_\perp}{2})$ Х $1 - 2\epsilon + ...$ $v_2^B(p_{\perp}) \approx v_2^a(\frac{p_{\perp}}{3}) + v_2^b(\frac{p_{\perp}}{3}) + v_2^c(\frac{p_{\perp}}{3})$ 0.2parton \Rightarrow hadron flow amplified at high p_{\perp} : min.-bias v_2 (sketch) meson 0.15 baryon $3 \times$ for baryons 0.1 $2 \times$ for mesons 0.05 (1 2 3 4 5 6 0 p_{\perp} [GeV]

• this is the **KEY INGREDIENT** to resolve opacity puzzle (nucl-th/0302014)

Experimental test of flow scaling

STAR, SQM2003:

PHENIX, nucl-ex/0305013:

This parton coalescence rescaling seems to work for each of our centrality intervals

- confirms coalescence predictions, indicates $v_2^q \approx v_2^s$
- even Ξ works (talk by Castillo on Thursday), and of course d (poster by Sakai)

Baryon puzzle and coalescence

Coalescence momentum addition $p_{\perp} \rightarrow np_{\perp}$ pushes the low- p_{\perp} , close to thermal region in parton spectra out to $3 \times$ larger p_{\perp} baryons but only $2 \times$ larger for mesons

 \rightarrow different from pQCD fragmentation even at $p_{\perp} \sim 4~{\rm GeV}$

Charm hadrons

Why charm?

(Lin & D.M., nucl-th/0304045)

- test pQCD (jet propagation) & properties of parton medium
 - are heavy quarks (not) quenched? [Djordjevic, Gyulassy ('03), Dokshitzer, Kharzeev ('01)]
 - do heavy quarks thermalize? [Batsouli et al ('03)]
 - can extract charm quark flow to help answer these questions
- more predictions additional tests of quark coalescence model
 - next long RHIC run can verify/falsify these
- coalescence is better applicable to charm
 - binding energy is less important, $m_h pprox \sum m_i$
 - narrow wave fn. limit applicable because of large mass \Rightarrow can extract quark flows
- special wave function effects due to unequal constituent mass (D, D_s, Λ_c)

Wave function

In hadron rest frame: - consider $|\vec{p_1}, \vec{p_2}\rangle = |\vec{q}/2, -\vec{q}/2\rangle$ - with $\langle |\vec{q}| \rangle \sim \Lambda_{QCD}$

For a fast (weakly bound) hadron with mom. $\vec{n}p$: - a kinematic estimate

$$p'_{i} \equiv \vec{p}_{i}' \vec{n} = \frac{E'_{i}}{m_{H}} p + \vec{q}_{i} \cdot \vec{n} \frac{\sqrt{p^{2} + m_{H}^{2}}}{m_{H}} \approx \frac{m_{i}}{m_{H}} p + \frac{\vec{q}_{i} \vec{n} p}{m_{H}}$$

ightarrow with the momentum fractions $z_i\equiv p_i'/p$

$$z_i = \bar{z}_i + \delta z_i \approx \frac{m_i}{m_H} + \frac{\vec{q_i}\vec{n}}{m_H}$$
average spread

Two effects: • lighter quark carries smaller fraction of momentum - because similar velocities (not momenta) in moving frame

• wave function is narrower in δz for heavy quarks

Mass effect on elliptic flow

even in $\delta z_i = 0$ limit: flow addition formula modified

$$egin{aligned} & v_{2,M}(p_{\perp}) &pprox & v_{2,a}(ar{z_a}p_{\perp}) + v_{2,ar{a}}(ar{z_b}p_{\perp}) \ & v_{2,B}(p_{\perp}) &pprox & v_{2,a}(ar{z_a}p_{\perp}) + v_{2,b}(ar{z_b}p_{\perp}) + v_{2,c}(ar{z_c}p_{\perp}) \end{aligned}$$

• main effect: $v_2(p_{\perp})$ rises slower, saturates later for asymmetric system

• easy to invert the linear relations to deduce v_2^q , v_2^c from hadron $v_2(p_{\perp})$'s

 $v_{2q}(p_{\perp})$ linear out to

Parton spectra

sofar needed only parton $v_2(p_{\perp})$ but for $\delta z \neq 0$ also need parton spectra

light quarks: - pQCD component with energy loss $\Delta p_{\perp} = -\sqrt{\lambda p_{\perp}}$ (LO, GRV98, BKK95, K = 2.5, $Q^2 = p_{\perp}^2$, $\lambda = 1$ GeV)

- soft component with Bjorken geometry $(V = \tau A_{\perp} = 1000 \text{ fm}^3, T = 0.2 \text{ GeV})$

charm: PYTHIA 6.154, no energy loss $dN^{c\bar{c}}/dy = 2.5$ at y = 0 in central Au+Au

parton $v_2(p_{\perp})$: tanh (p_{\perp}/p_0) form as from MPC 1.6.0 $v_2^{max} = 0.05$, $p_0 = 0.75$ GeV

Effect of momentum spread

Convolution w/ wave function and spectra <u>reduces</u> v_2 [$v_2(p_{\perp})$ is concave]

[Lin & D.M., nucl-th/0304045]

 $m_u=m_d=0.3$, $m_s=0.5$, $m_c=1.5~{
m GeV}$

wave functions: uncertainty relation + valon model [Hwa and Yang], $|\psi|^2 \sim z^a_{\alpha} z^b_{\beta}(z^c_{\gamma})$

lighter systems are wider in z

- 30 - 40% for light systems π, K (for these, also binding energy problem!)

- < 20% for asymmetric heavy ones, D, D_s, Λ_c
- only few % for symmetric $p, J/\Psi, \phi, \Omega$

Coalescence window for charm

Question: where can coalescence dominate fragmentation for charm?

good news (for D): $dN_D \propto f_c(p_{\perp,c}) \times f_q(p_{\perp,q})$

lower p_{\perp} fraction for light quark - larger phase space density

bad news:

harder fragmentation for charm, flatter spectra

D meson spectra

Test pessimistic case: - quench for light but not for charm, z = 1 fragm.

- simple estimate: coalescence dominates for D below $p_{\perp} < 3.5 4.5$ GeV
- but sensitive to parton spectrum ansatz (V) \Rightarrow better approach needed

 $dN/d^2p_\perp d\eta \; [1/{
m GeV^2}]$

Outlook

• coalescence dynamics (instead of sudden process on hypersurface)

WORK IN PROGRESS

- utilize parton cascade MPC
- quantitative answer to coalescence/fragmentation competition
- explore other observables (e.g., HBT)
- relax theory assumptions
 - add space-momentum correlations
 - allow for multiparton correlations in phasespace
 - more realistic wave functions
 - binding energy problem for π , K maybe only solution is resonances?

Summary

• There is growing evidence indicating that hadronization in the moderate p_{\perp} region (~ 2 - 6 GeV) occurs dominantly via quark coalescence. The coalescence mechanism can provide a solution to the RHIC elliptic flow (opacity) puzzle and also explain the anomalously large baryon/meson ratios seen at RHIC. Even pessimistic estimates indicate that for D mesons the

coalescence window can extend to $p_{\perp} \sim 4$ GeV.

• Charm hadrons provide unique information on charm v_2 and very low p_{\perp} light quark v_2 , and serve as additional testing ground for the coalescence model.

D, D_s and Λ_c are predicted to have a much slower rising elliptic flow as a function of p_{\perp} than hadrons with only ligther (u, d, s)constituents. Except for the J/Ψ , in the coalescence scenario, charm hadrons show elliptic flow, even if charm quarks have zero v_2 .

 For narrow wave function one can "unfold" hadron flow and determine quark flow → crucial insights into dynamics of dense QCD matter and question of charm thermalization.