Surface Symmetry Energy P. Danielewicz, MSU-NSCL

- Weizsäcker Binding-Energy Formula
- Modified Energy Formula
- Skin Size vs Asymmetry & Separation-Energy Difference
- Asymmetry Oscillations
- Microscopic Background
- Conclusions

 $\overline{}$

WEIZSÄCKER FORMULA

Nuclear energy: αA

$$
E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_A \frac{(N - Z)^2}{A}
$$

No surface symmetry energy. . .

Surface energy:
$$
E_S = a_S A^{2/3} = \frac{a_S}{4\pi r_0^2} 4\pi r_0^2 A^{2/3} = \frac{a_S}{4\pi r_0^2} S
$$

 $\frac{E_S}{S} = \sigma = \frac{a_S}{4\pi r_0^2}$ (tension – work per area)

 \rightarrow Because nucleons at the surface less bound, creating surface requires work.

Symmetry energy reduces the binding, so, as n-p asymmetry increases, the work to create surface should drop

$$
\sigma = \frac{\partial E_S}{\partial S} \quad \searrow \qquad \qquad \text{(in the general definition of tension)}
$$

 σ as microscopic should depend on a microscopic quantity characterizing neutron-proton (n-p) asymmetry $\rightarrow \mu_a$

$$
\mu_a = \frac{\partial E}{\partial (N - Z)}
$$

Since tension should drop no matter whether more neutrons or $protons \rightarrow quadratic$ in chemical potential

$$
\sigma = \sigma_0 - \gamma \,\mu_a^2
$$

Surface energy E_S must then also depend on μ_a ...

Thermodynamic consistency then requires: Surface must contain n-p excess!

$$
(N_S - Z_S) \propto \mu_a
$$

Surface energy must be quadratic in the excess and/or μ_a . ?How can surface hold particles?!

Gibbs definition for surface quantities - difference between actual and idealized where volume contribution only: $F_S = F - F_V$

result depends on surface position R

$$
\rightarrow A_S = A - A_V = 0
$$

2-component system: surfaces for neutrons and protons may be displaced. Net surface position set demanding: $A_S = 0$. However, $N_S - Z_S \neq 0!$

NSCL-MSU

 $\overline{}$

With thermodynamic consistency resolved, $\sigma = \sigma_0 - \gamma \mu_a^2$ yields for surface energy

$$
E_S = \sigma_0 \, S + \gamma \, \mu_a^2 \, S = E_S^0 + \frac{1}{4\gamma} \, \frac{(N_S - Z_S)^2}{S} = E_S^0 + \beta \, \frac{(N_S - Z_S)^2}{A^{2/3}}
$$

Volume: $E_V = E_V^0$ $V^{0} + \alpha$ $(N_V-Z_V)^2$ A (mass formula)

Net Energy & Asymmetry: $E = E_S + E_V$, $N-Z = N_S-Z_S + N_V - Z_V$ Capacitor analogy: $q_X = N_X - Z_X$, $E_X = E_X^0 + \frac{q_X^2}{2C}$ \overline{X} $2C_X$ $C_S = \frac{A^{2/3}}{2\beta}$ $\frac{A^{2/3}}{2\beta},~~ C_V=\frac{A}{2\alpha}$ 2α

Minimal energy under the surface-volume asymmetry partition – energy of capacitors in parallel:

$$
E = E^{0} + \frac{q^{2}}{2C} = E^{0} + \frac{(N - Z)^{2}}{\frac{A}{\alpha} + \frac{A^{2/3}}{\beta}}
$$

The partition:
$$
\frac{q_S}{q_V} = \frac{C_S}{C_V} \iff \frac{N_S - Z_S}{N_V - Z_V} = \frac{\alpha}{\beta} A^{-1/3}
$$

MODIFIED ENERGY FORMULA $E = -a_V A + a_S A^{2/3} + a_C$ $\overline{Z}{}^{2}$ $A^{1/3}$ $+ \alpha$ $(N - Z)^2$ A 1 $\frac{\alpha}{\beta} A^{-1/3}$ Regular formula: $\frac{\alpha}{\beta} = 0$ – surface not accepting excess $(\beta = \infty)$ $\alpha \equiv a_a$ for $\frac{\alpha}{\beta} = 0$ or $A \to \infty$

Any need for modification?! Test: After a global fit, invert the formula using measured E for individual nuclei $\sum_{s=1}^{\infty}$
to get $\alpha(a_s)$ locally. to get α (a_a) locally. α from a local inversion should represent, on the average the α from a global fit. $\alpha/\beta \sim 2$ best

ASYMMETRY SKINS

The energy formula predicts different neutron and proton radii. For heavy nuclei a correction due to Coulomb forces that push protons out

$$
E = E_0 + E_V + E_S + E_C \qquad E_C = \frac{e^2}{4\pi\epsilon_0} \frac{1}{R} \left(\frac{3}{5} Z_V^2 + Z_V Z_S + \frac{1}{2} Z_S^2 \right)
$$

From the modified minimalization, analytic difference of rms radii:

$$
\frac{\langle r^2 \rangle_n^{1/2} - \langle r^2 \rangle_p^{1/2}}{\langle r^2 \rangle^{1/2}} = \frac{A}{6NZ} \frac{N - Z}{1 + \frac{\beta}{\alpha} A^{1/3}} - \frac{a_C}{168\alpha} \frac{A^{5/3}}{N} \frac{\frac{10}{3} + \frac{\beta}{\alpha} A^{1/3}}{1 + \frac{\beta}{\alpha} A^{1/3}}
$$

The Coulomb correction (2^{nd} term) favors larger proton radii...

Measurements of n-p skin sizes difficult: two different probes required.

E.g. electrons + protons, π^+ + π^- , protons + neutrons

Comparison of measured n-p skin sizes (Suzuki et al. '95 - symbols) to the formula (lines), for different Na isotopes

difference between the rms n and p radii vs A

NSCL-MSU

 $\overline{}$

Skin size vs charge and mass numbers tests the symmetry parameter <u>ratio</u> α/β

$$
\frac{q_S}{q} = \frac{C_S}{C} \iff \frac{N_S - Z_S}{N - Z} = \frac{1}{1 + \frac{\beta}{\alpha} A^{1/3}}
$$

plane of α/β (vol/sur) vs α (vol)

Results from global fits to skin dependencies + from fit to masses

Conclusions:

 $\overline{}$

 $27 \,\mathrm{MeV} \lesssim \alpha \lesssim 31 \,\mathrm{MeV}$ $2.0 \leq \alpha/\beta \leq 2.8$ $11 \text{ MeV} \lesssim \beta \lesssim 14 \text{ MeV}$

ASYMMETRY OSCILLATIONS

Movement of neutrons vs protons - giant resonances visible in excitation cross sections

Two classical models of the simplest giant dipole resonance (GDR)

Goldhaber-Teller (GT): n & p distributions oscillate against each other as rigid entities: \mathcal{L}

$$
E_{GDR}=\hbar\Omega\propto\sqrt{A^{2/3}/A}=A^{-1/6}
$$

Steinwedel-Jensen (SJ): Standing wave of n-p in the interior with vanishing flux at the surface

$$
E_{GDR} = \hbar c_a / \lambda \propto A^{-1/3}
$$

GT model: $\alpha \to \infty$ SJ model: $\beta \to \infty$

Realistic model: SJ but asymmetry flux may flow in and out of the surface. . . The boundary condition produces:

$$
qR\,j_1(qR)=\frac{3\bar{\beta}\,A^{1/3}}{\alpha}\,j_1'(qR)
$$

 j_1 - spherical Bessel function, typical for waves when spherical symmetry; q wavenumber, $E_{GDR} = \hbar c_a q$

As $\beta A^{1/3}/\alpha$ changes, the condition changes between that of open and close pipe and the resonance evolves between GT and SJ

MICROSCOPIC BACKGROUND In the Thomas-Fermi approximation with 小
、 . α u $\sqrt{2}$ R $\rho_n-\rho_p$ $d^3r\,\rho\,E_1(\rho)$ $E = E_0 +$, where E_1 - symmetry energy ρ $(E_1(\rho_0) = \alpha)$, the Gibbs prescription for semiinfinite matter yields escription for semining α 3 $dx \stackrel{\rho}{=}$ α = − 1 β r_0 ρ_0 $E_1(\rho)$ α/β probes the shape of $E_1(\rho)$! From 2.0 $\leq \alpha/\beta \leq 2.8$ for 0.8 mean-field structure calcs (Furnstahl '02 - symbols), α $\sqrt{2})/$ we deduce symmetry energy (^ρ reduction at half the normal \mathbb{Z}^n density: 0.5

 0.4

 \overline{a}

3

 $0.57 \lesssim E_1(\rho_0/2)/\alpha \lesssim 0.83$

 $\overline{\mathbf{A}}$

5

6

CONCLUSIONS

- Adding a single parameter to the standard nuclear binding formula greatly extends access to the physics of neutron-proton asymmetry in nuclei.
- The surface symmetry energy is needed to explain binding of light asymmetric nuclei. In the net energy, the surface and volume symmetry contributions combine as energies of two connected capacitors.
- The finite surface symmetry energy implies existence of asymmetry skins.
- The measured skin sizes limit the ratio of volume-to-surface symmetry coefficients to the range $2.0 \le \alpha/\beta \le 2.8$.
- A combination of the skin and mass information yields for the volume (i.e. infinite-matter) symmetry coefficient $27 \,\mathrm{MeV} \lesssim \alpha \lesssim 31 \,\mathrm{MeV}.$
- Emergence of the surface symmetry energy is related to a weakening of the symmetry energy with density. The ratio α/β can be used to limit the reduction factor at half the normal density to $0.57 \lesssim E_1(\rho_0/2)/\alpha \lesssim 0.83$.
- Description of giant dipole resonances improves with an inclusion of the surface symmetry energy. The resonances are more of a GT type for light nuclei and of an SJ type for heavy.

nucl-th/0301050

 $\overline{}$

Local Amplitude \equiv Transition Density $\rho_1(r) = \frac{D_V}{r}$ ρ_0 $j_{\ell}(qr) \, \left| \, \rho(r) \, - \, \right.$ α $3\beta\,A^{1/3}$ r $d\rho$ $rac{d\rho}{dr}$

Compared to microscopic calculations (Khamerdzhiev et al '97) GSC, including 2p-2h excitations and ground-state correlations:

Different Mass Formulas Liquid droplet model (Myers & Swiatecki '69) $|E| =$ \mathcal{L} $-a_1 + J \delta$ 2 − 1 2 $K\bar{\epsilon}^2 +$ 1 2 $M\,\delta$ 4 $\frac{1}{\sqrt{2}}$ A $+$ \overline{a} $a_2 + Q \,\tau^2 + a_3 \, A^{-1/3}$ ´ $A^{2/3} + c_1$ $\overline{Z}{}^2$ $A^{1/3}$ $\frac{1}{2}$ 1 + 1 2 $\tau\,A^{-1/3}$ $\frac{1}{\sqrt{2}}$ $-c_2 Z^2 A^{1/3} - c_3$ $\overline{Z}{}^{2}$ A $-c_4$ $Z^{4/3}$ $A^{1/3}$

where

 $\overline{}$

$$
\overline{\epsilon} = \frac{1}{K} \left(-2a_2 A^{-1/3} + L \overline{\delta}^2 + c_1 \frac{Z^2}{A^{4/3}} \right), \qquad \tau = \frac{3}{2} \frac{J}{Q} \left(\overline{\delta} + \overline{\delta}_s \right)
$$

$$
\overline{\delta} = \frac{I + \frac{3}{8} \frac{c_1}{Q} \frac{Z^2}{A^{5/3}}}{1 + \frac{9}{4} \frac{J}{Q} A^{-1/3}}, \qquad \overline{\delta}_s = -\frac{c_1}{12J} \frac{Z}{A^{1/3}}, \qquad I = \frac{N - Z}{N + Z}
$$

 $Q = H/(1 - \frac{2}{3})$ $\frac{2}{3}P(J)$. Expansion in asymmetry yields results consistent with current, but approach more complex. . .

The current formula:

$$
E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + \alpha \frac{(N-Z)^2}{A} \frac{1}{1 + \frac{\alpha}{\beta} A^{-1/3}}
$$

Liquid drop model [LDM] (Myers & Swiatecki '66)

$$
E = -a_V (1 - \kappa_V I^2) A + a_S (1 - \kappa_S I^2) A^{2/3}
$$

+ $a_C \frac{Z^2}{A^{1/3}} - a_4 \frac{Z^2}{A}$

with $I = (N - Z)/A$. LDM corresponds to the expansion in the current formula:

$$
\frac{1}{\frac{A}{\alpha} + \frac{A^{2/3}}{\beta}} \simeq \frac{\alpha}{A} \left(1 - \frac{\alpha}{\beta} A^{-1/3} \right)
$$

But that expansion only accurate for $A \gtrsim 1000$, i.e. never!