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Surface Symmetry Energy
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Weizsäcker Formula

Nuclear energy: ∝ A

E = −aV A + aS A2/3 + aC
Z2

A1/3
+ aA

(N − Z)2

A

No surface symmetry energy. . .

Surface energy: ES = aS A2/3 =
aS

4π r2
0

4π r2
0 A2/3 =

aS

4π r2
0

S

ES

S
= σ =

aS

4π r2
0

(tension – work per area)

→ Because nucleons at the surface less bound, creating surface
requires work.

Symmetry energy reduces the binding, so, as n-p asymmetry
increases, the work to create surface should drop

σ =
∂ ES

∂ S
↘ (in the general definition of tension)
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σ as microscopic should depend on a microscopic quantity
characterizing neutron-proton (n-p) asymmetry → µa

µa =
∂ E

∂ (N − Z)

Since tension should drop no matter whether more neutrons or
protons → quadratic in chemical potential

σ = σ0 − γ µ2
a

Surface energy ES must then also depend on µa. . .

Thermodynamic consistency then requires:
Surface must contain n-p excess!

(NS − ZS) ∝ µa

Surface energy must be quadratic in the excess and/or µa.
?How can surface hold particles?!
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Gibbs definition for surface
quantities - difference be-
tween actual and idealized
where volume contribution
only: FS = F − FV

result depends on surface
position R

→ AS = A−AV = 0

2-component system: sur-
faces for neutrons and pro-
tons may be displaced.

Net surface position set de-
manding: AS = 0.

However, NS − ZS 6= 0!
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With thermodynamic consistency resolved, σ = σ0 − γ µ2
a yields for

surface energy

ES = σ0 S + γ µ2
a S = E0

S +
1
4γ

(NS − ZS)2

S = E0
S + β

(NS − ZS)2

A2/3

Volume: EV = E0
V +α

(NV − ZV )2

A
(mass formula)

Net Energy & Asymmetry: E = ES+EV , N−Z = NS−ZS+NV−ZV

Capacitor analogy: qX = NX − ZX , EX = E0
X + q2

X

2CX

CS = A2/3

2β , CV = A
2α

Minimal energy under the surface-volume asymmetry partition –
energy of capacitors in parallel:

E = E0 +
q2

2C
= E0 +

(N − Z)2
A
α + A2/3

β

The partition:
qS

qV
=

CS

CV
⇔ NS − ZS

NV − ZV
=

α

β
A−1/3
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Modified Energy Formula

E = −aV A + aS A2/3 + aC
Z2

A1/3
+ α

(N − Z)2

A

1
1 + α

β A−1/3

Regular formula: α
β = 0 – surface not accepting excess (β = ∞)

α ≡ aa for α
β = 0 or A →∞

Any need for modification?!
Test: After a global fit, in-
vert the formula using mea-
sured E for individual nuclei
to get α (aa) locally.
α from a local inversion
should represent, on the av-
erage the α from a global fit.

α/β ∼ 2 best
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Best-fit parameters in the
α/β-α (vol/sur-vol) plane.

Strong correlation valley.

aa = 21 MeV → α

1 + α
β A−1/3

Largest number of asym-
metric nuclei at A ∼ 200.
Valley:

21MeV =
α

1 + α
β 200−1/3

∆(Eth − Eexp) for light asymmetric (|N − Z|/A > 0.2) nuclei:
7.4 MeV for α/β = 0
2.3 MeV for α/β ∼ 2 (similar to that for all nuclei ∼ 2 MeV)
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Asymmetry Skins
The energy formula predicts different neutron and proton radii.

For heavy nuclei a correction due to Coulomb forces that push
protons out

E = E0+EV +ES +EC EC =
e2

4πε0

1
R

(
3
5

Z2
V + ZV ZS +

1
2

Z2
S

)

From the modified minimalization, analytic difference of rms radii:

〈r2〉1/2
n − 〈r2〉1/2

p

〈r2〉1/2
=

A

6NZ

N − Z

1 + β
α A1/3

− aC

168α

A5/3

N

10
3 + β

α A1/3

1 + β
α A1/3

The Coulomb correction (2nd term) favors larger proton radii. . .

Measurements of n-p skin sizes difficult: two different probes
required.
E.g. electrons + protons, π+ + π−, protons + neutrons
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Comparison of measured n-p skin sizes (Suzuki et al. ’95 - symbols)
to the formula (lines), for different Na isotopes

difference between the rms n and p radii vs A
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More comparisons to data:

Skin size vs charge and mass numbers tests the symmetry
parameter ratio α/β

qS

q
=

CS

C
⇔ NS − ZS

N − Z
=

1
1 + β

α A1/3
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Skin size vs proton-neutron separation energy difference (chem pot
conjugate to N − Z) measures surface symmetry parameter β:

qS = CS V ⇔ NS − ZS =
A2/3

2β
× 1

2
(Sp − Sn)

difference between the rms n and p radii vs difference between p
and n separation energies
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plane of α/β (vol/sur) vs α (vol)

Results from global fits
to skin dependencies +
from fit to masses

Conclusions:

27MeV . α . 31MeV

2.0 . α/β . 2.8

11MeV . β . 14MeV
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Asymmetry Oscillations
Movement of neutrons vs protons - giant resonances visible in
excitation cross sections
Two classical models of the simplest giant dipole resonance (GDR)

Goldhaber-Teller (GT): n & p distributions oscillate against each
other as rigid entities:

EGDR = ~Ω ∝
√

A2/3/A = A−1/6

Steinwedel-Jensen (SJ): Standing wave of n-p in the interior with
vanishing flux at the surface

EGDR = ~ca/λ ∝ A−1/3
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GT model: α →∞ SJ model: β →∞
Realistic model: SJ but asymmetry flux may flow in and out of the
surface. . . The boundary condition produces:

qR j1(qR) =
3β A1/3

α
j′1(qR)

j1 - spherical Bessel func-
tion, typical for waves when
spherical symmetry; q -
wavenumber, EGDR = ~ ca q

As β A1/3/α changes, the
condition changes between
that of open and close pipe
and the resonance evolves
between GT and SJ
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Microscopic Background
In the Thomas-Fermi approximation with

E = E0 +
∫

d3r ρE1(ρ)
(

ρn−ρp

ρ

)2

, where E1 - symmetry energy

(E1(ρ0) = α), the Gibbs prescription for semiinfinite matter yields
α

β
=

3
r0

∫
dx

ρ

ρ0

(
α

E1(ρ)
− 1

)

α/β probes the shape of E1(ρ)!

From 2.0 . α/β . 2.8 for
mean-field structure calcs
(Furnstahl ’02 - symbols),
we deduce symmetry energy
reduction at half the normal
density:

0.57 . E1(ρ0/2)/α . 0.83

E
1

(ρ
0

/2
)/

α
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Conclusions

• Adding a single parameter to the standard nuclear binding
formula greatly extends access to the physics of neutron-proton
asymmetry in nuclei.

• The surface symmetry energy is needed to explain binding of
light asymmetric nuclei. In the net energy, the surface and
volume symmetry contributions combine as energies of two
connected capacitors.

• The finite surface symmetry energy implies existence of
asymmetry skins.

• The measured skin sizes limit the ratio of volume-to-surface
symmetry coefficients to the range 2.0 . α/β . 2.8.
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• A combination of the skin and mass information yields for the
volume (i.e. infinite-matter) symmetry coefficient
27 MeV . α . 31MeV.

• Emergence of the surface symmetry energy is related to a
weakening of the symmetry energy with density. The ratio α/β

can be used to limit the reduction factor at half the normal
density to 0.57 . E1(ρ0/2)/α . 0.83.

• Description of giant dipole resonances improves with an
inclusion of the surface symmetry energy. The resonances are
more of a GT type for light nuclei and of an SJ type for heavy.

nucl-th/0301050
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Local Amplitude ≡ Transition Density

ρ1(r) =
DV

ρ0
j`(qr)

[
ρ(r)− α

3β A1/3
r

dρ

dr

]

Compared to microscopic calculations (Khamerdzhiev et al ’97)
GSC, including 2p-2h excitations and ground-state correlations:
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Different Mass Formulas

Liquid droplet model (Myers & Swiatecki ’69)

E =
(
−a1 + J δ

2 − 1
2

K ε2 +
1
2

M δ
4
)

A

+
(
a2 + Q τ2 + a3 A−1/3

)
A2/3 + c1

Z2

A1/3

(
1 +

1
2

τ A−1/3

)

−c2 Z2 A1/3 − c3
Z2

A
− c4

Z4/3

A1/3

where

ε =
1
K

(
−2a2 A−1/3 + L δ

2
+ c1

Z2

A4/3

)
, τ =

3
2

J

Q

(
δ + δs

)

δ =
I + 3

8
c1
Q

Z2

A5/3

1 + 9
4

J
Q A−1/3

, δs = − c1

12J

Z

A1/3
, I =

N − Z

N + Z

Q = H/(1− 2
3 P/J). Expansion in asymmetry yields results

consistent with current, but approach more complex. . .
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The current formula:

E = −aV A + aS A2/3 + aC
Z2

A1/3
+ α

(N − Z)2

A

1
1 + α

β A−1/3

Liquid drop model [LDM] (Myers & Swiatecki ’66)

E = −aV

(
1− κV I2

)
A + aS

(
1− κS I2

)
A2/3

+aC
Z2

A1/3
− a4

Z2

A

with I = (N − Z)/A. LDM corresponds to the expansion in the
current formula:

1
A
α + A2/3

β

' α

A

(
1− α

β
A−1/3

)

But that expansion only accurate for A & 1000, i.e. never!


