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Introduction

e Jet quenching at RHIC: strong interactions of fast partons with the hot and dense medium.

e Electromagnetic analogon: induced radiation of real and virtual photons by interactions of fast
partons with the medium.

e Can this be an electromagnetic probe for jet quenching?

e From back-to-back jet-photon production: photon tagging (Wang,Huang,Sarcevic), dilepton
tagging (Srivastava,Gale,Awes) of jets.

e Electromagnetic interactions with the medium happen during the entire lifetime of a fast parton
in the plasma phase.

e But in order to be experimentally accessible, this new photon source must be bright!
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Annihilation and Compton processes with real photons

e Real photons from gg annihilation
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Photon yield from the plasma
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e Distribution of partons: f(p) = fihermal(P) + fiet(P)
Dominated by thermal part < 1 GeV and by perturbative part > 4 GeV.

e Integrals given by thermal distributions for partons from the plasma.
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Input: jets and the fireball

Initial minijet distribution: 1 (27)3 dIV:
) fiet(P) = — (2 ) & 5(n—y)O (T —7:)O(Tmax—T)O (R, —r)R(r)
6 2
mR{Tp| d°p dy

® Tm.x = minllife time 7, time of travel 7]

e travel distance d = —rcos ¢ + \/RQL — r2sin® ¢, cos ¢ = Vi
e transverse profile R(r) = 2(1 — r*/R?)

e temperature profile T'(r) = Tp[2(1 — 7%/ R?)]*/*

o d*z = rdrrdrdndd

o Ty =160 MeV

o Ty = 446 MeV (RHIC) < 79 = 0.147 fm

e Ty = 897 MeV (LHC) & 75 = 0.073 fm
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Photon sources in the quark phase

e EM Bremsstrahlung connected to primary
hard interactions
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e Hard direct photons

s

CD calculation including shadowi
PQLD caleulation including shadowing pQCD calculation including shadowing

e Thermal photon radiation from the hot

_ e Jet-photon conversion in the medium
medium

: C Use above formula with perturbative quark distributions
Use above formula with thermal quark distributions P G
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Results for real photons

e RHIC e LHC
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e Jet-photon conversion is of the same order of magnitude as other direct photon mechanisms.

® P slope is larger (typical for higher twist).
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Dileptons from jet-plasma interactions

Contribution to the mass spectrum from jet plasma interactions.
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e Contribution from jet-+* conversion: numerical integration.
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Dilepton sources in the parton phase

® Direct Drell-Yan

>NV\,< pPQCD calculation including shadowing

e Thermal dileptons from the hot medium

Use thermal X thermal as input

e Jet-virtual photon conversion in the medium

Use pert X thermal as input
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Results for dileptons

o LHC

e RHIC
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Further considerations

Chemical equilibration:

Rates should be reduced if f — Af, A < 1! But in the purely thermal process one more
power of X\ enters.

= Thermal part more suppressed!

Checked for the dilepton calculation.

Dependence on the initial time 79: marginal!
Photon rate only varies weakly with r72/3
= Considerable contribution from late times!

Jet quenching:
Partons will only suffer from reduced energy loss. Photon rates from jets will not be dramatically

suppressed. = Photons from jet-photon conversion are sensitive to the jet distribution at early
times!

Missing:
— Photon bremsstrahlung from strong interactions between fast partons and the hot medium.
— Interaction of fast partons/jets with hadronic/mixed phases.
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Chemical equilibration for dileptons

e RHIC
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e Extraction of direct photons is very delicate in heavy ion collisions.

possible.

A look at RHIC data: PHENIX

e Subtract secondary photons from 7rs and 7s.

e PHENIX preliminary results for the ratio of inclusive photons to photons from

e Extraction

No direct measurement
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of the direct photons has not yet been completed.
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A look at RHIC data: STAR

e STAR preliminary results for inclusive photon yields
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e Extraction of the direct photons has not yet been completed.
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Conclusions

We have discussed a new source of real and virtual photons in heavy ion collisions by the
interaction of fast partons with the hot medium.

The jet-photon conversion mechanism is comparable in size with other direct photon sources
above p; =~ 4 GeV at RHIC and LHC.

The jet-plasma interaction gives a large contribution to the large mass dilepton spectrum at
LHC, while it is about a factor of 4 below the direct Drell Yan contribution at RHIC.

For photons/dileptons the new mechanism is dominant compared to thermal sources at large
transverse momentum /mass.

The photon spectrum from jet-photon conversion is directly proportional to the jet spectrum
and sensitive to jet distributions at early times, with only small influence of jet quenching.

Dependence of the new source on missing chemical equilibration and varying initial times is
small.

To do list: transverse momentum spectrum for Drell Yan, detailed study of jet quenching.

R.J. Fries



