Electromagnetic signals from the passage of jets through QGP

R. J. Fries

Duke University

Talk at HIC03, Montreal, June 25 2003

in Collaboration with:

C. Gale (McGill), B. Müller (Duke), D. K. Srivastava (VECC,Duke,McGill)

Phys. Rev. Lett. 90, ¹³²³⁰¹ (2003), Phys. Rev. C 67, ⁰³⁴⁹⁰³ (2003)

Introduction

- Jet quenching at RHIC: strong interactions of fast partons with the hot and dense medium.
- Electromagnetic analogon: induced radiation of real and virtual photons by interactions of fast partons with the medium.
- Can this be an electromagnetic probe for jet quenching?
- From back-to-back jet-photon production: photon tagging (Wang,Huang,Sarcevic), dilepton tagging (Srivastava,Gale,Awes) of jets.
- Electromagnetic interactions with the medium happen during the entire lifetime of ^a fast parton in the plasma phase.
- But in order to be experimentally accessible, this new photon source must be bright!

Annihilation and Compton processes with real photons

 \bullet Real photons from $q\bar{q}$ annihilation

$$
\frac{d\sigma}{dt} = \frac{8\pi\alpha\alpha_s e_q^2}{9s^2} \left(\frac{u}{t} + \frac{t}{u}\right)
$$

 $t \approx 0$, $u \approx 0$ are dominant regions of phase space, corresponding to $\mathbf{p}_{\gamma} \approx \mathbf{p}_q$, $\mathbf{p}_{\gamma} \approx \mathbf{p}_{\bar{q}}$.

$$
\implies E_{\gamma} \frac{d\sigma}{d^3 p_{\gamma}} \approx \sigma(s) \frac{1}{2} [\delta(\mathbf{p}_{\gamma} - \mathbf{p}_{q}) - \delta(\mathbf{p}_{\gamma} - \mathbf{p}_{\bar{q}})]
$$

• Real photons from Compton

$$
\frac{d\sigma}{dt} = -\frac{\pi \alpha \alpha_s e_q^2}{3s^2} \left(\frac{u}{s} + \frac{s}{u}\right)
$$

$$
u\approx 0 \Longleftrightarrow \mathbf{p}_{\gamma} \approx \mathbf{p}_{q}
$$

$$
\implies E_{\gamma} \frac{d\sigma}{d^3 p_{\gamma}} \approx \sigma(s)\delta(\mathbf{p}_{\gamma} - \mathbf{p}_q)
$$

Photon yield from the plasma

$$
E_{\gamma} \frac{dN^{(a)}}{d^4x d^3p_{\gamma}} = \frac{16E_{\gamma}}{2(2\pi)^6} \sum_{q=1}^{N_f} f_q(\mathbf{p}_{\gamma}) \int d^3p f_{\bar{q}}(\mathbf{p}) [1 + f_g(\mathbf{p})] \sigma^{(a)}(s) \frac{\sqrt{s(s-4m^2)}}{2E_{\gamma}E} + (q \leftrightarrow \bar{q})
$$

\nTotal cross section
$$
\sqrt{s(s-4m^2)} \sigma^{(a)}(s) = 4\pi \alpha \alpha_s \left[\ln \frac{s}{m^2} - 1 \right]
$$

$$
E_{\gamma} \frac{dN^{(C)}}{d^4x d^3p_{\gamma}} = \frac{16E_{\gamma}}{2(2\pi)^6} \sum_{q=1}^{N_f} f_q(\mathbf{p}_{\gamma}) \int d^3p f_{\bar{g}}(\mathbf{p}) [1 - f_q(\mathbf{p})] \sigma^{(C)}(s) \frac{s-m^2}{2E_{\gamma}E} + (q \to \bar{q})
$$

\nTotal cross section
$$
(s - m^2) \sigma^{(C)}(s) = 2\pi \alpha \alpha_s \left[\ln \frac{s}{m^2} + \frac{1}{2} \right]
$$

- \bullet Distribution of partons: $f(\mathbf{p}) = f_{\mathsf{thermal}}(\mathbf{p}) + f_{\mathsf{jet}}(\mathbf{p})$ Dominated by thermal part < 1 GeV and by perturbative part > 4 GeV.
- Integrals given by thermal distributions for partons from the plasma.

$$
E_{\gamma}\frac{dN}{d^4x d^3p_{\gamma}} = \frac{\alpha \alpha_s}{4\pi^2} \frac{2}{3} [f_q(\mathbf{p}_{\gamma}) + f_{\bar{q}}(\mathbf{p}_{\gamma})]T^2 \left[\ln \frac{4E_{\gamma}T}{m^2} + C \right]
$$

for annihilation + Compton. $C = -1.916$ $m^2 = g^2T^2/6$

Input: jets and the fireball

Initial minijet distribution:

$$
f_{\rm jet}(\mathbf{p}) = \frac{1}{6} \frac{(2\pi)^3}{\pi R_\perp^2 \tau p_\perp} \frac{dN_{\rm jet}}{d^2 p_\perp dy} \delta(\eta - y) \Theta(\tau - \tau_i) \Theta(\tau_{\rm max} - \tau) \Theta(R_\perp - r) R(r)
$$

- $\bullet~~ \tau_{\sf max} = \min [\textsf{life time} ~\tau_f, \textsf{time of travel} ~\tau_d]$
- • $\bullet\,$ travel distance $d=-r\cos\phi+\sqrt{R_\perp^2-r^2\sin^2\phi}$, $\cos\phi=\hat{\bf v}\hat{\bf r}$
- $\bullet\,$ transverse profile $R(r)=2(1-r^2/R_\perp^2)$
- $\bullet~$ temperature profile $T(r) = T_0 [2(1 r^2/R_\perp^2)]^{1/4}$
- $\bullet \ \ d^4x=\tau d\tau r dr d\eta d\phi$
- $\bullet\ \ T_f = 160\ \text{MeV}$
- \bullet $T_0 = 446$ MeV (RHIC) \Leftrightarrow $\tau_0 = 0.147$ fm
- \bullet $\; T_0 = 897$ MeV (LHC) $\Leftrightarrow \tau_0 = 0.073$ fm

Photon sources in the quark phase

• Hard direct photons

- pQCD calculation including shadowing
- \bullet Thermal photon radiation from the hot medium

Use above formula with thermal quark distributions

• EM Bremsstrahlung connected to primary hard interactions

pQCD calculation including shadowing

• Jet-photon conversion in the medium

Use above formula with perturbative quark distributions

Results for real photons

- •Jet-photon conversion is of the same order of magnitude as other direct photon mechanisms.
- $\bullet~~ P_T$ slope is larger (typical for higher twist).

Dileptons from jet-plasma interactions

Contribution to the mass spectrum from jet plasma interactions.

$$
\frac{dN}{d^4x dM^2} = \frac{M^4 \sigma(M^2)}{(2\pi)^5} \int x_a \, dx_a \, x_b \, dx_b \, dy_a \, dy_b
$$

$$
\times f_a f_b \{4x_a^2 x_b^2 - [2x_a x_b \cosh(y_a - y_b) - 1]^2\}^{1/2}
$$

$$
x_a = p^a_\perp / M, \qquad x_b = p^b_\perp / M
$$

 \bullet If both distributions thermal, $f(\mathbf{p})=e^{-E/T}=e^{-p_{\perp}\cosh y/T}$:

$$
\frac{dN}{d^4x dM^2} = \frac{M^3T\sigma(M^2)}{2(2\pi)^4}K_1(M/T)
$$

• Contribution from jet- γ^* conversion: numerical integration.

Dilepton sources in the parton phase

• Direct Drell-Yan

pQCD calculation including shadowing

• Thermal dileptons from the hot medium

Use thermal \times thermal as input

• Jet-virtual photon conversion in the medium

Use pert \times thermal as input

R.J. Fries

Further considerations

- Chemical equilibration: Rates should be reduced if $f \to \lambda f$, $\lambda < 1!$ But in the purely thermal process one more power of λ enters.
	- \Rightarrow Thermal part more suppressed!

Checked for the dilepton calculation.

- \bullet Dependence on the initial time τ_0 : marginal! Photon rate only varies weakly with $\tau^{-2/3}$. \Rightarrow Considerable contribution from late times!
- Jet quenching:

Partons will only suffer from reduced energy loss. Photon rates from jets will not be dramatically suppressed. ⇒ Photons from jet-photon conversion are sensitive to the jet distribution at early times!

- Missing:
	- Photon bremsstrahlung from strong interactions between fast partons and the hot medium.
	- $-$ Interaction of fast partons/jets with hadronic/mixed phases.

Chemical equilibration for dileptons

 \bullet RHIC \bullet LHC

M (GeV)

Evolution of fugacities starting with $\lambda_g = 0.34$ (0.43) $\lambda_q = 0.064~(0.082)$ at $\tau_0 = 0.25$ for RHIC (LHC).

A look at RHIC data: PHENIX

• Extraction of direct photons is very delicate in heavy ion collisions. No direct measurement possible.

- Subtract secondary photons from π s and η s.
- PHENIX preliminary results for the ratio of inclusive photons to photons from π^0 :

• Extraction of the direct photons has not yet been completed.

A look at RHIC data: STAR

• STAR preliminary results for inclusive photon yields

• Extraction of the direct photons has not yet been completed.

Conclusions

- \Diamond We have discussed a new source of real and virtual photons in heavy ion collisions by the interaction of fast partons with the hot medium.
- \Diamond The jet-photon conversion mechanism is comparable in size with other direct photon sources above $p_{\perp} \approx 4$ GeV at RHIC and LHC.
- \diamond The jet-plasma interaction gives a large contribution to the large mass dilepton spectrum at LHC, while it is about ^a factor of 4 below the direct Drell Yan contribution at RHIC.
- \diamond For photons/dileptons the new mechanism is dominant compared to thermal sources at large transverse momentum/mass.
- \Diamond The photon spectrum from jet-photon conversion is directly proportional to the jet spectrum and sensitive to jet distributions at early times, with only small influence of jet quenching.
- \Diamond Dependence of the new source on missing chemical equilibration and varying initial times is small.
- ✸ To do list: transverse momentum spectrum for Drell Yan, detailed study of jet quenching.