Correlations and Fluctuations in Heavy Ion **Collisions**

Sangyong Jeon

McGill University

Riken-Brookhaven Research Center

HIC03, Montreal

Why fluctuations?

- Sometimes physics is in the width.
- Thermodynamically interesting (heat capacity, ...).
- $\bullet~$ Bulk property : $p_T < 2$ GeV

Aren't Correlation functions better?

• Correlation function contains all relevant info. However, to interpret changes in the correlation functions, one needs to think about what fluctuations are doing.

Interesting fluctuations

- 'Charge' fluctuation
	- ∗ Electric charge (Fractional charges?)
	- ∗ Baryon number (Fractional baryon number?)
	- ∗ Strangeness (Gluon fragmentation?)
	- ∗ Heavy quark number (Initial wave function?)
- $\bullet\,$ Mean p_T/m_T fluctuation (Temperature? Heat capacity?)
- Multiplicity fluctuations (KNO? Thermal?)
- Energy fluctuation (Heat capacity?)

Fundamental observable

 $\bullet\,$ Probability to have a set of particles $\{\alpha_1, \alpha_2, \cdots, \alpha_N\}$ with momenta $\{p_{\alpha_1}, p_{\alpha_2}, \cdots, p_{\alpha_N}\}$:

$$
P(\{\alpha_1,p_{\alpha_1}\},\{\alpha_2,p_{\alpha_2}\},\cdots,\{\alpha_N,p_{\alpha_N}\})
$$

• Experimentally,

 $P(\Omega_N) \Delta \Omega_N = \frac{\sum$ Events with $\Omega_N \pm \Delta \Omega_N/2$
Number of all events $(=\mathcal{N})$

 α_i : Particle id, p_i : Momentum $\Omega_N = (\{\alpha_1, p_{\alpha_1}\}, \{\alpha_2, p_{\alpha_2}\}, \cdots, \{\alpha_N, p_{\alpha_N}\})$

Correlations

- Relevant to fluctuations: Single particle distributions and 2-particle correlation functions.
- Single particle distribution functions : $\rho_{\alpha}(p)dp =$ Average number of α within dp around p.

$$
\int_{\Delta \eta} dp \, \rho_{\alpha}(p) = \langle N_{\alpha} \rangle_{\Delta \eta}
$$

• 2-particle correlation functions :

 $\rho_{\alpha\beta}(p_1, p_2) dp_1 dp_2 =$ Average number of $\alpha\beta$ pairs within dp_1dp_2 around p_1, p_2

 $\int_{\Delta n} dp_1 dp_2 \, \rho_{\alpha\beta}(p_1, p_2) = \langle N_\alpha N_\beta \rangle_{\Delta \eta} - \delta_{\alpha\beta} \, \langle N_\alpha \rangle_{\Delta \eta}$

A toy model – " ρ " gas

- $\bullet~~ M_{\pm}$ independently emitted \pm particles $``\rho^{\pm}"\implies$ $g_{\pm}(p_{\pm})$
- M_0 neutral clusters " ρ^{0} " $\implies f_0(p_+, p_-), g_0(p) = \int dq f_0(p, q)$
	- ∗ Single particle distributions

 $\rho_{\pm}(p) = \langle M+\rangle g_{\pm}(p) + \langle M_0\rangle g_0(p)$

Two particle correlation functions

$$
C_{++}(p_1, p_2) \equiv \rho_{++}(p_1, p_2) - \rho_{+}(p_1)\rho_{+}(p_2)
$$

=
$$
\sum_{a=+,0} \sum_{b=+,0} \langle \delta M_a \delta M_b \rangle g_a(p_1) g_b(p_2)
$$

-
$$
\langle M_{+} \rangle g_{+}(p_1) g_{+}(p_2) - \langle M_{0} \rangle g_0(p_1) g_0(p_2)
$$

$$
C_{+-}(p_1, p_2) = \sum_{a=+,0} \sum_{b=-,0} \langle \delta M_a \delta M_b \rangle g_a(p_1) g_b(p_2) + \langle M_0 \rangle [f_0(p_1, p_2) - g_0(p_1) g_0(p_2)]
$$

If Poisson-like, all terms in $C_{\alpha\beta}$ are $O(M)$. In $\rho_{\alpha\beta}$, the leading term is $O(M^2) \Longrightarrow f_0$ is hidden.

Q fluctuations (also applies to $(s \pm \bar{s})$)

- In full momentum space, fluctuation of multiplicity is ^a function only of the heights of the corr.ftns.
- Finite acceptance makes local features in momentum space to show up such as the widths.

(Some) Issues

- * QGP? $\langle \delta Q^2 \rangle$ / $\langle N_{\rm ch} \rangle \approx 1/4$?
- ∗ Charge conservation corrections?

Charge fluctuation

- What distinguishes a QGP from a hadron gas?
	- ∗ Color fluctuation: Hadrons are all color neutral \implies Difficult to observe color fluctuation
	- ∗ Charge fluctuation: Quarks have fractional charges ⁼⇒Less charge fluctuation per charged degree of freedom
	- ∗ There are gluons: Gluons contribute to the entropy but not to the charge fluctuation \implies Less charge fluctuation per charged degree of freedom

Why charge conservation correction?

 \bullet Thermal: $\langle \delta M_{\alpha} \delta M_{\beta} \rangle = \langle M_{\alpha} \rangle \, \delta_{\alpha \beta}$

$$
\left\langle \delta Q^2 \right\rangle_{\Delta \eta}^{\text{therm.}} = \left\langle N_{\text{ch}} \right\rangle_{\Delta \eta} - 2 \left\langle M_0 \right\rangle \int_{\Delta \eta} dp_1 dp_2 f_0(p_1, p_2)
$$

('Grand canonical') \leftarrow 1/4 results from here

 $\bullet\,$ Charge conservation: $Q_M = M_+ - M_- =$ Constant

$$
\left\langle \delta Q^2 \right\rangle_{\Delta \eta}^{\text{cons.}} = \left\langle N_{\text{ch}} \right\rangle_{\Delta \eta} - 2 \left\langle M_0 \right\rangle \int_{\Delta \eta} dp_1 dp_2 f_0(p_1, p_2)
$$

$$
- \left[\langle M_+ \rangle + \langle M_- \rangle\right] \left(\int_{\Delta \eta} dp \, g_{\pm}(p)\right)^2
$$

('Canonical')

How to correct for charge conservation – I

- • \bullet Q: When do the two expressions $\langle \delta Q^2 \rangle^{\rm therm.}_{\Delta \eta}$ and $\langle \delta Q^2 \rangle_{\Delta n}^{\text{cons.}}$ become (approximately) equal?
- A-1: When $\sigma_{\rm rel} \ll \Delta \eta \ll y_{\rm max}$. The full system is big enough so that $p = \int_{\Delta \eta} g(y) \ll 1$, but the sub-system is large enough to cover many correlation lengths.

(Canonical ⁼⇒Grand Canonical)

• A-2: When $M_+ = M_- = 0$. That is, all neutral clusters.

How to correct for charge conservation – II

- Trouble 1: $\Delta\eta$ is smaller than $\sigma_{\rm rel}$
- Answer 1: Can't do much here.
- Trouble 2: $\Delta \eta$ is big enough compared to $\sigma_{\rm rel}$ but not small enough compared to y_{max} .
- Trouble 2': Furthermore, we don't know the relative strengths of M_{\pm} and M_0 .

How to correct for charge conservation – III

• Idea ^I (J.S., V.Koch) :

$$
\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{corr.I}} = \langle \delta Q^2 \rangle_{\Delta \eta}^{\text{cons.}} / (1 - p)
$$

where $p = \langle N_{\text{ch}} \rangle_{\Delta \eta} / \langle N_{\text{ch}} \rangle_{\text{full}} \approx \int_{\Delta \eta} g_{\pm} \approx \int_{\Delta \eta} g_0$
• If $f_0(y_1, y_2) \approx \delta(y_{\text{rel}}) g_{\pm}(y_{\text{cm}})$

$$
\frac{\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{corr.I}}}{\langle N_{\text{ch}} \rangle_{\Delta \eta}} \approx \frac{\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{therm.}}}{\langle N_{\text{ch}} \rangle_{\Delta \eta}} = \frac{\langle M_+ + M_- \rangle}{\langle M_+ + M_- + 2M_0 \rangle}
$$

for any $\Delta \eta < y_{\rm max}$. Same result as resonance gas.

 $\bullet\,$ Doesn't work if $M_+ = M_- = 0.$

• Idea II (S.Gavin, C.Pruneau, S.Voloshin)

$$
\left\langle \delta Q^2 \right\rangle_{\Delta \eta}^{\text{corr.II}} = \left\langle \delta Q^2 \right\rangle_{\Delta \eta}^{\text{cons.}} + p \left\langle N_{\text{ch}} \right\rangle_{\Delta \eta}
$$

where $p = \langle N_{\text{ch}} \rangle_{\Delta n} / \langle N_{\text{ch}} \rangle_{\text{full}} \approx \int_{\Delta n} g_{\pm} \approx \int_{\Delta n} g_0$

• If $f_0(y_1, y_2) \approx \delta(y_{\text{rel}})g_{\pm}(y_{\text{cm}})$

$$
\frac{\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{corr.II}}}{\langle N_{\text{ch}} \rangle_{\Delta \eta}} \approx \frac{\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{therm.}}}{\langle N_{\text{ch}} \rangle_{\Delta \eta}} + 2p \frac{\langle M_0 \rangle}{\langle M_+ + M_- + 2M_0 \rangle}
$$

Grows as p grows. In the $p \to 1$ limit, $\frac{\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{corr.11}}}{\langle N_{ch} \rangle_A} \to 1$, same as uncorrelated pion gas.

 $\bullet\,$ Doesn't work if $M_+ = M_- = 0.$

Charge Transfer Fluctuation

• PP charge transfer fluctuation (70's Fermi Lab) Define charge transfer at η (forward minus backward):

$$
u(\eta) = [Q(y > \eta) - Q(y < \eta)]/2
$$

- ∗ No need for charge conservation corrections
- $*$ Experimentally, at $\sqrt{s}=20$ GeV,

$$
\langle (\delta u(y))^2 \rangle \approx C \frac{dN_{\text{ch}}}{dy}
$$
 with $C = 0.6 - 0.7$

for all y [Quigg-Thomas, Kafka et.al.].

∗ Non-trivial relationship between the single and 2– particle functions.

Simple picture $\mathbf{Q}_{\mathbf{b}} = \begin{bmatrix} \mathbf{b} \ \mathbf{c} \end{bmatrix} \mathbf{Q}_{\mathbf{f}}$ Δ dN/dy

∗ If all hadrons come from neutral clusters, fluctuation of $u = (Q_f - Q_b)/2$ can only come from within the correlation length Δ around y .

y

∗ $\hat\sigma^*\left(\delta u^2\right)\propto$ Number of clusters within $\Delta\propto\Delta dN/dy$

- In our toy model:
	- $*$ $g_{\pm}(y)$ can be completely determined, but inconsistent with experimental $dN/dy \Longrightarrow \big|\langle M_{\pm} \rangle \ll \langle M_0 \rangle \big|$

$$
\ast \left| f_0(y_1, y_2) \propto \exp(-y_{\rm rel}^2/2\sigma_{\rm rel}^2) \, dN_{\rm ch}/dy |_{y=y_{\rm cm}} \right|
$$

yields

$$
\left\langle (\delta u(y))^2 \right\rangle / (dN_{\rm ch}/dy) \approx 0.4\sigma_{\rm rel}
$$

Interesting thought...

- $\bullet\,$ PP experiments actually claimed that $\langle M_0\rangle\gg \langle M_\pm\rangle$ is most consistent with their results.
- Charge transfer fluctuation is sensitive to correlation length in y_{rel}
- $\bullet\,$ QGP makes $\sigma_{\rm rel}$ smaller by a factor of up to 2 if a QGP forms [Bass,Danielewitz,Pratt].
- • $\bullet \,$ HIJING gives $\left\langle \delta u^2 \right\rangle / \left\langle N_{\text{ch}} \right\rangle \approx 0.2 - 0.25$ within $-1 < y < 1$.
- Can we do this at RHIC?

Summary

- Correlation function is the best way to go. A host of dynamical information coded in the heights, width, etc.
- Fluctuation studies (theoretical and experimental) hold the key to the encoded messages.
- Corrections such as the charge conservation effect can be carried out by considering simple models of correlation functions (consulting reality, of course).
- Worth measuring charge (strangeness) transfer fluctuation.
- Many more to come Energy, Transverse momentum, ... (have to overcome b fluctuations, though)