Correlations and Fluctuations in Heavy Ion Collisions

Sangyong Jeon

McGill University

Riken-Brookhaven Research Center

HIC03, Montreal

Why fluctuations?

- Sometimes physics is in the width.
- Thermodynamically interesting (heat capacity, ...).
- Bulk property : $p_T < 2 \,\mathrm{GeV}$

Aren't Correlation functions better?

 Correlation function contains all relevant info. However, to interpret changes in the correlation functions, one needs to think about what fluctuations are doing.

Interesting fluctuations

- 'Charge' fluctuation
 - * Electric charge (Fractional charges?)
 - * Baryon number (Fractional baryon number?)
 - * Strangeness (Gluon fragmentation?)
 - * Heavy quark number (Initial wave function?)
- Mean p_T/m_T fluctuation (Temperature? Heat capacity?)
- Multiplicity fluctuations (KNO? Thermal?)
- Energy fluctuation (Heat capacity?)

Fundamental observable

• Probability to have a set of particles $\{\alpha_1, \alpha_2, \dots, \alpha_N\}$ with momenta $\{p_{\alpha_1}, p_{\alpha_2}, \dots, p_{\alpha_N}\}$:

$$P(\{\alpha_1, p_{\alpha_1}\}, \{\alpha_2, p_{\alpha_2}\}, \cdots, \{\alpha_N, p_{\alpha_N}\})$$

• Experimentally,

$$P(\Omega_N)\Delta\Omega_N = \frac{\sum \text{Events with } \Omega_N \pm \Delta\Omega_N/2}{\text{Number of all events } (=\mathcal{N})}$$

 $\alpha_i : \text{Particle id}, \quad p_i : \text{Momentum}$ $\Omega_N = (\{\alpha_1, p_{\alpha_1}\}, \{\alpha_2, p_{\alpha_2}\}, \cdots, \{\alpha_N, p_{\alpha_N}\})$

Correlations

- Relevant to fluctuations: Single particle distributions and 2-particle correlation functions.
- Single particle distribution functions : $\rho_{\alpha}(p)dp = \text{Average number of } \alpha \text{ within } dp \text{ around } p.$

$$\int_{\Delta\eta} dp \,\rho_{\alpha}(p) = \langle N_{\alpha} \rangle_{\Delta\eta}$$

• 2-particle correlation functions :

 $ho_{lphaeta}(p_1,p_2)\,dp_1dp_2 =$ Average number of lphaeta pairs within dp_1dp_2 around p_1,p_2

 $\int_{\Delta\eta} dp_1 dp_2 \,\rho_{\alpha\beta}(p_1, p_2) = \langle N_\alpha N_\beta \rangle_{\Delta\eta} - \delta_{\alpha\beta} \,\langle N_\alpha \rangle_{\Delta\eta}$

A toy model – " ρ " gas

- M_{\pm} independently emitted \pm particles " ρ^{\pm} " $\Longrightarrow g_{\pm}(p_{\pm})$
- M_0 neutral clusters " ρ^0 " $\Longrightarrow f_0(p_+, p_-), g_0(p) = \int dq f_0(p, q)$
 - * Single particle distributions

 $\rho_{\pm}(p) = \langle M + \rangle \ g_{\pm}(p) + \langle M_0 \rangle \ g_0(p)$

- Two particle correlation functions

$$C_{++}(p_1, p_2) \equiv \rho_{++}(p_1, p_2) - \rho_{+}(p_1)\rho_{+}(p_2)$$

=
$$\sum_{a=+,0} \sum_{b=+,0} \langle \delta M_a \delta M_b \rangle g_a(p_1)g_b(p_2)$$

-
$$\langle M_+ \rangle g_+(p_1)g_+(p_2) - \langle M_0 \rangle g_0(p_1)g_0(p_2)$$

$$C_{+-}(p_1, p_2) = \sum_{a=+,0} \sum_{b=-,0} \langle \delta M_a \delta M_b \rangle g_a(p_1) g_b(p_2) + \langle M_0 \rangle [f_0(p_1, p_2) - g_0(p_1) g_0(p_2)]$$

If Poisson-like, all terms in $C_{\alpha\beta}$ are O(M). In $\rho_{\alpha\beta}$, the leading term is $O(M^2) \Longrightarrow f_0$ is hidden.

Q fluctuations (also applies to $(s \pm \bar{s})$)

- In full momentum space, fluctuation of multiplicity is a function only of the heights of the corr.ftns.
- Finite acceptance makes local features in momentum space to show up such as the widths.

(Some) Issues

- * QGP? $\langle \delta Q^2 \rangle / \langle N_{\rm ch} \rangle \approx 1/4$?
- * Charge conservation corrections?

Charge fluctuation

- What distinguishes a QGP from a hadron gas?
 - ∗ Color fluctuation: Hadrons are all color neutral
 ⇒Difficult to observe color fluctuation
 - ∗ Charge fluctuation: Quarks have fractional charges
 ⇒Less charge fluctuation per charged degree of freedom
 - ∗ There are gluons: Gluons contribute to the entropy but not to the charge fluctuation ⇒Less charge fluctuation per charged degree of freedom

Why charge conservation correction?

• Thermal: $\langle \delta M_{\alpha} \delta M_{\beta} \rangle = \langle M_{\alpha} \rangle \, \delta_{\alpha\beta}$

$$\left\langle \delta Q^2 \right\rangle_{\Delta\eta}^{\text{therm.}} = \left\langle N_{\text{ch}} \right\rangle_{\Delta\eta} - 2 \left\langle M_0 \right\rangle \int_{\Delta\eta} dp_1 dp_2 f_0(p_1, p_2)$$

('Grand canonical') $\leftarrow 1/4$ results from here

• Charge conservation: $Q_M = M_+ - M_- = Constant$

$$\left\langle \delta Q^2 \right\rangle_{\Delta\eta}^{\text{cons.}} = \left\langle N_{\text{ch}} \right\rangle_{\Delta\eta} - 2 \left\langle M_0 \right\rangle \int_{\Delta\eta} dp_1 dp_2 f_0(p_1, p_2)$$

$$-\left[\langle M_{+}\rangle + \langle M_{-}\rangle\right]\left(\int_{\Delta\eta}dp\,g_{\pm}(p)\right)^{2}$$

('Canonical')

How to correct for charge conservation – I

- Q: When do the two expressions $\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{therm.}}$ and $\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{cons.}}$ become (approximately) equal?
- A-1: When $\sigma_{\rm rel} \ll \Delta \eta \ll y_{\rm max}$. The full system is big enough so that $p = \int_{\Delta \eta} g(y) \ll 1$, but the sub-system is large enough to cover many correlation lengths.

(Canonical \implies Grand Canonical)

• A-2: When $M_+ = M_- = 0$. That is, all neutral clusters.

How to correct for charge conservation – II

- Trouble 1: $\Delta \eta$ is smaller than $\sigma_{\rm rel}$
- Answer 1: Can't do much here.
- Trouble 2: $\Delta \eta$ is big enough compared to $\sigma_{\rm rel}$ but not small enough compared to $y_{\rm max}$.
- Trouble 2': Furthermore, we don't know the relative strengths of M_{\pm} and M_0 .

How to correct for charge conservation – III

• Idea I (J.S., V.Koch) :

$$\begin{split} \langle \delta Q^2 \rangle_{\Delta \eta}^{\text{corr.I}} &= \langle \delta Q^2 \rangle_{\Delta \eta}^{\text{cons.}} / (1-p) \\ \text{where } p &= \langle N_{\text{ch}} \rangle_{\Delta \eta} / \langle N_{\text{ch}} \rangle_{\text{full}} \approx \int_{\Delta \eta} g_{\pm} \approx \int_{\Delta \eta} g_0 \\ \text{If } f_0(y_1, y_2) &\approx \delta(y_{\text{rel}}) g_{\pm}(y_{\text{cm}}) \\ \langle \delta Q^2 \rangle_{\Delta \eta}^{\text{corr.I}} \quad \langle \delta Q^2 \rangle_{\Delta \eta}^{\text{therm.}} \quad \langle M_+ + M_- \rangle \end{split}$$

$$\frac{\langle \partial Q \rangle_{\Delta \eta}}{\langle N_{\rm ch} \rangle_{\Delta \eta}} \approx \frac{\langle \partial Q \rangle_{\Delta \eta}}{\langle N_{\rm ch} \rangle_{\Delta \eta}} = \frac{\langle M_+ + M_- \rangle}{\langle M_+ + M_- + 2M_0 \rangle}$$

for any $\Delta \eta < y_{\rm max}$. Same result as resonance gas.

• Doesn't work if $M_+ = M_- = 0$.

• Idea II (S.Gavin, C.Pruneau, S.Voloshin)

$$\left\langle \delta Q^2 \right\rangle_{\Delta\eta}^{\text{corr.II}} = \left\langle \delta Q^2 \right\rangle_{\Delta\eta}^{\text{cons.}} + p \left\langle N_{\text{ch}} \right\rangle_{\Delta\eta}$$

where $p = \langle N_{\rm ch} \rangle_{\Delta \eta} / \langle N_{\rm ch} \rangle_{\rm full} \approx \int_{\Delta \eta} g_{\pm} \approx \int_{\Delta \eta} g_0$

• If $f_0(y_1, y_2) \approx \delta(y_{\rm rel})g_{\pm}(y_{\rm cm})$

$$\frac{\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{corr.II}}}{\langle N_{\text{ch}} \rangle_{\Delta \eta}} \approx \frac{\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{therm.}}}{\langle N_{\text{ch}} \rangle_{\Delta \eta}} + 2p \frac{\langle M_0 \rangle}{\langle M_+ + M_- + 2M_0 \rangle}$$

Grows as p grows. In the $p \to 1$ limit, $\frac{\langle \delta Q^2 \rangle_{\Delta \eta}^{\text{corr.II}}}{\langle N_{\text{ch}} \rangle_{\Delta \eta}} \to 1$, same as uncorrelated pion gas.

• Doesn't work if $M_+ = M_- = 0$.

Charge Transfer Fluctuation

• PP charge transfer fluctuation (70's Fermi Lab) Define charge transfer at η (forward minus backward):

$$u(\eta) = [Q(y > \eta) - Q(y < \eta)]/2$$

- * No need for charge conservation corrections
- $\ast\,$ Experimentally, at $\sqrt{s}=20\,{\rm GeV}$,

$$\left< (\delta u(y))^2 \right> \approx C \frac{dN_{\rm ch}}{dy} \quad \text{with} \quad C = 0.6 - 0.7$$

for all y [Quigg-Thomas, Kafka et.al.].

 Non-trivial relationship between the single and 2– particle functions.

* If all hadrons come from neutral clusters, fluctuation of $u = (Q_f - Q_b)/2$ can only come from within the correlation length Δ around y.

* $\left< \delta u^2 \right> \propto$ Number of clusters within $\Delta \propto \Delta dN/dy$

- In our toy model:
 - * $g_{\pm}(y)$ can be completely determined, but inconsistent with experimental $dN/dy \Longrightarrow \langle M_{\pm} \rangle \ll \langle M_0 \rangle$

*
$$f_0(y_1, y_2) \propto \exp(-y_{\rm rel}^2/2\sigma_{\rm rel}^2) dN_{\rm ch}/dy|_{y=y_{\rm cm}}$$

yields

$$\left< (\delta u(y))^2 \right> / (dN_{\rm ch}/dy) \approx 0.4\sigma_{\rm rel}$$

Interesting thought...

- PP experiments actually claimed that $\langle M_0 \rangle \gg \langle M_{\pm} \rangle$ is most consistent with their results.
- Charge transfer fluctuation is sensitive to correlation length in $y_{\rm rel}$
- QGP makes σ_{rel} smaller by a factor of up to 2 if a QGP forms [Bass,Danielewitz,Pratt].
- HIJING gives $\left< \delta u^2 \right> / \left< N_{\rm ch} \right> \approx 0.2 0.25$ within -1 < y < 1.
- Can we do this at RHIC?

Summary

- Correlation function is the best way to go. A host of dynamical information coded in the heights, width, etc.
- Fluctuation studies (theoretical and experimental) hold the key to the encoded messages.
- Corrections such as the charge conservation effect can be carried out by considering simple models of correlation functions (consulting reality, of course).
- Worth measuring charge (strangeness) transfer fluctuation.
- Many more to come Energy, Transverse momentum,
 ... (have to overcome *b* fluctuations, though)