

ATLAS & LHC

LHC

- Proton-proton collider with 7 TeV center-of-mass energy
- Currently in operation
- Located 50-150m under the Swiss-French border just outside Geneva

ATLAS

- One of 4 main experiments taking place at the LHC
- Multi-purpose particle detector
- Collaboration of ∼3000 scientists from 38 countries & 174 universities and labs

Analysis Cuts and Parameters

Analysis Cuts

- All jets $p_T > 40$ GeV & $|\eta| < 2.8$
- Leading jet $p_T > 60$ GeV
- Exactly 1 primary vertex with more than 5 tracks
- ATLAS' pre-defined loose jet quality cuts (hadronic end-cap spikes, coherent noise, non-collision background) (bad/ugly jets)
- Data quality cuts recommended by ATLAS' standard model group

Analysis Parameters

- **Data**: ATLAS' 2010 periods A to I (\sim 38pb⁻¹)
- **Triggers**: A combination of all of ATLAS' single jet triggers
- \bullet **Jet algorithm**: Anti- k_t 0.6 jets built from topological clusters & corrected for η offset and jet energy scale (JES)

• Independent variable:
$$
Q' = \sqrt{\sum_{j=0}^{N_{jets}} \left(p_T^{(j)} \right)^2}
$$

NLO Predictions

NLOJet++

- Generate 2 & 3 jet NLO samples with different $\alpha_{\rm S}(M_z)$ values & matching PDF
	- 100M events / sample
- Use MSTW08nlo90cl PDF set $(0.110 \leq \alpha_S(M_Z) \leq 0.130)$
- Compute $R_{3/2}(\mathsf{Q}')$ for each $\alpha_{\rm S}(M_Z)$ value
- **•** Hard scale parametrization choice consistent with independent variable (Q ′)

NLO Calculations

Application of the principle of minimal sensitivity

Find the renormalization ($\mu_R = \mu_r \cdot Q'$) and factorization ($\mu_F = \mu_f \cdot Q'$) scales corresponding to the most stable NLO predictions, i.e. the saddle point.

NLO Uncertainties

Relative uncertainties

- **Scale**: Obtained by varying the renormalization and factorization scales independently according to
	- $\mu_{\textit{r}}^{(\textit{saddle})}/2 \leq \mu_{\textit{r}} \leq 2 \cdot \mu_{\textit{r}}^{(\textit{saddle})}$ $\mu_{\textit{f}}^{\textit{(saddle)}}/2 \leq \mu_{\textit{f}} \leq 2 \cdot \mu_{\textit{f}}^{\textit{(saddle)}}$

$$
\bullet \ \mu_r/2 \leq \mu_f \leq 2\mu_r
$$

PDF: Obtained by generating 100M events with the full eigenvector PDF sets and combining the resulting $R_{3/2}$ values with the 'master' equation

$$
\Delta X_{\text{max}}^+ = \sqrt{\sum_{i=0}^N \left[\max \left(X_i^+ - X_0, X_i^- - X_0, 0 \right) \right]^2}
$$
 (1)

$$
\Delta X_{\text{max}}^- = \sqrt{\sum_{i=0}^{N} [max(X_0 - X_i^+, X_0 - X_i^-, 0)]^2}
$$
 (2)

[Parton-jet Level \(NLOJet++\)](#page-7-0)

NLO Uncertainties (continued)

[Folding-in non-pertubative effects](#page-8-0)

AlpGen Parton \rightarrow Particle (Truth) Level

Details

- NLO results do not include any hadronization or underlying event (UE)
- Use AlpGen+Herwig/Jimmy samples to calculate corrections, and AlpGen+Pythia samples to estimate a model uncertainty
- • Compute a correction factor C_{non−perturbative} as $R_{3/2}(\textit{particle}+\textit{UE}, \textit{AlpGen})$ $R_{3/2}(\textit{parton}+\textit{noUE},\textit{AlpGen})$

 $R_{3/2}($ particle) = $C_{\text{non-pertubative}} \cdot R_{3/2}(\text{parton})$

Accounting for Trigger

Details

[Unfolding](#page-10-0)

Detector \rightarrow Particle (Truth) Level Unfolding

- Use AlpGen+Herwig/Jimmy sample to compute unfolding factor's value C_{unfolding} as $R_{3/2}(\text{particle})$ $R_{3/2}$ (reconstructed)
- **•** Estimate uncertainty on factor by computing it from AlpGen+Pythia and Pythia samples
- **•** Take maximum shift in each bin used as symmetric uncertainty

$$
R_{3/2}(\textit{particle}) = C_{\textit{unfolding}} \cdot R_{3/2}(\textit{reconstructed})
$$

[Systematic Uncertainties on Unfolded Data](#page-11-0)

Estimating Pile-Up Effect in Unfolding

Approach

- Use Monte-Carlo sample without pile-up for unfolding
	- Calculate an uncertainty on reconstructed $R_{3/2}$ due to pile-up
- Compute $R_{3/2}$ with in-time & bunch-train pile-up samples
- **•** Take the maximum shift in each bin as additional uncertainty due to pile-up on reconstructed $R_{3/2}$
- • Propagate additional uncertainty to unfolded ratio

Jet Energy Scale (JES)

Toy Monte-Carlo Approach

- \bullet Vary jet p_T in AlpGen by an amount proportional to the jet's JES uncertainty
- Use the same proportionality factor for all jets per toy MC iteration
- Unfold the data using the modified MC sample
- • The standard deviation is calculated for each point and used as JES uncertainty on the unfolded ratio

[Introduction](#page-1-0) [NLO Predictions](#page-4-0) [Data](#page-9-0) α_S [Measurement](#page-14-0) **Conclusion** [Backup](#page-17-0)

[Systematic Uncertainties on Unfolded Data](#page-13-0)

Jet Energy Resolution (JER) & η Resolution

- A similar toy MC approach to the JES calculation is used
- • The jet p_T and n are varied independently in Monte-Carlo

α_s Measurement Procedure

$$
\chi^2 = \sum_i \frac{\left[R_{3/2}^{(meory)}(\alpha_S(M_Z), i) - R_{3/2}^{(measured)}(i) + \sum_{\lambda} s_{\lambda} \Delta_{i\lambda}^{(conrelated)}\right]}{\sum_{\lambda'} \left[\Delta_{i,\lambda'}^{(uncorrelated)}\right]^2} + \sum_{\lambda} s_{\lambda}^2,
$$

where $\Delta_{i\lambda}$ are correlated and uncorrelated uncertainties for each Q' bin i, and s_λ are nuisance parameters associated with each correlated source of uncertainty $λ$.

α _s Measurement Procedure

- Obtain an $\alpha_{\mathcal{S}}(M_Z)$ measurement in each Q' bin, then evolve it with a 2-loop approximation of the renormalization group equation solution
- • Obtain an overall $\alpha_{\rm s}(M_{\rm z})$ measurement by fitting all bins simultaneously

Conclusion

Summary

- Measured $R_{3/2}$ distributions in good agreement with with NLO predictions from NLOJet++
	- The application of the principle of minimal sensitivity is a robust method to tune renormalization and factorization scales in NLO predictions
- $\alpha_{\rm S}(M_Z)$ results in statistical agreement with the world average and results from similar measurements at CDF and DØ
- Results are consistent with the running of the coupling as predicted by the RGE
	- Running of the coupling observed for the first time at energy scales > 209 GeV
- ATLAS note & paper preparation in progress for 2012 approval

Backup - Variations in optimal *µ*^r & *µ*^f

applying the principle of minimal sensitivity

Backup - Raw differential cross-section distributions

Details

- Uncertainties are only statistical
- Distributions are corrected for triggering effects but are otherwise un-altered

Backup - Raw differential cross-section distributions

Details

- Uncertainties are only statistical
- Distributions are corrected for triggering effects but are otherwise un-altered

Backup - Systematic uncertainties

List of all sources of uncertainties considered in the analysis, and whether they are treated as correlated between Q' bins.

Backup - Uncertainty from jet quality requirements

Backup - $R_{3/2}$ agreement between data and NLO predictions

