Introduction	NLO Predictions	Data 00000	α _S Measurement ૦૦	Conclusion	Backup
D	etermination (of the stroi	ng coupling c	constant fro	m
	multi-jet pro	duction wi	th the AILAS C 2012	detector	
_					_
		Marc-And	ré Dufour ¹		
		¹ McGill L	Jniversity		
		Februa	ry 2012		

Introduction	NLO Predictions	Data	α _S Measurement	Conclusion	Backup
000					

ATLAS & LHC

LHC

- Proton-proton collider with 7 TeV center-of-mass energy
- Currently in operation
- Located 50-150m under the Swiss-French border just outside Geneva

ATLAS

- One of 4 main experiments taking place at the LHC
- Multi-purpose particle detector
- Collaboration of ~3000 scientists from 38 countries & 174 universities and labs

Introduction	NLO Predictions	Data 00000	α_S Measurement	Conclusion	Backup
Analysi	is				
Goa	ls				
۲	Measure the QCD	strong coup	ling constant $\alpha_{\mathcal{S}}$		
٠	Study the running	of the stron	g coupling at ene	rgies $>$ 209 Ge	V
Аррі	roach				
0	Calculate the inclu	sive ratio dis	stribution		
		R _{3/2}	$=rac{\sigma_{\textit{N_{jets}}\geq3}}{\sigma_{\textit{N_{jets}}\geq2}}$		
0	in data at the part Match $R_{3/2}$ to next level & extract a va	icle level -to-leading (lue for QCD	order (NLO) pred)'s strong coupline	ictions at partic q α_s	le

• Predictions generated from the ratio are largely independent of PDFs, allowing the study of α_S at energies > 209 GeV

Introduction	NLO Predictions	Data	α _S Measurement	Conclusion	Backup
000					

Analysis Cuts and Parameters

Analysis Cuts

- All jets $p_T >$ 40 GeV & $|\eta| <$ 2.8
- Leading jet p_T > 60 GeV
- Exactly 1 primary vertex with more than 5 tracks
- ATLAS' pre-defined loose jet quality cuts (hadronic end-cap spikes, coherent noise, non-collision background) (bad/ugly jets)
- Data quality cuts recommended by ATLAS' standard model group

Analysis Parameters

- Data: ATLAS' 2010 periods A to I (\sim 38pb $^{-1}$)
- Triggers: A combination of all of ATLAS' single jet triggers
- Jet algorithm: Anti- k_t 0.6 jets built from topological clusters & corrected for η offset and jet energy scale (JES)

• Independent variable:
$$Q' = \sqrt{\sum_{j=0}^{N_{jets}} (p_T^{(j)})^2}$$

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
	00000				
Parton-iet Level (NLO.)	2444)				

NLO Predictions

NLOJet++

- Generate 2 & 3 jet NLO samples with different α_S(M_Z) values & matching PDF
 - 100M events / sample
- Use MSTW08nlo90cl PDF set $(0.110 \le \alpha_S(M_Z) \le 0.130)$
- Compute R_{3/2}(Q') for each α_S(M_Z) value
- Hard scale parametrization choice consistent with independent variable (Q')

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
	00000				
Parton-iet Level (NLOJe	et++)				

,....,

NLO Calculations

Application of the principle of minimal sensitivity

Find the renormalization ($\mu_R = \mu_r \cdot Q'$) and factorization ($\mu_F = \mu_f \cdot Q'$) scales corresponding to the most stable NLO predictions, i.e. the saddle point.

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
	00000				
Parton ist Loval (NIL)	O later)				

NLO Uncertainties

Relative uncertainties

 Scale: Obtained by varying the renormalization and factorization scales independently according to

•
$$\mu_r^{(\text{saddle})}/2 \le \mu_r \le 2 \cdot \mu_r^{(\text{saddle})}$$

• $\mu_f^{(\text{saddle})}/2 \le \mu_f \le 2 \cdot \mu_f^{(\text{saddle})}$
• $\mu_r/2 \le \mu_f \le 2\mu_r$

• **PDF**: Obtained by generating 100M events with the full eigenvector PDF sets and combining the resulting $R_{3/2}$ values with the 'master' equation

$$\Delta X_{max}^{+} = \sqrt{\sum_{i=0}^{N} \left[max \left(X_{i}^{+} - X_{0}, X_{i}^{-} - X_{0}, 0 \right) \right]^{2}}$$
(1)

$$\Delta X_{max}^{-} = \sqrt{\sum_{i=0}^{N} \left[max \left(X_0 - X_i^{+}, X_0 - X_i^{-}, 0 \right) \right]^2}$$
(2)

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
	00000				

Parton-jet Level (NLOJet++)

NLO Uncertainties (continued)

NLO theoretical uncertainties are dominated by the scale uncertainty

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
	00000				

Folding-in non-pertubative effects

AlpGen Parton \rightarrow Particle (Truth) Level

Details

- NLO results do not include any hadronization or underlying event (UE)
- Use AlpGen+Herwig/Jimmy samples to calculate corrections, and AlpGen+Pythia samples to estimate a model uncertainty
- Compute a correction factor Cnon-perturbative as $R_{3/2}$ (particle+UE,AlpGen) $\overline{R_{3/2}(parton+noUE,AlpGen)}$

9

 $R_{3/2}(\text{particle}) = C_{\text{non-pertubative}} \cdot R_{3/2}(\text{parton})$

Introduction	NLO Predictions	Data ●○○○○	α _S Measurement ০০	Conclusion	Backup
Tringer					

Trigger

Accounting for Trigger

Details

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
		0000			

Unfolding

Detector \rightarrow Particle (Truth) Level Unfolding

Approach

- Use AlpGen+Herwig/Jimmy sample to compute unfolding factor's value C_{unfolding} as <u>R_{3/2}(particle)</u> <u>R_{3/2}(reconstructed)</u>
- Estimate uncertainty on factor by computing it from AlpGen+Pythia and Pythia samples
- Take maximum shift in each bin used as symmetric uncertainty

$$R_{3/2}(particle) = C_{unfolding} \cdot R_{3/2}(reconstructed)$$

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
		00000			

Systematic Uncertainties on Unfolded Data

Estimating Pile-Up Effect in Unfolding

Approach

- Use Monte-Carlo sample without pile-up for unfolding
 - Calculate an uncertainty on reconstructed *R*_{3/2} due to pile-up
- Compute *R*_{3/2} with in-time & bunch-train pile-up samples
- Take the maximum shift in each bin as additional uncertainty due to pile-up on reconstructed R_{3/2}
- Propagate additional uncertainty to unfolded ratio

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup			
		00000						
Systematic Uncertainties on Unfolded Data								

Jet Energy Scale (JES)

Toy Monte-Carlo Approach

- Vary jet p_T in AlpGen by an amount proportional to the jet's JES uncertainty
- Use the same proportionality factor for all jets per toy MC iteration
- Unfold the data using the modified MC sample
- The standard deviation is calculated for each point and used as JES uncertainty on the unfolded ratio

Introduction	NLO Predictions	Data	α _S Measurement	Conclusion	Backup
		00000			

Systematic Uncertainties on Unfolded Data

Jet Energy Resolution (JER) & η Resolution

- A similar toy MC approach to the JES calculation is used
- The jet p_T and η are varied independently in Monte-Carlo

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
			•0		

 α_S Measurement Procedure

α_s Measurement Procedure

Least-squares fit with Hessian approach

Define the chi-squared function as

$$\chi^{2} = \sum_{i} \frac{\left[R_{3/2}^{(\text{theory})}(\alpha_{S}(M_{Z}), i) - R_{3/2}^{(\text{measured})}(i) + \sum_{\lambda} s_{\lambda} \Delta_{i\lambda}^{(\text{correlated})} \right]^{2}}{\sum_{\lambda'} \left[\Delta_{i,\lambda'}^{(\text{uncorrelated})} \right]^{2}} + \sum_{\lambda} s_{\lambda}^{2},$$

where $\Delta_{i\lambda}$ are correlated and uncorrelated uncertainties for each Q' bin *i*, and s_{λ} are nuisance parameters associated with each correlated source of uncertainty λ .

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup
			00		

α_S Results

α_s Measurement Procedure

- Obtain an $\alpha_S(M_Z)$ measurement in each Q' bin, then evolve it with a 2-loop approximation of the renormalization group equation solution
- Obtain an overall α_S(M_Z) measurement by fitting all bins simultaneously

Introduction	NLO Predictions	Data	α _S Measurement	Conclusion	Backup

Conclusion

Summary

- Measured R_{3/2} distributions in good agreement with NLO predictions from NLOJet++
 - The application of the principle of minimal sensitivity is a robust method to tune renormalization and factorization scales in NLO predictions
- α_S(M_Z) results in statistical agreement with the world average and results from similar measurements at CDF and DØ
- Results are consistent with the running of the coupling as predicted by the RGE
 - Running of the coupling observed for the first time at energy scales > 209 GeV
- ATLAS note & paper preparation in progress for 2012 approval

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup

Backup - Variations in optimal $\mu_r \& \mu_f$

Details

Renormalization (μ_r) and factorization (μ_f) scales optimized by applying the principle of minimal sensitivity

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup

Backup - Raw differential cross-section distributions

Details

- Uncertainties are only statistical
- Distributions are corrected for triggering effects but are otherwise un-altered

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup

Backup - Raw differential cross-section distributions

Details

- Uncertainties are only statistical
- Distributions are corrected for triggering effects but are otherwise un-altered

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup

Backup - Systematic uncertainties

	Type of Unce	ertainty	Correlated
	Data Statistics		No
	Trigger Selection		Yes
	Jet Energy Scale		Yes
ut	Jet Energy Resolution		Yes
me	Angular Resolution		Yes
ure	Jet Quality		Yes
eas	Unfolding Correction	Jet Energy Scale	Yes
Ň		Jet Energy Resolution	Yes
ata		Angular resolution	Yes
Δ		Pile-up	No
		Monte-Carlo Modelling	No
		ALPGEN Statistics	No
	NLOJET++ Statistics	•	No
cal	Scale		Yes
reti	PDF		Yes
redi	Non-pOCD correction factor	ALPGEN Statistics	No
μĘ		Monte-Carlo Modelling	Yes

List of all sources of uncertainties considered in the analysis, and whether they are treated as correlated between Q' bins.

Introduction	NLO Predictions	Data	α _S Measurement	Conclusion	Backup

Backup - Uncertainty from jet quality requirements

Introduction	NLO Predictions	Data	α_S Measurement	Conclusion	Backup

Backup - $R_{3/2}$ agreement between data and NLO predictions

