High-Precision Branching Ratio Measurement for the Superallowed β^+ Emitter $^{74}\mathrm{Rb}$

Ryan Dunlop

Physics Dept. University of Guelph

WNPPC 2012

0000

Quark-Mixing and the CKM Matrix

- Weak Eigenstates \neq Mass **Eigenstates**
- Cabibbo-Kobayashi-Maskawa matrix quantifies mixing of eigenstates
- **Must** be Unitary in Standard Model (Important!)

•
$$
\beta^+
$$
-decay: $p \rightarrow n = uud \rightarrow udd$

$$
\left(\begin{array}{cc}\n\boxed{V_{ud}} & V_{us} & V_{ub} \\
\boxed{V_{cd}} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}\n\end{array}\right)
$$

$$
V_{ud} = \frac{G_V}{G_F}
$$

$$
w
$$
\n
$$
g_w V_{ud} = -\frac{W^+}{2} \left\langle \frac{g_w}{2} \right\rangle
$$
\n
$$
d
$$
\n
$$
V_e
$$

Conserved-Vector-Current Hypothesis

- Motivated by similarity of Weak-vector current with Electromagnetic-vector current
- \bullet A nucleus with Z protons has the same electric charge as Z free protons
- Likewise, other interactions do not appear to influence weak vector-current (unlike axial current)

- Protons and neutrons are different projections of the same particle
- Convention: *n* has $T_3 = \frac{1}{2}$ $\frac{1}{2}$, p has $T_3 = -\frac{1}{2}$ 2
- Fermi Decay: $p \to n$ can be represented by the isospin raising operator $\hat{\tau}^+$
- \bullet Only couples states with the same total isospin T called isobaric analogues

Superallowed-Fermi- β decay

Superallowed-Fermi-β decay:

- Decay between isobaric analogue states
- **•** Same total isospin, same nuclear wavefunctions
- $J^\pi: 0^+ \rightarrow 0^+$ which forbids axial vector contribution $\rightarrow G_V$ Test

 74 Rb $\rightarrow ^{74}$ Kr is a decay between states with:

$$
\bullet \, T = 1 \to T = 1
$$

$$
\bullet \, T_3 = 0 \rightarrow T_3 = 1
$$

$$
\bullet\ J^\pi=0^+\rightarrow J^\pi=0^+
$$

Superallowed-Fermi-β-Decay Rate

Fermi's Golden Rule

$$
f(Q, Z_D)t = \frac{const.}{|\overline{M}_{fi}|^2 g^2} \qquad \xrightarrow{\text{superallowed}} \qquad \xrightarrow{const.} \qquad \qquad \xrightarrow{2G_V^2}
$$

- $\left|\overline{M}_{fi}\right| =$ √ 2 from the SU(2) symmetry of isospin
- CVC Hypothesis $\rightarrow ft$ should be "CONSTANT"
- Can extract G_V and V_{ud} since $(G_V = G_F V_{ud})$

- $t \equiv$ Partial half-life (includes **branching ratio**)
- \equiv Statisitcal rate function
- $Z_D \equiv$ Charge of Daughter Nucleus
	- $Q \equiv$ Difference in mass of mother and daughter

 ft Values

UNIVERSITY

• Must consider QED, QCD effects

$\overline{\mathcal{F}t}$ Correction $\mathcal{F}t = ft(1 + \delta_R)(1 - \delta_c) = \frac{const.}{2G_V^2(1 + \Delta_R)}$

Nucleus Independent:

 $\Delta_R \equiv$ Radiative Correction $(2.361 \pm 0.038)\%$

Nucleus Dependent:

$$
\delta_R \equiv \text{Radiusive Correction } (1.4-1.5)\%
$$
\n
$$
\delta_c \equiv \text{Isospin Symmetry Breaking Correction } (0.25-1.5)\%
$$
\n
$$
\text{Weylnering Correction } (0.25-1.5)\%
$$

World Ft Values

UNIVERSITY

UNIVERSITY

 0000

Measurement of the δ_{c_1} Component

$$
\delta_c \approx \delta_{c_1} + \delta_{c_2}
$$

 $\delta_{c_{1}}$ is from configuration mixing between mother and daughter $\delta_{c_{2}}$ is caused by imperfect radial overlap between initial and final states

Pandemonium - Why ⁷⁴Rb is Hard

Pandemonium - Why ⁷⁴Rb is Hard

Pandemonium - Why ⁷⁴Rb is Hard

Pandemonium - Why 74 Rb is Hard

Pandemonium - Why 74 Rb is Hard

- High Q-Value (10.4 MeV) $\overline{^{74}}$ Rb
- \bullet More than 400 excited states in 74 Kr

 0^+_-

• Many weak transitions

0000

Pandemonium - Why 74 Rb is Hard

- High Q-Value (10.4 MeV) $\sqrt[74]{Rb}$
- \bullet More than 400 excited states in 74 Kr
- Many weak transitions
- Unobserved but significant
- **Currently dominates BR uncertainty**
- Determining BR to some of these states will reduce uncertainty

 0^+_-

• Important 2^+ collector states

Experimental Setup

Experiment performed at TRIUMF in November 2010.

- \bullet Collided 500 MeV protons onto a nat Nb target
- • TRIUMF Delivered 6500 ions/s ⁷⁴Rb

Experimental Setup - 8π

• Implanted RIB of 74 Rb inside of a 20 Compton-Suppressed HPGe close-packed-detector array (8π)

• Included 5 Si(Li) detectors (PACES) for measuring conversion electrons

Experimental Setup - 8π

• Included 10 plastic scintillators (SCEPTAR) for detecting β particles

• Tape system to limit long-lived contaminants

Counting β 's

Identifying ⁷⁴Rb Transitions

UNIVERSITY

PACES Spectrum

 74 Kr

UNIVERSITY

 β -decay to the 1^st excited 0^+ state at 509 kev:

$$
BR_1 \le 0.030\% \qquad \qquad \frac{f_0}{f_1} = 1.3
$$

How is Theory Doing?

 β -decay to the 1^st excited 0^+ state at 509 kev:

 $BR_1 \leq 0.030\%$ $\frac{J_0}{f_1} = 1.3$

$$
\delta_{C_1}^{(1)} = BR_1 \frac{f_0}{f_1} \leq 0.039\% \hspace{1cm} \text{Theory} = 0.05\%
$$

Conclusion

 β -decay to the 1^st excited 0^+ state at 509 kev:

 $BR_1 \leq 0.030\%$ $\frac{J_0}{f_1} = 1.3$

$$
\delta_{C_1}^{(1)} = BR_1 \frac{f_0}{f_1} \leq 0.039\% \hspace{1cm} \text{Theory} = 0.05\%
$$

Conclusion

Theory is overestimating the configuration mixing! $(^{62}$ Ga, 74 Rb)

Summary

- Currently have identified 22 excited states and 54 γ -ray transitions
- $\bullet \approx 30\%$ improvement in superallowed branching ratio uncertainty
- Theory is overestimating configuration mixing of isospin
- Result will guide corrections for precision tests of the Standard Model (CVC, CKM)

Acknowledgements

UNIVERSITY

S. Chagnon-Lessard P. Finlay P.E. Garrett B. Hadinia K.G. Leach C.E. Svensson J. Wong

- G.C. Ball
- A.B. Garnsworthy
	- J. Glister
	- G. Hackman
	- E.R. Tardiff
	- S. Triambak
	- S.J. Williams

J.R. Leslie

C. Andreoiu A. Chester D. Cross K. Starosta

S.W.Yates E.F. Zganjar

Determine γ -ray(conversion e^-)- BR 's

$$
BR(\beta)_{superallowed} = 1 - \sum BR(\beta)_{nonsuperallowed}
$$

Fractional Uncertainties

V_{ud} Precision

UNIVERSITY

Assuming isospin is a perfect symmetry, β^+ decay from analogue $(T=T')$ $0^+ \rightarrow 0^+$ gives:

$$
\left|\overline{M}_{fi}(F)\right|^2 = \left|\langle T, T_3 - 1|\hat{\tau}^{-}|T, T_3\rangle\right|^2
$$

= $(T + T_3)(T - T_3 + 1)$

if we use a $T = 1$ isotriplette and $T_3 = 0 \rightarrow T_3 = -1$

$$
\left|\overline{M}_{fi}(F)\right|^2=2
$$

Escape-peak Calibration

