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Quark-Mixing and the CKM Matrix

Weak Eigenstates 6= Mass
Eigenstates

Cabibbo-Kobayashi-Maskawa
matrix quantifies mixing of
eigenstates

Must be Unitary in Standard
Model (Important!)

β+-decay: p→ n = uud→ udd

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


Vud =

GV
GF
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Conserved-Vector-Current Hypothesis

Motivated by similarity of Weak-vector current with
Electromagnetic-vector current

A nucleus with Z protons has the same electric charge as Z
free protons

Likewise, other interactions do not appear to influence weak
vector-current (unlike axial current)

d
u u

d
u d

GV

=

u GV d

GV = const.
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Isospin

Protons and neutrons are different projections of the same
particle

Convention: n has T3 = 1
2 , p has T3 = −1

2

Fermi Decay: p→ n can be represented by the isospin raising
operator τ̂+

Only couples states with the same total isospin T called
isobaric analogues
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Superallowed-Fermi-β decay

Superallowed-Fermi-β decay:

Decay between isobaric analogue states

Same total isospin, same nuclear wavefunctions

Jπ : 0+ → 0+ which forbids axial vector contribution → GV
Test

74Rb→74Kr is a decay between states with:

T = 1→ T = 1

T3 = 0→ T3 = 1

Jπ = 0+ → Jπ = 0+

R. Dunlop B.R. of 74Rb WNPPC 2012 5



Introduction Experiment Conclusions

Superallowed-Fermi-β-Decay Rate

Fermi’s Golden Rule

f(Q,ZD)t =
const.∣∣Mfi

∣∣2 g2 superallowed−−−−−→
T=1

const.

2G2
V∣∣Mfi

∣∣ =
√

2 from the SU(2) symmetry of isospin

CVC Hypothesis → ft should be “CONSTANT”

Can extract GV and Vud since (GV = GFVud)

t ≡ Partial half-life (includes branching ratio)

f ≡ Statisitcal rate function

ZD ≡ Charge of Daughter Nucleus

Q ≡ Difference in mass of mother and daughter
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ft Values

Superallowed: ft values within ≈ 2%
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ft Values

Not ‘constant’....Why?
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Corrected ft

Must consider QED, QCD effects

Ft Correction

Ft = ft(1 + δR)(1− δc) =
const.

2G2
V (1 + ∆R)

Nucleus Independent:

∆R ≡ Radiative Correction (2.361± 0.038)%

Nucleus Dependent:

δR ≡ Radiative Correction (1.4− 1.5)%

δc ≡ Isospin Symmetry Breaking Correction (0.25− 1.5)%
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World Ft Values

CVC verified to 0.013%

Ft = 3072.0(10)s

Ft = 3072.3(10)s

P. Finlay et al., Phys. Rev. Lett. 106, 032501 (2011)
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Isospin-Symmetry-Breaking Corrections
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Measurement of the δc1 Component

δc ≈ δc1 + δc2

δc1 is from configuration mixing between mother and daughter
δc2 is caused by imperfect radial overlap between initial and
final states

δc1 =

∞∑
i=1

δ(i)c1

δ(i)c1 = BRi

(
f0
fi

)
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Pandemonium - Why 74Rb is Hard

High Q-Value (10.4 MeV)

More than 400 excited states in 74Kr

Many weak transitions

Unobserved but significant

Currently dominates BR uncertainty

Determining BR to some of these states will
reduce uncertainty

Important 2+ collector states

74

74
Rb

Kr
0+
2+

0+

99.5%

J.C. Hardy and I.S. Towner, Phys. Rev. Lett. 88, 252501 (2002)
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Experimental Setup

Experiment performed at TRIUMF in November 2010.

Collided 500 MeV protons onto a natNb target

TRIUMF Delivered 6500 ions/s 74Rb
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Experimental Setup - 8π

Implanted RIB of 74Rb inside of a
20 Compton-Suppressed HPGe
close-packed-detector array (8π)

Included 5 Si(Li) detectors
(PACES) for measuring
conversion electrons
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Experimental Setup - 8π

Included 10 plastic
scintillators (SCEPTAR) for
detecting β particles

Tape system to limit long-lived
contaminants
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Counting β’s

# of β’s: 8.2411(3)× 108

Previous: 1.4× 108
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Identifying 74Rb Transitions

Long-Lived-In-Beam Contaminants

Can Easily ID 74Rb and
Contaminants
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PACES Spectrum

74Kr
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74Kr Level Scheme

74Kr

Before:≈ 45% unobserved.Before:≈ 45% unobserved.

Now:≈ 20% unobserved.

74Rb
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How is Theory Doing?

β-decay to the 1st excited 0+ state at 509 kev:

BR1 ≤ 0.030%
f0
f1

= 1.3

δ
(1)
C1

= BR1
f0
f1
≤ 0.039% Theory = 0.05%

Conclusion

Theory is overestimating the configuration mixing! (62Ga,
74Rb)
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Summary

Currently have identified 22 excited states and 54 γ-ray
transitions

≈ 30% improvement in superallowed branching ratio
uncertainty

Theory is overestimating configuration mixing of isospin

Result will guide corrections for precision tests of the Standard
Model (CVC, CKM)
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BR Determination

Determine γ-ray(conversion e−)-BR’s

Determine nonsuperallowed
β-BR’s

Determine superallowed
β-BR

BR(β)superallowed = 1−
∑

BR(β)nonsuperallowed
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Fractional Uncertainties

J. C. Hardy and I. S. Towner, Phys. Rev. C 79, 05502 (2009)
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Vud Precision
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Determination of Matrix Element via Isospin

Assuming isospin is a perfect symmetry, β+ decay from
analogue(T = T ′) 0+ → 0+ gives:∣∣Mfi(F )

∣∣2 =
∣∣〈T, T3 − 1| τ̂− |T, T3〉

∣∣2
= (T + T3)(T − T3 + 1)

if we use a T = 1 isotriplette and T3 = 0→ T3 = −1∣∣Mfi(F )
∣∣2 = 2
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Escape-peak Calibration
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