High-Precision Branching Ratio Measurement for the Superallowed β^+ Emitter ⁷⁴Rb

Ryan Dunlop

Physics Dept. University of Guelph

WNPPC 2012

Introduc	tion	
••••••	0000	
~		

Experiment

Quark-Mixing and the CKM Matrix

- Weak Eigenstates \neq Mass Eigenstates
- Cabibbo-Kobayashi-Maskawa matrix quantifies mixing of eigenstates
- Must be Unitary in Standard Model (Important!)

•
$$\beta^+$$
-decay: $p \rightarrow n = u \boldsymbol{u} d \rightarrow u \boldsymbol{d} d$

$$\left(\begin{array}{ccc} \hline V_{ud} & V_{us} & V_{ub} \\ \hline V_{cd} & V_{cs} & V_{cb} \\ \hline V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

$$V_{ud} = \frac{G_V}{G_F}$$

$$u \qquad e^+ \qquad g_w V_{ud} \qquad - \frac{W^+}{-} \qquad g_w \qquad \nu_e$$

ntroduction			Experi 0000	ment		Conclusions 000
~	1.5.7	<u> </u>		. 1		

Conserved-Vector-Current Hypothesis

- Motivated by similarity of Weak-vector current with Electromagnetic-vector current
- A nucleus with Z protons has the same electric charge as Z free protons
- Likewise, other interactions do not appear to influence weak vector-current (unlike axial current)

Introduction 000000000	Experime 0000	nt	Conclusions 000
Isospin			
а	T = 1, J = 0		b <i>T</i> = 0, <i>J</i> > 0
			np

- Protons and neutrons are different projections of the same particle
- Convention: n has $T_3 = \frac{1}{2}$, p has $T_3 = -\frac{1}{2}$
- Fermi Decay: $p \to n$ can be represented by the isospin raising operator $\hat{\tau}^+$
- Only couples states with the same total isospin T called isobaric analogues

Superallowed-Fermi- β decay

Superallowed-Fermi- β decay:

- Decay between isobaric analogue states
- Same total isospin, same nuclear wavefunctions
- $J^{\pi}: 0^+ \to 0^+$ which forbids axial vector contribution $\to G_V$ Test

 $^{74}\mathrm{Rb}{\rightarrow}^{74}\mathrm{Kr}$ is a decay between states with:

•
$$T = 1 \rightarrow T = 1$$

•
$$T_3 = 0 \rightarrow T_3 = 1$$

•
$$J^{\pi} = 0^+ \to J^{\pi} = 0^+$$

Superallowed-Fermi- β -Decay Rate

Fermi's Golden Rule

$$f(Q, Z_D)t = \frac{const.}{\left|\overline{M}_{fi}\right|^2 g^2} \quad \xrightarrow{\text{superallowed}}_{T=1} \quad \frac{const.}{2G_V^2}$$

- $\left|\overline{M}_{fi}\right|=\sqrt{2}$ from the SU(2) symmetry of isospin
- CVC Hypothesis $\rightarrow ft$ should be "CONSTANT"
- Can extract G_V and V_{ud} since $(G_V = G_F V_{ud})$

- $t \equiv$ Partial half-life (includes **branching ratio**)
- $f \equiv$ Statisitcal rate function
- $Z_D \equiv$ Charge of Daughter Nucleus
 - $Q \equiv \text{Difference in mass of mother and daughter}$

R. Dunlop

B.R. of ⁷⁴Rb

Introduction ○○○○○○●●○○○○	Experiment 0000	Conclusions 000
Corrected ft		

• Must consider QED, QCD effects

$\mathcal{F}t$ Correction

$$\mathcal{F}t = ft(1+\delta_R)(1-\delta_c) = \frac{const.}{2G_V^2(1+\Delta_R)}$$

Nucleus Independent:

$$\Delta_R \equiv \mathsf{Radiative}\ \mathsf{Correction}\ (2.361 \pm 0.038)\%$$

Nucleus Dependent:

$$\begin{split} \delta_R &\equiv \text{Radiative Correction } (1.4-1.5)\% \\ \delta_c &\equiv \text{Isospin Symmetry Breaking Correction } (0.25-1.5)\% \quad \text{UNIVERSITY}_{GUELPH} \end{split}$$

World $\mathcal{F}t$ Values

CVC verified to 0.013%

UNIVERSITY <u> *GUELPH*</u> 012 9

Measurement of the δ_{c_1} Component

$$\delta_c \approx \delta_{c_1} + \delta_{c_2}$$

δ_{c1} is from configuration mixing between mother and daughter
 δ_{c2} is caused by imperfect radial overlap between initial and final states

Introduction

Experiment

Conclusions 000

Introduction

Experiment

Conclusions 000

Introduction

Experiment

Conclusions 000

Conclusions 000

Pandemonium - Why ⁷⁴Rb is Hard

- High Q-Value (10.4 MeV) ⁷⁴Rb
- More than 400 excited states in $^{74}{
 m Kr}$

 0^{+}

• Many weak transitions

Conclusions 000

Pandemonium - Why ⁷⁴Rb is Hard

- High Q-Value (10.4 MeV) ⁷⁴Rb
- More than 400 excited states in 74 Kr
- Many weak transitions
- Unobserved but significant
- Currently dominates BR uncertainty
- Determining BR to some of these states will reduce uncertainty

 0^{+}

• Important 2⁺ collector states

Experimental Setup

Experiment performed at TRIUMF in November 2010.

- Collided 500 MeV protons onto a ^{nat}Nb target
- TRIUMF Delivered $6500 \text{ ions/s} {}^{74}\text{Rb}$

Experimental Setup - 8π

 Implanted RIB of ⁷⁴Rb inside of a 20 Compton-Suppressed HPGe close-packed-detector array (8π) Included 5 Si(Li) detectors (PACES) for measuring conversion electrons

Conclusions 000

Experimental Setup - 8π

 Included 10 plastic scintillators (SCEPTAR) for detecting β particles • Tape system to limit long-lived contaminants

Introduction	Experiment
	•000

Counting β 's

ntroduction	Experiment	Co
	0000	

Identifying ⁷⁴Rb Transitions

UNIVERSITY #GUELPH

Introduction	Experiment	Conclusions
	0000	

PACES Spectrum

Introduction	Experiment	Conclusions
0000000000	0000	●00
How is Theory Doing?		

 β -decay to the 1st excited 0⁺ state at 509 kev:

$$BR_1 \le 0.030\% \qquad \qquad \frac{f_0}{f_1} = 1.3$$

Introduction	Experiment	Conclusions
0000000000	0000	●oo
How is Theory Doing?		

 β -decay to the 1st excited 0⁺ state at 509 kev:

 $BR_1 \le 0.030\% \qquad \qquad \frac{f_0}{f_1} = 1.3$

$$\delta^{(1)}_{C_1} = BR_1 \frac{f_0}{f_1} \le 0.039\%$$
 Theory $= 0.05\%$

Conclusion

How is Theory Doing?

 β -decay to the 1st excited 0⁺ state at 509 kev:

 $\frac{f_0}{f_1} = 1.3$ $BR_1 < 0.030\%$

$$\delta_{C_1}^{(1)} = BR_1 \frac{f_0}{f_1} \le 0.039\% \qquad \qquad \text{Theory} = 0.05\%$$

Conclusion

Theory is overestimating the configuration mixing! (⁶²Ga, 74 Rb)

Summary

- $\bullet\,$ Currently have identified 22 excited states and 54 $\gamma\text{-ray}\,$ transitions
- $\approx 30\%$ improvement in superallowed branching ratio uncertainty
- Theory is overestimating configuration mixing of isospin
- Result will guide corrections for precision tests of the Standard Model (CVC, CKM)

Acknowledgements

UNIVERSITY \$GUELPH

S. Chagnon-Lessard P. Finlay P.E. Garrett B. Hadinia K.G. Leach C.E. Svensson J. Wong

- G.C. Ball
- A.B. Garnsworthy
 - J. Glister
 - G. Hackman
 - E.R. Tardiff
 - S. Triambak
 - S.J. Williams

J.R. Leslie

C. Andreoiu A. Chester D. Cross K. Starosta

E.F. Zganjar

• Determine $\gamma\text{-}\mathrm{ray}(\mathrm{conversion}~e^-)\text{-}BR\mathrm{'s}$

$$BR(\beta)_{superallowed} = 1 - \sum BR(\beta)_{nonsuperallowed}$$

Fractional Uncertainties

V_{ud} Precision

UNIVERSITY #GUELPH Assuming isospin is a perfect symmetry, β^+ decay from analogue(T = T') $0^+ \rightarrow 0^+$ gives:

$$\left| \overline{M}_{fi}(F) \right|^2 = \left| \langle T, T_3 - 1 | \hat{\tau}^- | T, T_3 \rangle \right|^2$$

= $(T + T_3)(T - T_3 + 1)$

if we use a T=1 isotriplette and $T_3=0 \rightarrow T_3=-1$

$$\left|\overline{M}_{fi}(F)\right|^2 = 2$$

Escape-peak Calibration

