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Physics motivation for antihydrogen

Comparison of matter and antimatter:

?
⇐⇒

● Antihydrogen is the simplest antiatomic system

● The comparison of antihydrogen to hydrogen is a stringent CPT
test
○ 1S - 2S transition in atomic hydrogen is known to parts in 1014

● Gravitational interaction measurements
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The ALPHA experiment

● ALPHA is an international experimental effort (located at the
Antiproton decelerator at CERN) to produce, trap, and perform
precision measurements on antihydrogen
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The ALPHA apparatus
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Antihydrogen formation

● Positrons and antiprotons are mixed together to form antihydrogen

● Antiprotons are excited into the positron plasma autoresonantly
(axial frequency locked to rf drive)

● The resulting neutral antiatom is no longer confined by the
Penning trap fields
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Trapping experiment

1. Receive ∼ 7 × 107 antiprotons from the AD and ∼ 107 positrons are
accumulated from a radioactive 22Na source

2. ∼ 107 Positrons and 4 × 104 antiprotons are prepared for mixing
and placed in a nested-well potential

3. Neutral trap engaged

4. Particles are mixed together for 1 second, producing antihydrogen

○ (Control measurement) antihydrogen production can be suppressed by
rf-heating the positron plasma

5. Clearing pulses (500 Vm−1) are applied to remove charged particles

6. Neutral trap is quickly ramped down, releasing anything remaining

○ Trapped antihydrogen will have been held for at least 172ms

7. Look for annihilations in the silicon detector during, and
immediately after, the magnet rampdown
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Silicon detector

(a) At University of Liverpool
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(b) Module arrangement

● 60 double-sided silicon microstrip detector modules, arranged in
three concentric layers

● 30 720 strips with pitch widths of 875 µm in the ẑ direction, and
227 µm in the φ̂ direction
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Event reconstruction in the ALPHA detector

● Example Monte Carlo
event

● Annihilation on the
electrode surface
produces several charged
pions
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Event reconstruction in the ALPHA detector

● The detector modules
record energy deposition
within the silicon wafers
(in this case, by the
passage of charged
pions)

● Orthogonal signal strips
give the hit positions in
the plane of the silicon
module
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Event reconstruction in the ALPHA detector

● The charged particle
tracks can be identified
and extrapolated back
into the apparatus

● Tracks are modeled as
helices in an uniform
magnetic field

13 / 33



Event reconstruction in the ALPHA detector

● The annihilation vertex
is determined as the
point where the tracks
converge
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Event reconstruction in the ALPHA detector

● The performance of the
reconstruction
algorithms can be
evaluated using prior
knowledge from the
Monte Carlo simulation
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Reconstructed vertex resolution
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● The vertex position
resolution can be estimated
using the Monte Carlo
simulation

● Broadening dominated by
multiple scattering

● Example estimates from
Monte Carlo:
○ Axial resolution (top):
(0.67 ± 0.04) cm

○ Radial resolution (bottom):
(0.68 ± 0.02) cm
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Annihilation imaging
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Vertex distributions provide information
about the physics

● Top left: Antihydrogen formation in
the neutral-atom traop

● Bottom right/left: Antiproton
annihilation in the octupole magnetic
field
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Cosmic ray background

● Cosmic muons can leave tracks
through the detector (top right)

● Unsuppressed rate of
∼ 10 event/s

● Need to discriminate between
signal and background events,
especially for the detection of
rare events

● Focused on the topological
differences between cosmic and
annihilation events

(c) Example cosmic event

(d) Example annihilation
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Discriminating variable (linear residual, δ)

Annihiltion event Cosmic ray event

● Cosmic events will conform to a straight line fit

● Slight curvature in the strong axial magnetic field
19 / 33



Discriminating variable (vertex radius, R)

Annihiltion event Cosmic ray event

● Cosmic events are unconstrained in radius, while annihilations
occur withing the trap region of the apparatus
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Background rejection analysis

● Analysis focused on detecting rare events during the trapping
experiments

● Studies performed on auxiliary datasets to avoid optimizing on the
trapping events (blind analysis):
○ Signal: antihydrogen annihilation during mixing
○ Background: apparatus operating without antiparticles

● Find cuts that optimize the expected signal
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Cut optimization
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● Performed 5000
pseudoexperiments
for each cut
configuration

● Figure of merit, the
expected p-value:

α =
∞

∑
n=n0

bne−b

n!
,

n0: expected number of
events
b: background rate
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Cut optimization
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● Ntracks = 2 events are
considered separately

● White crosses
indicate the cut
choices
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Cosmic background rejection results

Ntracks Vertex radius, Rcut (cm) Linear residual, δcut (cm2)

= 2 < 4 > 2
> 2 < 4 > 0.05

Table: Final background rejection cuts. Events that satisfy these conditions
are accepted as signal.

● Results of the cut optimization:
○ (99.55 ± 0.02)% cosmic background rejection
○ (64.4 ± 0.1)% signal acceptance
○ (47 ± 2) × 10−3 event/s background acceptance rate
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Summary of 2010 experiments

Type
Number Vertices passing
of cycles all cuts

Normal trapping experiments 335 48
Heated positron plasma 246 1

● For readouts less than 30 ms after neutral-trap magnets shutdown
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Summary of 2010 experiments

Type
Number Vertices passing
of cycles all cuts

No bias 137 20
Left bias 101 14
Right bias 97 14
No bias, heated positrons 132 1
Left bias, heated positrons 60 0
Right bias, heated positrons 54 0

● For readouts less than 30 ms after neutral-trap magnets shutdown

26 / 33



Experimental observation of trapped antihydrogen
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Extended confinement

Confinement time(s)
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● Neutral trap engaged for longer

● Trapped atoms for up to 1000 s
(low significance at 2000 s)

● More than enough time for the
antihydrogen atom to radiate to
the ground state
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What’s next for ALPHA

● 2011 Run: introduced microwaves into the apparatus

● Currently: a new apparatus with laser access is being constructed
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Conclusion

● ALPHA has successfully demonstrated the magnetic confinement
of antihydrogen for as long as 1000 s

● The silicon detector and annihilation reconstruction routines played
a large role in this effort

● The cosmic background rejection analysis enabled a sensitive
identification of annihilation events

● The position-sensitive reconstruction allowed for discrimination
against mirror-trapped antiprotons and cosmic-ray muons

● Long-time magnetic confinement of antihydrogen atoms will allow
for precision studies of this anti-atomic system
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Backup slides
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Intentially mirror-trapped antiprotons
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Penning-Malmberg trap for charged particles/plasmas

● Strong external solenoidal
magnetic field for radial
confinement

● Electric potential for axial
confinement and manipulation

● Provides excellent confinement
of non-neutral plasmas
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Radial compression using the Rotating Wall technique
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● Rotating electric field applies a
torque to the rotating plasma

● The mean-squared plasma
radius is related the canonical
angular momentum (e. g.
electron plasma):
Pθ = (−eB/2c) ⟨r2⟩

● An applied torque T = dPθ/dt
can then be used to increase or
decrease the plasma radius

● The rotating wall is typically
driven as a dipole with
0.5-2.5 V, 0.5-20 MHz, with
optional sweeping frequency
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Evaporative cooling of charged plasmas

● Demonstrated evaporative
cooling of antiprotons to
temperatures as low as 9 K

● Energetic particles escape as
the confining potential is
lowered, leaving the remaining
particles at a lower temperature

● Also can be applied to the
positrons plasma, resulting in a
positron temperature of about
40 K

G. B. Andresen et al. (ALPHA Collaboration), Phys. Rev. Lett. 105, 013003 (2010).
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Autoresonant excitation of the antiproton plasma

Response of a driven nonlinear oscillator (J.

Fajans and L. Friedland, Am. J. Phys. 69,

1096 (2001))
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Response of a driven antiproton plasma

● The electrostatic confining wells
we use have anharmonic
components

● The oscillation amplitude
(parallel energy) is a function of
the bounce frequency

● Equation of motion:
θ̈ + ω2

0 sin θ = ε̄ cos(ωi t − αt2/2)
● A drive with a decreasing

frequency can result in an
increase in the oscillation
amplitude

● Typical drive: 200 µs, 55 mV,
350-200 kHz
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Magnetic neutral-atom trap

● Antihydrogen has a small magnetic
moment, which interacts with the
field, U = −µ⃗ ⋅ B⃗

● The ALPHA neutral trap consists
of a superconducting octupole
(left) for the radially increasing
field, and two mirror coils for the
axial field

● Shallow trap depth: ∼ 0.5 K
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