

Cryogenic Scintillators for Rare Event Searches

WNPPC 2012

NSERC Canada (Grant SAPIN 386432), CFI-LOF and ORF-SIF (Project 24536)

Patrick Nadeau

On behalf of C. Behan, M. Clavel, P. Di Stefano, F. Duquerroix, S. Hills, C. Martinez, E. Mony, W. Rau and M.-A. Verdier

Queen's University

Scintillators & Rare Event Searches

- Crystal scintillators
 - Widely used to detect ionizing radiation
 - High scintillation efficiency
- Rare event searches
 - Neutrinoless double beta-decay (i.e. ZnSe, CdWO₄)
 - Long-lived radioisotopes (α-decay of ²⁰⁹Bi *)
 - Direct detection of dark matter (CRESST, ROSEBUD)

(http://carlwillis.wordpress.com)

 Bismuth germanate (BGO), scintillating under x-ray excitation.

* P. de Marcillac, et al., Nature (2003)

Cryogenic Detectors

- Scintillation-Phonon Detectors: Light + phonon signals give background rejection
- Many more options for target nuclei than with ionization-phonon detectors (Ge, Si)
- More targets \rightarrow can confirm WIMP signal
- Lighter targets → understand neutron background

Mont Tremblant, QC

Optical Cryostat at Queen's

- 5x10x20 mm³ samples (max)
- Uniquely designed for $\boldsymbol{\gamma}$ measurements

M.-A. Verdier et al., Rev. Sci. Instrum. 80 (2009)

Data Acquisition

Data Analysis

- For each run with a given crystal at temperature T, we want:
 - Photon Spectrum (num. of photons/event) \rightarrow Light Yield \rightarrow LY(T)
 - Average Pulse Shape (sum of good events) \rightarrow Decay Constants $\rightarrow \tau_i(T)$
- Perform cuts to remove bad events

WNPPC 2012

Mont Tremblant, QC

Scintillation Studies at Queen's

$BGO + \gamma$

- Bismuth germanate (Bi₄Ge₃O₁₂)
- Already studied under α-excitation down to 6 K^{*}
- Not previously studied under γ's at cryogenic temperatures
- Some interest for future dark matter detectors (ROSEBUD)

$ZnWO_4 + \gamma \& \alpha$

- $\bullet\,$ Previously studied down to 7 K $^{\star\star}\,$
 - LY(T): ²⁴¹Am α's
 - τ(T): ⁶⁰Co γ's
- Interest from CRESST in using ZnWO₄ as future dark matter detectors

*J. Gironnet, *et al.*, NIM A 594 (2008)

**H. Kraus, *et al.*, NIM A 600 (2009)

Study of BGO + γ | Light Yield

- Studied 2 BGO crystals in 2 similar cryostats with ²²Na γ source
- Compared to BGO + α (²⁴¹Am)
- Differences may be sample specific or from properties of particles

M.-A. Verdier, et al., Phys. Rev. B 84 (2011) J. Gironnet, et al., NIM A 594 (2008)

Study of BGO + γ | *Decay Times*

WNPPC 2012

Mont Tremblant, QC

February 25, 2012

Study of ZnWO₄ + γ and α

Study of ZnWO₄ + γ and α

Summary and Outlook

- Our optical cryostat has uniquely excellent light collection, allowing measurement of photo-peaks at least down to 60 keV
- First measurement of BGO + γ from 3-300 K
 - Slow (300 µs at 3 K), but not a factor for rare event searches
- Early results from ZnWO4 under $\gamma\text{-}$ and $\alpha\text{-}\text{excitation}$
 - α/γ quenching factor is temperature dependent
 - γ response linear over all temperatures
- Outlook:
 - Study more crystals: Nal, Nal(TI), CsI, Al₂O₃
 - New glovebox for hygroscopic crystals
 - Sub-kelvin measurements in dilution fridge (T < 40 mK)

