Antisymmetrized Molecular Dynamics Calculations for Heavy-Ion Collisions

Patrick St-Onge Université Laval

- **Introduction and motivation**
- Antisymmetrized Molecular Dynamics (AMD)
- **Preliminary results**
- **Conclusion**

Introduction and motivation

- **Heavy-Ion collisions at intermediate energies** using the multidetector HERACLES
- Why intermediate energies?
	- 5-200 AMeV
	- **Phase transition liquid-gas**
		- Multifragmentation (IMF with Z>2)
	- **Transition between low energies and relativistic** energies
		- Competing mechanisms

-Mean field -Stochastic collisions

• Nucleonic dynamics

- HERACLES description

 See Jérôme Gauthier presentation for more details

- **Dynamic of heavy-ion collisions at intermediate** energies
	- QP=Quasi-Projectile QT=Quasi-Target MR=Mid-Rapidity

Equation of state (EOS)

 \blacksquare E (ρ, δ) =E $(\rho, \delta=0)$ + Esym $(\rho) \cdot \delta^2$ +...

 $\delta = (\rho_n - \rho_p)/\rho$

 p_n = neutron density p_P = proton density

80 $E_{sym}(\rho)$ (MeV) 60 40

- TRIUMF ISAC-II Rare-Isotope beams

- Rare-Isotope beams are available up to 15 AMeV
- **July 2011 experiment** 25 Na+ 12 C at 9.23 AMeV N/Z=1.27 25 Mg⁺¹²C at 9.23 AMeV N/Z=1.08

AMD

- Transport models
	- Microscopic one-body
		- Time-Dependent Hartee-Fock (TDHF)
			- Mean field only
			- **Difficulty to produce fragments distribution and** fusion at intermediate energy
		- Boltzmann-Uehling-Uhlenbeck (BUU)
			- Mean field and NN collision
			- Not applicable below 10-15 AMeV
- **Microscopic N-body**
	- Classic molecular dynamics
		- Follow motion of N body using the Hamiltonian
		- **Don't respect Pauli principle**
	- Quantum molecular dynamics (QMD)
		- Respect Pauli principle using BUU-type two-body collisions
	- Antisymmetrized molecular dynamics (AMD)
		- **Build to respect Pauli principle**
- **AMD** details
	- Nucleon are represented by wave packet with fixed width
	- **Antisymmetrization of wave functions**
	- A stochastic BUU-type NN collision algorithm is used
	- **Quantum Branching**

- AMD wave function and stochastic equation of motion

$$
|\Phi(Z)\rangle = \det_{ij} \left[\exp\left\{-\nu \left(r_j - \frac{Z_i}{\sqrt{\nu}}\right)^2 \right\} \chi_{\alpha_i}(j) \right] |\varphi\rangle
$$

$$
Z_i = \sqrt{\nu} D_i + \frac{i}{2\hbar\sqrt{\nu}} K_i
$$

$$
\frac{d}{dt} Z_i = \{Z_i, H\} + \Delta Z_i(t) + (NN \text{ collisions})
$$

• Schematic time evolution of a Xe + Sn at 50 AMeV reaction simulated by AMD

A. Ono et al.

 AMD results compared with INDRA data for Xe + Sn at 50 AMeV

Preliminary Results

- **Simulation summary**
	- \cdot 115 000 events simulated for 25 Na + $12C$ and 25 Mg + 12 C at 9.23 AMeV
	- Impact parameter $0 < b < 7$ (fm)
	- Freeze-out at $t=300$ fm/c and dt=0.75 fm/c
	- **Standard Gogny interaction**
	- 24 hours of compute time on 320 cores (Colosse)

Fragments distribution at freeze-out t=300 fm/c 25 Na + $12C$ at 9.23 AMeV

Fragments distribution at freeze-out t=300 fm/c $25Mg + 12C$ at 9.23 AMeV

Beta Isotope distributions at t=300 fm/c - H

Isotope distributions at t=300 fm/c - He

Isotope distributions at t=300 fm/c - Li

Isotope distributions at t=300 fm/c - Be

Conclusion

- Still a lot of work to do
	- Statistical decay of fragments
	- Test other interactions (Skyrme, Gogny-As)
	- **Compare with experimental data**
- **I** Identification and calibration is already done on experimental data