Early Time Dynamics in Heavy Ion Collisions McGill University, Montreal July 16th-19th 2007

Néstor Armesto *Departamento de Física de Partículas and IGFAE Universidade de Santiago de Compostela*

1

- 1. Introduction.
- 2. Models for radiative energy loss.
- 3. Determinations of the transport coefficient.
- 4.An exercise (with Carlos A. Salgado, *Rome La Sapienza*).
- 5. Summary.

Related theory talks: Baier, Djordjevic, Majumder, Ruppert.

1. Introduction (I): Néstor Armesto

- Radiative energy loss has become the baseline for explanations of both single particle and backto-back suppression measured at RHIC.
- Four formalisms available: BDMPS/GLV, MW and AMY.They consider the same physical process under different approximations.
- In all of them, medium defined by two ingredients: geometry/dynamics (soft), and medium density (initial conditions, soft) times parton-medium cross section (hard?, soft?). Thus, radiative eloss explores the medium.

Néstor Armesto (III). Introduction

• Medium density times parton-medium cross section now standardly discussed in terms of the transport coefficient:

• Problem: different implementations/observables give different values: $\hat{q} = 1 \div 15 \text{ GeV}^2/\text{fm}$

Néstor Armesto 2. Models for radiative eloss (Majumder, nucl-th/0702066) All models treat the medium modification of p_{2}^{μ} =(E₂, p₂ gluon radiation through the interference $\overline{}$ $\omega \frac{dI_{\rm medium}}{d\omega\,d{\bf k}_\perp}$ of production and rescattering. *dI* $\hat q L^2$ ∆*E* ∼

On the determination of the transport coefficient. ⁵ Fragmentation (assumed outside the medium) modified due to the difference in radiation to get rid of virtuality.

2. Models for radiative eloss (II

1/2. BDMPS/GLV: static medium.

$$
\omega \frac{dI}{d\omega d\mathbf{k}_{\perp}} = \frac{\alpha_s C_F}{(2\pi)^2 \omega^2} 2 \text{ Re} \int_0^{\infty} dy_I \int_{y_I}^{\infty} d\bar{y}_I e^{i\bar{q}(y_I - \bar{y}_I)}
$$

$$
\times \int d\mathbf{u} e^{-i\mathbf{k}_{\perp} \cdot \mathbf{u}_{\perp}} \exp \left(\frac{1}{2} \int_{\bar{y}_I}^{\infty} d\xi n(\xi) \sigma(\mathbf{u}) \right)
$$

$$
\times \frac{\partial}{\partial y} \cdot \frac{\partial}{\partial \mathbf{u}} \int_{y=0}^{\mathbf{u} = \mathbf{r}(\bar{y}_I)} \mathcal{D} \mathbf{r} \exp \left(i \int_{y_I}^{\bar{y}_I} d\xi \frac{\omega}{2} \left(\dot{\mathbf{r}}^2 - \frac{n(\xi) \sigma(\mathbf{r})}{i\omega} \right) \right)
$$

On the determination of the transport coefficient. ⁶ Exact solution unknown, two approximations: 1. Harmonic oscillator (Brownian motion): multiple soft scatterings. 2. Opacity expansion: N=1, single hard scattering, corrects Brownian motion. Comparison for massless and massive: SW '03,ASW '04.

$$
n(\xi)\sigma(\mathbf{r}) \simeq \frac{1}{2}\hat{q}(\xi)\mathbf{r}^2
$$

$$
[n(\xi)\sigma(\mathbf{r})]^N.
$$

2. Models for radiative eloss Néstor Armesto

3. AMY: rates order α_s , dynamical medium, no interference of emissions in/out medium, expansion.

4. GW(M): ff in DIS on nuclei, first corrections in L/k_T^2 , modification of DGLAP splitting functions, virtuality.

On the determination of the transport coefficient. ⁷

Physical Process	Any number of gluon lines can attach like this.																																
$0 \sim k_+/k$	$1/g^2T$	3×5	$1/g^2T$	3×5																													
$p \gg T$	$\left[\oint_{S_1}^{S} gT$	$\oint_{S_1}^{S} gT$	$\oint_{S_2}^{S} gT$	$\oint_{S_1}^{S} gT$	$\oint_{S_2}^{S} gT$	$\oint_{S_1}^{S} gT$	$\oint_{S}^{S} gT$	$\oint_{$																									

$$
D(z_1\mu^2) = D(z_1\mu^2) + \frac{\alpha_s}{2\pi} \int_0^{\infty} \frac{a_1}{l_1^2} \int \frac{dy}{y} \left| \frac{1+y}{1-y} f(x, y, Q^2, l_1) + V.C. \right| D(z_1/y, \mu^2)
$$

$$
f = \frac{C_A 2\pi \alpha}{l_1^2 + k_1^2} \frac{\int dy dy_1 dy_2 \langle A | \overline{\psi}(y) F(y_1) F(y_2) \psi(0) | A \rangle e^{i \text{factors}}}{N_c f^A(x)}
$$

$$
V_{2} \left\{Q_{2} \left\{
$$

 $\frac{a^{2}}{2}dl^{2}$ $a^{2}dv^{2}+u^{2}$

Néstor Armesto $\mathsf g$. Determinations of $\hat q\left(\mathsf l\right)$: $\hat{\bm{q}}$

- qhat is a natural parameter only in BDMPS.
- **Extraction from a** comparison with RAA.
- Phenomenological implementations are key: mean eloss rudimentary, distribution of energy losses better: quenching weights (BDMS, GLV '01).
- Fixed length (GLV;Arleo '02; SW (03) gives \sim | GeV²/fm.

$$
\mathcal{Q}(p_\perp)\!=\!\frac{d\sigma^\text{med}(p_\perp)/dp_\perp^2}{d\sigma^\text{vac}(p_\perp)/dp_\perp^2} \quad \ \ \, \\ = \int\,d\Delta E P(\Delta E) \!\left(\frac{d\sigma^\text{vac}(p_\perp\!+\Delta E)/dp_\perp^2}{d\sigma^\text{vac}(p_\perp)/dp_\perp^2}\right)
$$

BDMS '01; Wang et al '96

$$
D_{\hbar/q}^{\text{(med)}}(x,Q^2)\!=\!\int_0^1\!d\,\epsilon P(\epsilon)\frac{1}{1\!-\!\epsilon}D_{\hbar/q}\!\!\left(\frac{x}{1\!-\!\epsilon},Q^2\right)
$$

Néstor Armesto $_3$. Determinations of \hat{q} (II):

• A Woods-Saxon

geometry (production plus 'medium') gives larger values and leads to saturation: fragility (Dainese et al, Eskola et al '04).

- Surface bias (Muller '03).
- ϵ qhat>=4-14 GeV²/fm.
- Energy constraints (Baier et al '06); energy dependence (Casalderrey

et al '07).

On the determination of the transport coefficient. And the determination of the transport coefficient.

Néstor Armesto $_3$. Determinations of \hat{q} (III):

- Hard probes '06: AMY gives 2, GLV gives <1, MW give 3-4 GeV2/fm: all at initial time.
- Dilution: introduced effectively (GLVW '01, SW '02) $\langle \hat{q} \rangle =$ 2 $L^2 - \tau_0^2$ \int_0^L τ_0 $d\tau\tau\hat{q}_0$ τ_{0} τ \approx $2\tau_0\hat{q}_0$ *L* ≈ $\hat{q}_\mathbf{0}$ $2 \div 5$

• Flow (Armesto et al '04) doesn't lower qhat (Baier et al '06).

A dynamical medium decreases qhat (AMY?, Djordjevic et al '07).
 $\hat{q}(\xi) = K \cdot 2 \cdot \epsilon^{3/4}(\xi)$

• A dynamical expansion (Hirano-Nara '03; Ruppert-Renk '05,'06; Majumder et al '07; Qin et al '07) lowers qhat with respect to a static medium; still K>1; late time effect?

Néstor Armesto 3. Determinations of *q* $\hat{\bm{q}}$

• Non-photonic electrons not conclusive: benchmark (Armesto et al '05), hadronization inside (Adil et al '06), collisional (Djordjevic et al '06)...

• IAA or away side pseudoframentation function (Wang '03) tend to favor low values of qhat (Renk '06; Loizides '06; Zhang et al '07): punch-through.

On the determination of the transport coefficient. **1998** 11 and the section of the transport coefficient.

4.An exercise (I):

(with Carlos A. Salgado, *Rome La Sapienza*)

Quantification of the effect on qhat of some of the phenomenological ingredients, based on RAA for central, using a pQCD spectrum and QW.

$$
P(\Delta E) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dI(\omega_i)}{d\omega} \right] \delta \left(\Delta E - \sum_{i=1}^{n} \omega_i \right) \exp \left[- \int_0^{\infty} d\omega \frac{dI}{d\omega} \right]
$$

multiple soft single hard

 $Q(p_\perp) = \frac{d\sigma^\text{med}(p_\perp)/dp_\perp^2}{d\sigma^\text{vac}(p_\perp)/dp_\perp^2}$

 $= \int d\Delta E P(\Delta E) \left(\frac{d\sigma^{vac}(p_{\perp} + \Delta E)/dp_{\perp}^2}{d\sigma^{vac}(p_{\perp})/dp_{\perp}^2} \right)$

 $\hat{q}L^2, \;\; R=\omega_c L, \;\; L/\lambda=1$

 $\omega_c =$

1

2

 $pp@200,$ PHENIX $pi0$

4. An exercise (fixed length

 $R_{AA}(p_T)$ for π^0 at $\eta=0$

PHENIX: nucl-ex/0510023 0.9 AuAu at 200 GeV/A, 0-10% 0.8 solid: multiple soft dashed: single hard 0.7 qhat=0.5, 1, 2 GeV²/fm 0.6 fixed $L=4.3$, 5.6 fm 0.5 0.4 0.3 0.2 0.1 0 8 10 12 14 16 18 20 $p_T(GeV)$

4.An exercise (III): Woods-Saxon

$$
\omega_c(\mathbf{r}_0, \phi) = \int_0^\infty d\xi \xi \hat{q}(\xi)
$$

$$
\langle \hat{q} L \rangle (\mathbf{r}_0, \phi) = \int_0^\infty d\xi \hat{q}(\xi)
$$

 $\hat{q} \propto T_A T_B(x_0 + \xi \cos \phi, y_0 + \xi \sin \phi)$

$R(\mathbf{r}_0, \phi) = 2\omega_c^2(\mathbf{r}_0, \phi) / \langle \hat{q}L \rangle(\mathbf{r}_0, \phi), \ \ L = R/\omega_c, \ \ \langle \hat{q} \rangle = 2\omega_c^2 / (LR)$

Néstor Armesto 4.An exercise (IV): hydro DE SANTIAGO DE COMPOSTELA $\overline{\langle\epsilon\rangle(\tau_0)}\simeq 27(36)\;\overline{\text{GeV}}/\text{fm}^3$ Hirano-Nara: 3+1 ideal hydro, $\langle \epsilon^{3/4} \rangle (\tau_0) \simeq 1.5(2.2) \text{ GeV}^2/\text{fm}$
 $\tau_0 = 0.6 \text{ fm}, \tau_{max} = 10.2 \text{ fm}$ for $AuAu@200$, $b=3.1$ fm, ideal EOS with $N_f=3$, $B^{1/4}=247$ MeV.

Néstor Armesto **5. Summary:**

fixed length \leq | \leq |

Woods-Saxon 4-14 (average)

flow and the no effect

dilution increases, factor 2-5

hydro K~3-4, late times

IAA/pff avors low values

AMY 2 (initial)

MW 2-3 (initial)

GLV | <1 (initial)

dynamical medium decreases

non-photonic electrons | unconclusive

multiple soft/single hard small decrease

qhat (GeV2/fm)

Phenomenological implementation

Observables

Models

Future: heavy flavor ID, more differential observables, LHC.