Quenched large $p_{\perp} \pi^0$ spectra and the transport coefficient \hat{q}

Rudolf Baier

Faculty of Physics, University of Bielefeld

mainly based on more recent work together with **Dominique Schiff** "Deciphering the properties of the medium produced in heavy ion collisions at RHIC by a pQCD analysis of quenched large p_{\perp} π^{0} spectra"

[JHEP 0609 (2006) 059 (arXiv: hep-ph/0605183)]

and with AI H. Mueller and Dominique Schiff

"How does transverse (hydrodynamic) flow affect jet-broadening and jet-quenching ?"

[Phys. Lett. B 649 (2007) 147 (arXiv: nucl-th/0612068)]

NOT A REVIEW !

MOTIVATION

RHIC discovery: suppression of large p_{\perp} hadrons in high energy Au - Au collsions FINAL STATE EFFECT

[from M. Tannenbaum - review (2007)]

Is it true that

"Theory ties strings round jet suppression ?"

[CERN Courier, May 2007]

"Jet quenching is one of the most dramatic pieces for the *strong-coupling* nature of the quark-gluon matter produced at RHIC"

[see: H. Liu, K. Rajagopal and U. A. Wiedemann (2006 - 2007)]

my answer is: NO !

at least in the pQCD framework of medium-induced gluon radiation

CONTENT

• reminder:

explanation in perturbative leading order QCD framework: medium-induced radiative energy loss by gluon radiation

(following BDMPS, Zakharov, Wiedemann, Salgado, ... approach)

- basic quantity: transport coefficient \hat{q}
- discussion of hard scale necessary to resolve the deconfined medium
- Bethe-Heitler versus LPM radiation: central role of cut-off ω_{BH}
- quenching factor and (Poissonian) energy distribution of primary gluons
- nuclear geometry and parton (transverse) path length L
- results including radial flow for central collisions
- summary/conclusion

pQCD medium-induced radiative energy loss (BDMPS)

ZIG-ZAG gluon in finite size L medium $E_{\text{parton}} \rightarrow \infty$, loss ΔE

typical dominant gluon radiation diagram (non-abelian gluon properties at LO pQCD)

requirements: mean free path $\lambda_g = \lambda > \frac{1}{\mu}$ range of screened gluon interaction, μ .. screening mass and $L >> \lambda$, i.e. many scatterings

medium-induced GLUON RADIATION

- N_{coh}: number of scattering centers that fall inside the formation length t_{coh} of the emitted gluon and which act coherently as a single scatterer, with 1 << N_{coh} ≃ t_{coh}/λ < L/λ
 </p>
- coherence/formation time: $t_{coh} \simeq \omega/k_{\perp}^2 \simeq N_{coh} \lambda$
- If andom walk due to multiple scatterings: accumulated $k_{\perp}^2 \simeq N_{coh} \mu^2 >> \mu^2$
- transport coefficient:

$$\hat{q} \simeq \mu^2 / \lambda \simeq \rho \int d^2 q_\perp q_\perp^2 d\sigma / d^2 q_\perp$$

 ρ ... density of medium, σ ... gluon-medium (nucleus, partons) interaction

COMBINING:

$$t_{coh} \simeq \sqrt{\frac{\omega}{\hat{q}}} , \ k_{\perp}^2 \simeq \sqrt{\omega \hat{q}} , \ N_{coh} \simeq \sqrt{\frac{\omega}{\mu^2 \lambda}} \to \omega >> \omega_{BH} = \mu^2 \lambda$$

characteristic energy : $t_{coh} \simeq L \rightarrow \omega_c \simeq \hat{q}L^2$

Quenched large $p \mid \pi^0$ spectra – p.8

characteristic MOMENTUM SCALE

$$\hat{q}L \simeq \sqrt{\omega_c \hat{q}} > k_\perp^2 \simeq N_{coh} \mu^2 >> \mu^2$$

compare with *hard/saturation scale:*

 $\hat{q}L \simeq Q_s^2 \simeq \hat{q}A^{1/3}$

multiple scattering environment in nucleus: small distance physics (large scale $k_{\perp} \simeq 1/x_{\perp}$.. small size of the system) \rightarrow deep inelastic/hard process \rightarrow pQCD description by only one large scale in $\alpha_s(k_{\perp})$!

therefore \hat{q} is calculated in pQCD framework temperature T is NOT the characteristic scale !

(soft) BDMPS medium-induced GLUON SPECTRUM

radiation spectrum per unit path length

characteristic behaviour:

- totally incoherent Bethe-Heitler regime:
 - $\omega \le \omega_{BH} = \lambda \mu^2$

$$\frac{\omega dI}{d\omega dz} \propto \frac{\alpha_s}{\pi} \frac{1}{\lambda} \quad \rightarrow \quad \frac{\omega dI}{d\omega} \propto \frac{\alpha_s}{\pi} \frac{L}{\lambda}$$

• coherent LPM regime:

 $\lambda < t_{coh} < L, \ N_{coh} >> 1, \ \omega > \omega_{BH}$

$$\frac{\omega dI}{d\omega dz} \propto \frac{\alpha_s}{\pi} \frac{1}{t_{coh}} \rightarrow \frac{\omega dI}{d\omega} \propto \frac{\alpha_s}{\pi} \sqrt{\frac{\omega_c}{\omega}}$$

CUT-OFFS

kinematic cut: $k_{\perp} \leq \omega$ and $k_{\perp}^2 \simeq \sqrt{2\hat{q}\omega} \rightarrow$ [C. A. Salgado and U. A. Wiedemann]

effective IR cut – off : $\omega \ge \hat{\omega} \simeq (2\hat{q})^{\frac{1}{3}} \simeq \omega_c (2/R)^{\frac{2}{3}}$ additional parameter: $R = \omega_c L$ IMPORTANT:

$$\hat{\omega}/\omega_{BH} \simeq \frac{2^{1/3}}{(\lambda\mu)^{4/3}} << 1$$

 ω_{BH} energy is the proper IR limit of the medium-induced LPM gluon emission spectrum

SPECTRUM [C. A. Salgado and U. A. Wiedemann]

The medium-induced gluon energy distribution $\omega \frac{dI}{d\omega}$ in the multiple soft scattering approximation for different values of the kinematic constraint $R = \omega_c L$

typical values for RHIC large p_{\perp} pions:

 $R \simeq 1000, \ \hat{\omega}/\omega_c \simeq 1.5 \ 10^{-2}, \ \omega_{BH}/\omega_c \ge 3 \ 10^{-2}$

QUENCHING EFFECT

$$R_{AA} = Q(p_{\perp}) = \int d\epsilon D(\epsilon) \left(\frac{d\sigma^{\text{vacuum}}(p_{\perp} + \epsilon)/dp_{\perp}^2}{d\sigma^{\text{vacuum}}(p_{\perp})/dp_{\perp}^2} \right)$$

approximation: power behaved vacuum spectrum

$$Q(p_{\perp}) \simeq \int_0^\infty d\epsilon \, D(\epsilon) \, \exp\left\{-\frac{n\epsilon}{p_{\perp}}\right\}, \ n \simeq 12$$

Crucial assumption ("trigger bias"): probability $D(\epsilon)$ for emitting the energy ϵ into the medium by a Poissonian energy distribution by *primary gluons* in terms of the inclusive medium induced spectrum

$$D(\epsilon) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dI(\omega_i)}{d\omega} \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_i\right) \exp\left[-\int d\omega \frac{dI}{d\omega}\right]$$

RESULT

suppression is dominated by the NO-emission probability (i.e. by virtual contribution)

$$p_0(p_\perp) = Q_{min}(p_\perp) = \exp\left[-N(\omega_{BH})\right]$$

with number of gluons $N(\omega) \equiv \int_{\omega}^{\infty} d\omega' \frac{dI(\omega')}{d\omega'}$

- p_0 increases when replacing $\hat{\omega}$ by ω_{BH}
- ω_{BH} reduces amount of real emission due to hardness of gluons $\omega \ge \omega_{BH}$:

$$Q(p_{\perp}) \le Q_{max}(p_{\perp}) = \exp\left\{-N(\omega_{BH})\left[1 - \exp\left(-\frac{n\omega_{BH}}{p_{\perp}}\right)\right]\right\}$$

e.g. $Q_{real}/Q(p_{\perp} = 15 \ GeV) < 20 \ \%$

 \rightarrow properties of the trigger jet ($\Delta \phi$ distribution)

GLUON MULTIPLICITY

 $N(\omega)$ for $R = \infty$ (solid curve) and R = 1000 (dashed curve)

[C. A. Salgado and U. A.Wiedemann] for $\alpha_s = 1/2$.

NOTE: for
$$\omega_{BH}/\omega_c \simeq (3-4) \ 10^{-2}$$

the R-dependence is not significant - e.g. important for L- distribution

Note: same-side jet is not modified in Au - Au vs. p - p collisions

COMPARISON

Suppression for R = 1000 (dominating quark jet)

 $\begin{aligned} \hat{q} &= 2 \ GeV^2 / fm, \ L &= 3.5 \ fm, \\ \hat{\omega} &= 0.9 \ GeV, \ \omega_{BH} = 1.6 \ GeV \\ Q_{\min} &= p_0 \\ p_{\perp} &= 10.4 \ GeV \\ p_{\perp} &= 20.4 \ GeV \\ 0.291 \\ 0.321 \\ 0.359 \\ 0.322 \\ 0.322 \\ 0.345 \\ 0.345 \end{aligned}$

[private communication by C. A. Salgado and N. Armesto]

NOTE: almost the same suppression - still compatible with the data, but *uncomfortably* large $\omega_{BH} \simeq 4 \ GeV$ for jets of $O(20 \ GeV)$, when \hat{q} is large !

THEREFORE PREFER: $\hat{q} < 3 \ GeV^2/fm$, $L > 3 \ fm$

analysis by K. J. Eskola et al. (2005) - without ω_{BH} cut-off !

[taken from C. A. Salgado (2007)]

MAIN RESULT: average $\hat{q} = 5...15 \ GeV^2/fm$

PATH LENGTH L

 $\langle Q \rangle = Q_{min}|_{\langle geometry \rangle}$: $Q_{min}(\omega_{BH}/\omega_c) = Q_{min}(L/\lambda_q)$ geometry : $L = L_{geom}(\vec{s})$, \vec{s} ... position of jet production in transverse plane

 $< L > \simeq 3.5 \lambda_q \qquad \lambda_q \simeq 1 fm$

 $\langle Q_{min} \rangle$ (solid curve) and $\langle Q_{max} \rangle$ [screening mass μ : 0.65 (dotted), 0.8 (dashed-dotted) and 1.1 GeV (dashed curve)]

"SOLUTION" in LO pQCD

THERMAL GLUONIC MEDIUM at T = 400 MeV

$$\hat{q} \simeq \frac{8\zeta(3)}{\pi} \alpha_s^2 N_c^2 \ T^3 \simeq 2.2 \ GeV^2/fm$$

 $(\alpha_s = \frac{1}{2}, N_c = 3)$

[compare: $\hat{q}|_{SYM} = 26.69 \sqrt{\alpha_{SYM} N_c} T^3 \simeq 9.5 \ GeV^2/fm$ (Hong Liu et al. (2006))]

screening mass $\mu \simeq 1 \ GeV$, gluon mean free path $\lambda_g \simeq 0.45 \ fm$, energy density $\epsilon \simeq 17 \ GeV/fm^3$ leading to $\omega_{BH} \simeq 1.6 \ GeV$, average path length $< L > \simeq 6 \ \lambda_g \simeq 3 \ fm$ and suppression $Q(p_{\perp} \simeq 10 \ GeV) \simeq 0.32$

remark: $Q_{absorption} Q_{BH} \ge 0.7$ at $p_{\perp} = 10 \ GeV$, i.e. neglect altogether contribution of the Bethe-Heitler and the absorption process [S. Turbide et al. (2005)]

FLOW: KINEMATICS in the TRANSVERSE PLANE

jet direction \hat{n}

transverse flow velocity $\vec{v} \parallel \vec{r}$

moving medium (by Lorentz boost): \vec{v} from (ideal/viscous) hydro $\hat{q}|_{flow} = \hat{q}_0 \ \gamma(v) \ (1 + v \cos \theta), \ \gamma(v) = 1/\sqrt{1 - v^2}$

[also H. Liu, K. Rajagopal and U. A. Wiedemann (2007)]

JET-BROADENING

small effects: $R_{flow} = (\Delta p_{\perp}^2)_{Bj+flow}/(\Delta p_{\perp}^2)_{Bj} \simeq 0.9$ (initial temperature T_0)

$$(\Delta p_{\perp}^2)_{Bj+flow} = \frac{1}{\pi R_A^2} \int d^2 s \int d\tau \ \hat{q}|_{flow} [T(\vec{s}, \ \tau), \ \vec{v}(\vec{s}, \tau)]$$

JET-QUENCHING

estimate effect of transverse flow by assuming scaling law:

$$\omega \frac{dI}{d\omega} = \tilde{I}(\omega/\omega_c)$$

with

$$R_{\omega_c} = (\omega_c)_{Bj+flow}/(\omega_c)_{Bj} \simeq 0.85$$
 .. small effect

$$(\omega_c)_{Bj+flow} = \frac{1}{\pi R_A^2} \int d^2s \int d\tau \ \tau \ \hat{q}|_{flow} [T(\vec{s}, \ \tau), \ \vec{v}(\vec{s}, \tau)]$$

WARNING: NO SCALING in GENERAL

- \hat{q} appears at different times [BDMS (1998)] !

$$\omega \frac{dI}{d\omega} \sim \int dt_1 \int dt_2 \ \hat{q}(t_1) \ \hat{q}(t_2) \dots$$

has to be evaluated in case of large effects due to flow

SUMMARY/CONCLUSIONS

- energy loss by gluon radiation in dense environment is a hard process, and therefore described in pQCD [so far only in LO]
- by one reasonably large scale: a perturbatively interacting system (QGP ?) is resolved - you see what you resolve
- in contrast to measurements of e.g. v_2 at low p_{\perp} : resolving sQGP ?
- no real need for extensive numerical work
- but carefull analysis of IR cut-offs:
 validity of LPM versus Bethe-Heitler spectrum (ω_{BH})
- affects the path length L distribution
- enhances dominance of NO gluon emission probability (same side jet ?)
- transport coefficient is determined by pQCD at RHIC $\hat{q} \leq 3 \ GeV^2/fm$, together with typical average path length of $L \geq 3 \ fm$
 - guarantees many scatterings: $L >> \lambda_g$
- Iarge value of \hat{q} is not compatible with pQCD in a hot medium, and NOT with a reasonably "soft" cut-off ω_{BH}

SUMMARY/CONCLUSIONS, cont.

probability distribution of primary emitted gluons: Poissonian distribution ? what about two-gluon medium-induced correlations ?

small influence of radial flow on jet-broadening and jet-quenching
 beyond longitudinal Bjorken expansion

● equilibration time versus (average) path length: fast thermalization or perturbative scenario e.g. "bottom-up" time-scale $\tau_{eq} \simeq \langle L \rangle \simeq 3 fm$ \rightarrow which dense medium is actually probed by quenching when saturated/CGC \rightarrow thermalized medium ?

EXTRAS

ABSTRACT

The suppression of large p_{\perp} hadron spectra observed in Au - Au collisions at $\sqrt{s} = 200 \ GeV$ at RHIC is dominantly attributed to medium-induced gluon radiation. Information on the nature of the medium is extracted from data: a widely spread suggestion is that it is a sQGP. We question this statement in the context of quenching, and discuss a few points:

- the legitimate assumption of a hard scale for the coupling, allowing the leading order pQCD treatment,
- In the multiple scattering BDMPS framework, including coherent LPM emission for gluons above a given energy threshold and the extraction of the transport coefficient \hat{q} characterizing the medium,

effects due to longitudinal expansion and transverse flow of the hot medium.

The conclusion is that the resulting (average) \hat{q} should not exceed $3 \ GeV^2/fm$,

with $L \ge 3 fm$!

$\pi^0 R_{AA}$ as a function of p_{\perp}

[from T. Isobe, nucl-ex/0510085]

RHIC data

significant jet quenching observed at RHIC energies

top quark production pQCD example:

scale dependence of the top quark cross section in LO and NLO pQCD:

 $LO + NLO \simeq LO$: optimal scale $\mu \simeq m_{top} \simeq 1$ /size of the system

[from R. K. Ellis et al., "QCD and Collider Physics"]

time scales

formation time and coherence length

 $t_{form}:$ on-shell quark and gluon well separated $E>>\omega>>k_{\perp},\ E\to\infty$

$$t_{form} \sim \frac{E}{\sqrt{p \cdot k}} \frac{1}{\sqrt{p \cdot k}} \sim \frac{2\omega}{k_{\perp}^2}$$

phase:

 $\exp{it[\omega + |\vec{p} - \vec{k}| - |\vec{p}|]} = \exp{[it/t_{form}]}$

 $(|\vec{p} - \vec{k}| \simeq E - \omega + k_{\perp}^2/2\omega)$

multiple interactions

- group of scattering centers act as ONE source of radiation

- defines t_{coh}

$$t_{form} \equiv \underline{t_{coh}} \simeq \frac{\omega}{\langle k_{\perp}^2 \rangle|_{t_{coh}}} \simeq \frac{\omega}{\mu^2 t_{coh}/\lambda}$$

random walk:

$$\langle k_{\perp}^2 \rangle |_{t_{coh}} \simeq N_{coh} \mu^2 \simeq \frac{t_{coh}}{\lambda} \mu^2$$

 \Longrightarrow

$$t_{coh} \simeq \sqrt{\frac{\lambda\omega}{\mu^2}}, \quad N_{coh} \simeq \sqrt{\frac{\omega}{\lambda\mu^2}}$$

 N_{coh} = number of coherent scatterings

 $\hat{=}$ scattering centers which participate coherently in the gluon emission with energy ω

Quenching factor $p_0 = Q_{min} = \exp[-N(\omega)]$ for massless quarks and gluons [C. A. Salgado and U. A.Wiedemann (2003)]

 R_{AA} for different in-medium path length L

comment: $\langle L_{geom} \rangle = 5.2 \ fm$ for central for Au - Au collisions

[K. J. Eskola et al., Nucl. Phys. A747 (2005) 511]

Sensitivity on choice of gluon emission probability:

 R_{AA} as a function of \hat{Q} for $p_{\perp}=10~GeV$

[K. J. Eskola et al., Nucl. Phys. A747 (2005) 511]

equilibrated media:

nuclear matter - (massless) pion gas - (ideal) QGP pQGP : density $\rho(T) \sim T^3 \sim$ energy density $\epsilon^{\frac{3}{4}}$

"smooth" increase of \hat{q} with increasing energy density of the medium, and

$$\hat{q}|_{\text{hot}} \simeq 2 \epsilon^{\frac{3}{4}} >> \hat{q}|_{\text{nuclear matter}}$$

ideal hydro: transverse flow velocity as a function of r and Bjorken's τ

flow has a non-negligible effect only for large enough values of r, where v differs significantly from 0: realized when jet is moving with the flow

[G. Baym et al. (1983); R. Baier and P. Romatschke (2006)]

υ_2 distribution

[P. Romatschke and U. Romatschke (2007)]