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mainly based on more recent work together with Dominique Schiff
“Deciphering the properties of the medium produced in heavy ion collisions at RHIC

by a pQCD analysis of quenched large p⊥ π0 spectra”

[ JHEP 0609 (2006) 059 (arXiv: hep-ph/0605183) ]

and with Al H. Mueller and Dominique Schiff

“How does transverse (hydrodynamic) flow affect jet-broadening and jet-quenching ?”

[ Phys. Lett. B 649 (2007) 147 (arXiv: nucl-th/0612068) ]

NOT A REVIEW !
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MOTIVATION

RHIC discovery: suppression of large p⊥ hadrons
in high energy Au − Au collsions

FINAL STATE EFFECT
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[from M. Tannenbaum - review (2007)]
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Is it true that

”Theory ties strings round jet suppression ?”

[CERN Courier, May 2007]

“Jet quenching is one of the most dramatic pieces for
the strong-coupling nature of the quark-gluon matter produced
at RHIC”

[see: H. Liu, K. Rajagopal and U. A. Wiedemann (2006 - 2007)]
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my answer is: NO !

at least in the pQCD framework of

medium-induced gluon radiation
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CONTENT

• reminder:

explanation in perturbative leading order QCD framework:
medium-induced radiative energy loss by gluon radiation

(following BDMPS, Zakharov, Wiedemann, Salgado, .. . approach )

• basic quantity: transport coefficient q̂

• discussion of hard scale necessary to
resolve the deconfined medium

• Bethe-Heitler versus LPM radiation:
central role of cut-off ωBH

• quenching factor and (Poissonian) energy distribution of
primary gluons

• nuclear geometry and parton (transverse) path length L

• results including radial flow for central collisions

• summary/conclusion
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pQCD medium-induced radiative energy loss (BDMPS)

ZIG-ZAG gluon in finite size L medium
Eparton → ∞, loss ∆E

X X X

o

X X X

E parton

ω k
λqT

T,

E∆

o
o

typical dominant gluon radiation diagram

(non-abelian gluon properties at LO pQCD)

requirements: mean free path λg = λ > 1
µ range of

screened gluon interaction, µ.. screening mass

and L >> λ, i.e. many scatterings
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medium-induced GLUON RADIATION

Ncoh: number of scattering centers that fall inside the formation length tcoh of the
emitted gluon and which act coherently as a single scatterer,
with 1 << Ncoh ≃ tcoh/λ < L/λ

coherence/formation time: tcoh ≃ ω/k2
⊥

≃ Ncoh λ

random walk due to multiple scatterings: accumulated k2
⊥

≃ Ncohµ2 >> µ2

transport coefficient:

q̂ ≃ µ2/λ ≃ ρ

∫

d2q⊥q2
⊥
dσ/d2q⊥

ρ ... density of medium, σ ... gluon-medium (nucleus, partons) interaction

COMBINING:

tcoh ≃
√

ω

q̂
, k2

⊥
≃

√

ωq̂ , Ncoh ≃
√

ω

µ2λ
→ ω >> ωBH = µ2λ

characteristic energy : tcoh ≃ L → ωc ≃ q̂L2
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characteristic MOMENTUM SCALE

q̂L ≃
√

ωcq̂ > k2
⊥
≃ Ncohµ2 >> µ2

compare with hard/saturation scale:

q̂L ≃ Q2
s ≃ q̂A1/3

multiple scattering environment in nucleus:
small distance physics
(large scale k⊥ ≃ 1/x⊥.. small size of the system)
→ deep inelastic/hard process → pQCD description by

only one large scale in αs(k⊥)!

therefore q̂ is calculated in pQCD framework

temperature T is NOT the characteristic scale !
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(soft) BDMPS medium-induced GLUON SPECTRUM

radiation spectrum per unit path length

characteristic behaviour:

• totally incoherent Bethe-Heitler regime:
ω ≤ ωBH = λµ2

ωdI

dωdz
∝ αs

π

1

λ
→ ωdI

dω
∝ αs

π

L

λ

• coherent LPM regime:
λ < tcoh < L, Ncoh >> 1, ω > ωBH

ωdI

dωdz
∝ αs

π

1

tcoh
→ ωdI

dω
∝ αs

π

√

ωc

ω
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CUT-OFFS

kinematic cut: k⊥ ≤ ω and k2
⊥
≃

√
2q̂ω →

[C. A. Salgado and U. A. Wiedemann]

effective IR cut − off : ω ≥ ω̂ ≃ (2q̂)
1
3 ≃ ωc(2/R)

2
3

additional parameter: R = ωcL

IMPORTANT:

ω̂/ωBH ≃ 21/3

(λµ)4/3
<< 1

ωBH energy is the proper IR limit of the medium-induced
LPM gluon emission spectrum
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SPECTRUM [C. A. Salgado and U. A. Wiedemann]

The medium-induced gluon energy distribution ω dI
dω

in the multiple soft scattering

approximation for different values of the kinematic constraint R = ωc L

typical values for RHIC large p⊥ pions:

R ≃ 1000, ω̂/ωc ≃ 1.5 10−2, ωBH/ωc ≥ 3 10−2
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QUENCHING EFFECT

RAA = Q(p⊥) =

∫

dǫD(ǫ)

(

dσvacuum(p⊥ + ǫ)/dp2
⊥

dσvacuum(p⊥)/dp2
⊥

)

approximation: power behaved vacuum spectrum

Q(p⊥) ≃
Z

∞

0
dǫ D(ǫ) exp



− nǫ

p⊥

ff

, n ≃ 12

crucial assumption (“trigger bias”): probability D(ǫ) for emitting the

energy ǫ into the medium by a Poissonian energy distribution by primary gluons in terms of the

inclusive medium induced spectrum

D(ǫ) =
∞
X

n=0

1

n!

"

n
Y

i=1

Z

dωi
dI(ωi)

dω

#

δ

 

ǫ −
n
X

i=1

ωi

!

exp

»

−
Z

dω
dI

dω

–
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RESULT

suppression is dominated by the NO-emission probability
(i.e. by virtual contribution)

p0(p⊥) = Qmin(p⊥) = exp [−N(ωBH)]

with number of gluons N (ω) ≡
R

∞

ω
dω′ dI(ω′)

dω′

p0 increases when replacing ω̂ by ωBH

ωBH reduces amount of real emission due to hardness
of gluons ω ≥ ωBH :

Q(p⊥) ≤ Qmax(p⊥) = exp



−N(ωBH)

»

1 − exp

„

−nωBH

p⊥

«–ff

e.g. Qreal/Q(p⊥ = 15 GeV ) < 20 %

→ properties of the trigger jet (∆φ distribution)
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GLUON MULTIPLICITY

N(ω) for R = ∞ (solid curve) and R = 1000 (dashed curve)

[C. A. Salgado and U. A.Wiedemann] for αs = 1/2.

NOTE: for ωBH/ωc ≃ (3 − 4) 10−2

the R−dependence is not significant - e.g. important for L− distribution
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∆φ DISTRIBUTION

Note: same-side jet is not modified in Au − Au vs. p − p
collisions
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[from M. Tannenbaum - review (2007)]
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COMPARISON

Suppression for R = 1000 ( dominating quark jet)

q̂ = 2 GeV 2/fm, L = 3.5 fm, q̂ = 10 GeV 2/fm, L = 2 fm,

ω̂ = 0.9 GeV, ωBH = 1.6 GeV ω̂ = 1.6 GeV, ωBH = 3.5 GeV

Qmin = p0 Q(p⊥) Qmin = p0 Q(p⊥)

p⊥ = 10.4 GeV 0.291 0.321 0.322 0.329

p⊥ = 20.4 GeV 0.291 0.359 0.322 0.345

[private communication by C. A. Salgado and N. Armesto]

NOTE: almost the same suppression - still compatible with
the data, but uncomfortably large ωBH ≃ 4 GeV for jets of
O(20 GeV ), when q̂ is large !

THEREFORE PREFER: q̂ < 3 GeV 2/fm, L > 3 fm
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RAA

analysis by K. J. Eskola et al. (2005) - without ωBH cut-off !

[taken from C. A. Salgado (2007)]

MAIN RESULT: average q̂ = 5...15 GeV 2/fm
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PATH LENGTH L

< Q >= Qmin|<geometry> : Qmin(ωBH/ωc) = Qmin(L/λq)
geometry : L = Lgeom(~s) , ~s... position of jet production in transverse plane

< L >≃ 3.5 λq λq ≃ 1 fm

〈Qmin〉 (solid curve) and 〈Qmax〉 [screening mass µ: 0.65 (dotted), 0.8 (dashed-dotted) and
1.1 GeV (dashed curve)]
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“SOLUTION” in LO pQCD

THERMAL GLUONIC MEDIUM at T = 400 MeV

q̂ ≃ 8ζ(3)

π
α2

sN
2
c T 3 ≃ 2.2 GeV 2/fm

(αs = 1
2
, Nc = 3)

[compare: q̂|SY M = 26.69
√

αSY MNc T 3 ≃ 9.5 GeV 2/fm (Hong Liu et al. (2006)) ]

screening mass µ ≃ 1 GeV , gluon mean free path
λg ≃ 0.45 fm, energy density ǫ ≃ 17 GeV/fm3

leading to
ωBH ≃ 1.6 GeV , average path length < L >≃ 6 λg ≃ 3 fm
and suppression Q(p⊥ ≃ 10 GeV ) ≃ 0.32

remark: Qabsorption QBH ≥ 0.7 at p⊥ = 10 GeV , i.e. neglect altogether contribution of

the Bethe-Heitler and the absorption process [S. Turbide et al. (2005)]
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FLOW: KINEMATICS in the TRANSVERSE PLANE

jet direction n̂
transverse flow velocity ~v ‖ ~r

y

r

s

n

φ

n

x

τ

θ

moving medium (by Lorentz boost): ~v from (ideal/viscous) hydro

q̂|flow = q̂0 γ(v) (1 + v cos θ), γ(v) = 1/
√

1 − v2

[also H. Liu, K. Rajagopal and U. A. Wiedemann (2007)]
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JET-BROADENING

small effects: Rflow = (∆p2
⊥

)Bj+flow/(∆p2
⊥

)Bj ≃ 0.9 (initial temperature T0)

(∆p2
⊥
)Bj+flow =

1

πR2
A

∫

d2s

∫

dτ q̂|flow[T (~s, τ), ~v(~s, τ)]
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JET-QUENCHING

estimate effect of transverse flow by assuming scaling law:

ω dI
dω = Ĩ(ω/ωc)

with

Rωc
= (ωc)Bj+flow/(ωc)Bj ≃ 0.85 .. small effect

(ωc)Bj+flow =
1

πR2
A

Z

d2s

Z

dτ τ q̂|flow[T (~s, τ), ~v(~s, τ)]

WARNING: NO SCALING in GENERAL
- q̂ appears at different times [BDMS (1998)] !

ω
dI

dω
∼

∫

dt1

∫

dt2 q̂(t1) q̂(t2)......

has to be evaluated in case of large effects due to flow

Quenched large p
⊥

π0 spectra – p.23



SUMMARY/CONCLUSIONS

energy loss by gluon radiation in dense environment is a hard process,
and therefore described in pQCD [so far only in LO]

by one reasonably large scale: a perturbatively interacting system (QGP ?) is resolved
- you see what you resolve

in contrast to measurements of e.g. v2 at low p⊥: resolving sQGP ?

no real need for extensive numerical work

but carefull analysis of IR cut-offs:
validity of LPM versus Bethe-Heitler spectrum (ωBH )

affects the path length L distribution

enhances dominance of NO gluon emission probability (same side jet ?)

transport coefficient is determined by pQCD - at RHIC q̂ ≤ 3 GeV 2/fm,
together with typical average path length of L ≥ 3 fm

- guarantees many scatterings: L >> λg

large value of q̂ is not compatible with pQCD in a hot medium,
and NOT with a reasonably “soft” cut-off ωBH
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SUMMARY/CONCLUSIONS, cont.

probability distribution of primary emitted gluons:
Poissonian distribution ?
what about two-gluon medium-induced correlations ?

small influence of radial flow on jet-broadening and jet-quenching
- beyond longitudinal Bjorken expansion

equilibration time versus (average) path length:
fast thermalization or perturbative scenario
e.g. “bottom-up” time-scale τeq ≃ < L > ≃ 3 fm

→ which dense medium is actually probed by quenching
when saturated/CGC → thermalized medium ?
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EXTRAS

Quenched large p
⊥

π0 spectra – p.26



ABSTRACT

The suppression of large p⊥ hadron spectra observed in Au − Au collisions at√
s = 200 GeV at RHIC is dominantly attributed to medium-induced gluon radiation.

Information on the nature of the medium is extracted from data: a widely spread suggestion
is that it is a sQGP. We question this statement in the context of quenching, and discuss a
few points:

the legitimate assumption of a hard scale for the coupling, allowing the leading order
pQCD treatment,

the multiple scattering BDMPS framework, including coherent LPM emission for gluons
above a given energy threshold and the extraction of the transport coefficient q̂

characterizing the medium,

the parton path length L in the medium,

effects due to longitudinal expansion and transverse flow of the hot medium.

The conclusion is that the resulting (average) q̂ should not exceed 3 GeV 2/fm,

with L ≥ 3 fm !
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RHIC data
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top quark production

pQCD example:

scale dependence of the top quark cross section in LO and NLO pQCD:
LO + NLO ≃ LO : optimal scale µ ≃ mtop ≃ 1/size of the system

[ from R. K. Ellis et al., “QCD and Collider Physics”]
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time scales

formation time and coherence length
tform : on-shell quark and gluon well separated
E >> ω >> k⊥, E → ∞

ω T, k

tform ∼ E√
p · k

1√
p · k ∼ 2ω

k2
⊥

phase:

exp it[ω + |~p − ~k| − |~p|] = exp [it/tform]

(|~p − ~k| ≃ E − ω + k2
⊥

/2ω)
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multiple interactions

- group of scattering centers act as ONE source of radiation

- defines tcoh

tform ≡ tcoh ≃ ω

〈k2
⊥
〉|tcoh

≃ ω

µ2tcoh/λ

random walk:

〈k2
⊥
〉|tcoh

≃ Ncohµ2 ≃ tcoh

λ
µ2

=⇒

tcoh ≃
s

λω

µ2
, Ncoh ≃

r

ω

λµ2

Ncoh = number of coherent scatterings
=̂ scattering centers which participate coherently in the gluon emission with energy ω
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Quenching factor p0 = Qmin = exp[−N(ω)] for massless quarks and gluons

[C. A. Salgado and U. A.Wiedemann (2003)]
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Sensitivity on choice of gluon emission probability:
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medium dependence of transport coefficient̂q

equilibrated media:

nuclear matter - (massless) pion gas - (ideal) QGP
pQGP : density ρ(T ) ∼ T 3 ∼ energy density ǫ

3
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"smooth" increase of q̂ with increasing energy density of the medium, and

q̂|hot ≃ 2 ǫ
3
4 >> q̂|nuclear matter
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ideal hydro: transverse flow velocity as a function of r and Bjorken’s τ

flow has a non-negligible effect only for large enough values
of r, where v differs significantly from 0: realized when jet is
moving with the flow

[G. Baym et al. (1983); R. Baier and P. Romatschke (2006)]
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0 1 2 3 4
p

T 
[GeV]

0

5

10

15

20

25

v 2 
(p

er
ce

nt
)
ideal
η/s=0.03
η/s=0.08
η/s=0.16
STAR

[P. Romatschke and U. Romatschke (2007)]

Quenched large p
⊥

π0 spectra – p.38


	
		iny {MOTIVATION}
	
	
		iny {CONTENT}
		iny {pQCD medium-induced radiative energy loss }~(BDMPS)
		iny {medium-induced GLUON RADIATION}
		iny {characteristic MOMENTUM SCALE}
		iny {(soft)
BDMPS medium-induced GLUON SPECTRUM}
		iny {CUT-OFFS}
		iny {SPECTRUM ~[C.~A.~Salgado and U.~A.~Wiedemann]}
		iny {QUENCHING EFFECT}
		iny {RESULT}
		iny {GLUON MULTIPLICITY}
	$Delta phi $ {	iny {DISTRIBUTION}}
		iny {COMPARISON}
		iny {$R_{AA}$}
		iny {PATH LENGTH $L$}
		iny {``SOLUTION'' in LO~pQCD}
		iny {FLOW: KINEMATICS in the TRANSVERSE PLANE}
		iny {JET-BROADENING}
		iny {JET-QUENCHING}
		iny {SUMMARY/CONCLUSIONS}
		iny {SUMMARY/CONCLUSIONS, cont.}
	
		iny {ABSTRACT}
	
		iny {RHIC data}
		iny {top quark production}
		iny {time scales}
		iny {multiple interactions}
	
	
	
		iny {medium dependence of transport coefficient $hat {q}$}
	
	

