

QGP thermalization at weak coupling

Peter Arnold

A simple question:

What is the (local) thermalization time for QGPs in heavy ion collisions for arbitrarily high energy collisions, where $\alpha_s <<1$?

A much simpler question:

How does that time depend on α_s ?

$$t_{
m eq} \sim rac{lpha_{
m s}^{-??}}{
m momentum~scale}$$

A theoretical outrage:

We do not know even the power ?? of α_s .

Review of bottom-up thermalization

(Baier, Mueller, Schiff, Son '00)

(free expansion would be $p_z \propto 1/ au$)

In this talk, $|p| \sim Q_s$ is called <u>hard</u>.

Review of bottom-up thermalization

(Baier, Mueller, Schiff, Son '00)

broadening --> $f << 1/g^2$ hard particles perturbative

Review of bottom-up thermalization

(Baier, Mueller, Schiff, Son '00)

They found*

$$t_{\rm eq} \sim lpha^{-13/5}$$

(in units where $Q_s = 1$)

The Problem: This analysis only considered individual 2-particle collisions and ignored coherent collective effects, namely plasma instabilities.

condition for hard Brem in time au: $1\sim lpha^4 T^3 au^2$

conservation of energy: $T^4 \sim 1/lpha au$

^{*} Hey, why the funny fraction?

A picture of the Weibel (or filamentation) instability

A picture of the Weibel (or filamentation) instability

A picture of the Weibel (or filamentation) instability

Scales

Review of thermal equilibrium:

hard particle f

1

hard particle momenta

T

plasmon mass m

gT

particle collision rate (small angles, color randomizes)

 g^2T

Expansion rate

 $rac{T^2}{M_{
m Pl}}$

Scales

O(1) **distorted** thermal:

hard particle f

1

hard particle momenta

T

plasmon mass *m* also <u>instability growth rate</u>

gT

particle collision rate (small angles, color randomizes)

 g^2T

Expansion rate

 $rac{T^2}{M_{
m Pl}}$

Scales

 $1 \ll \tau \ll g^{-3}$ units $Q_s = 1$

O(1) distorted thermal *vs.* **first stage original bottom-up**

hard particle f

1

$$\gg 1$$

hard particle momenta

T

(g^mg)

plasmon mass *m* also <u>instability growth rate</u>

gT

$$au^{-1/2}$$

222

particle collision rate (small angles, color randomizes)

 g^2T

$$au^{-2/3}$$

Expansion rate

 $rac{T^2}{M_{
m Pl}}$

 au^{-1}

How is bottom-up modified?

How is bottom-up modified?

Mueller, Shoshi, Wong: Could it segue back to traditional bottom-up?

How is bottom-up modified?

Problem: Suppose an anisotropic distribution of plasma particles generates a plasma instabilities with wave numbers of order *m*. How big do the associated magnetic fields grow?

Answer for moderate anisotropy:

$$B_* \sim \frac{m^2}{g}$$
 (QCD)

This is the value of B at which *non-abelian* self-interaction of the magnetic field becomes important.*

^{*} To see this, put $k \sim m$ into a covariant derivative $D \sim i(k-gA)$. The gA is non-perturbative when $A \sim k/g$, corresponding to $B \sim kA \sim k^2/g$.

Arnold, Moore, Yaffe '05 Rebhan, Romatschke, Strickland '05 Bodeker, Rummukainen '07

Problem: Suppose an anisotropic distribution of plasma particles generates a plasma instabilities with wave numbers of order *m*. How big do the associated magnetic fields grow?

Various guesses for extreme anisotropy:

Stage I of bottom-up

How to tell?

Too naive idea: Look at magnetic energy $B^2/2$ at late times and take the square root.

instability

Cascade is gas of perturbative plasmons.

But, using a simple model for how energy flows from the unstable mode into this cascade, one can relate B* to the *rate* of linear growth in magnetic energy,

Measuring from simulations how the linear growth rate scales with anisotropy, we find [Arnold & Moore '07]

$$B_* \sim \frac{m^2}{g\theta} \longrightarrow \theta \sim \tau^{-1/8}$$
 Arnold & Moore

If we accept this, then we now understand the first stage of the bottom-up scenario with instabilities.

What's left?

- (1) Verify our understanding of B_{*} through other measurements.
- (2) Figure out how it affects the later stages of bottom-up thermalization:

Extra Slides in case I need 'em

The Vlasov Equations

Traditional QED Plasmas

Describe particles by classical phase space density f(p,x,t). Describe EM fields by classical gauge fields $A_{\mu}(x,t)$.

$$\partial_t f + v \cdot \nabla_x f + e(E + v \times B) \cdot \nabla_p f = 0$$
 Collisionless Boltzmann eq.
$$\partial_\mu F^{\mu\nu} = j^\nu = \int_{-n}^{n} e \, v^\nu f$$
 Maxwell's eqs.

QCD Plasmas

f(p,x,t) becomes a color density matrix.

$$\partial_t \to \partial_t - ieA_0$$
 and $\nabla_x \to \nabla_x - ieA$ above.

Rate of linear energy growth

Imagine half of unstable mode energy is dumped into cascade. Time to recover is $\sim 1/\gamma \sim 1/m$. So

$$rac{d\epsilon}{dt} \sim \gamma B_*^{f 2}$$

$$\epsilon \sim \text{initial} + \gamma B_*^2 t \sim \text{initial} + \gamma \frac{m^4}{g^2 \theta^{2n}} t$$

My previous argument was that n = 1.

Note: Simulations have used "strong" initial conditions

Note: Simulations have used "strong" initial conditions

$rac{ heta^{2n}}{dt} rac{d\epsilon}{dt} ightarrow ext{constant} \quad ext{as} \quad heta ightarrow 0 ?$

Note: $k_{\text{max}} \sim m/\theta$

$rac{ heta^{2n}}{dt} rac{d\epsilon}{dt} ightarrow ext{constant} \quad ext{as} \quad heta ightarrow 0 ?$

Note: $k_{\text{max}} \sim m/\theta$

$rac{ heta^{2n}}{dt} rac{d\epsilon}{dt} ightarrow ext{constant} \quad ext{as} \quad heta ightarrow 0 \ ?$

Note: $k_{\text{max}} \sim m/\theta$