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Outline

e Models of the matter @ RHIC,

e Use of hard jets as probes,

e The space-time picture,

e The momentum space picture,

e Use of medium response as probes,

e Comparing models.



The matter formed @ RHIC

2 (3) signatures of early dense matter
1) Modification of hard jets,

:> Produced matter very dense, >1GeV?/fm
:> Quenching @ early times, <5 fm/c

2) Large elliptic flow, almost ideal-Hydro!
i:>Matter thermalizes rapidly ~ 0.6 fm/c
‘_1'>Very low viscosity, /s =2 0.08

3) In-Medium Jet correlations,

Cone structure on away side
Ridge structure on near side



The models!
1 macroscopic, 3 microscopic

Viscous Hydrodynamics:
finite no. of parameters from micro-theories

1) Bownal siaiese

2) QCD Quasi-Particle (HTL, Mean-field theories)

3) ADS/CFT !!

Jets (short distance processes)
direct probe of microscopic dynamics



Jet propagation & transverse broadening

Jet propagates in a medium with fluctuating color fields

Feels medium through Lorentz force f d t< EF* O‘(Z) Vv, F ﬁ (O) V l3>
correlation.

This influences both
the energy loss and
transverse broadening

In H-T
formalism,

u(0) V5> only assume

correlation is
short distance
dominated



Extending higher twist to all-twist

Step 1) No radiation = transverse momentum broadening
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The need for a multidimensional §

A full study of the medium requires a comprehensive probe
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Macroscopic models test the
space time dependence

Microscopic models can
give Q directly!



An example: the space-time profile
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Need (x,y,z,t) dependent @ Jfor differential spectra

* Azimuthally dependent RAA can distinguish Hard Sphere. 40.60%. Biorken expansion
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» Look at two extreme cases, with Bjorken exp. i i i e
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Probing microscopic structure

Need very differential probes: modification of jet structure,
Modification of near side correlation!

Can be decomposed into two components

: 4 b

¢« dJet loses energy,

fragments outside,
2 h from vac. frag.

Jet radiates gluon,
Gluon escapes,
Assoc. h from glue frag.

gluon may thermalize, may hadronize by ReCo.



Comparing to the vacuum

Differential predictions from JETSET, compare with d-Au
Set Base-line

Bare JETSET prediction
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Does the whole thing add up?

Can we account for the
near side associated yield
in thlS 2-part fOrmalism 9 A. Majumder, E. Wang and X. N. Wang, nucl-th /0412061
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How much is each ¢

e Energy loss on the near side is small,
e Leads to small multiplicity
* How can experiment pick up this little bit ¢¢

= Dihadron yield, O 8-12 GeV
— 2 separate hadrons, p trig=8—12 GeV




They live in a different phase space
R STAR

preliminary

* Radiated gluon broadened
in n, tensor q

e Why broadened? Assumption!

Microscopic theory !



Comparing theory to experiment
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Both vacuum frag. piece and medium frag. piece are
broadened in rapidity, why? Microscopic theory!



The quasi-particle model with large
fields ! (pre-equilibrium QGP)

L P 2 4 :
R GRRG TR fdz<F“ (v FP(0)vy)

e If original particle density distributions anisotropic
e Can lead to the production of a Weibel instability

e This leads to large transverse color magnetic fields
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Unnormalized gluon distribution
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The diffusion of soft gluons

q(’tzlfm) =

2.2GeV’/fm
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We use a factorized form:
1) Radiation formed in Mult. scat.
2) Soft gluon separates and

multiply scatters.

3) Use the diffusion equation.
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Procedure completely partonic

How to hadronize the soft mode?
A.Majumder, B. Mueller, S. A. Bass, hep-ph /0611135



The quasi-particle model
+
instabilities
How does it stack up ¢

» Instabilities = fast thermalization
(see talk by P. Arnold)

» Large fields = small viscosity

» Large fields = more perturbative'’ jet quenching
(see talk by B. Miiller)

» Large transverse fields = Ridge on near side

» Supported by lattice susceptibilities (BS corr.)

* Microscopic explanation of cone on away side !

» Can a theory be setup without T = o0



Bound state picture?

» Large resonance scattering = fast thermalization
» Small viscosities

» More jet quenching !! not pertubatively =9 see talk
by R. Rapp

» No Ridge
» Not supported by lattice susceptibilities(flavor sec.)
» No derivation from first principles QCD.

» Microscopic explanation of away side cone:
Cherenkov radiation



Conclusions and open issues

s Need to weed down the microscopic model of the medium
» Theoretically or even phenomenologically

» Need a short distance, descriptive and differential probe
s Jet modification, is such a probe

» Need to extend qhat to full tensor structure

» Multiple phenomenological evidence for quasi-particle
picture of QCD

s Can all the major observables be described in this model

» Can the quasi-particle picture be justified at T 2 T



back up!
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