How ^a "minimal" viscosity affects differential elliptic flow

Denes Molnar RIKEN/BNL Research Center & Purdue University

Workshop on Early-time Dynamics in Heavy Ion Collisions

July 16-19, 2007, McGill University, Montréal, Canada

• Thermalization question

- can pQCD rates do it at RHIC?
- what if we have the highest possible rates?

to what degree QCD matter thermalizes in ^a RHIC collision?

local equilibrium POSTULATE quite successful but need to understand equilibration dynamics Gyulassy, Pang, Zhang, DM...

 \bullet one measure - "elliptic flow" (v_2)

Covariant transport

Boltzmann ..., Israel, Stewart, de Groot, ... Pang, Zhang, Gyulassy, DM, Vance, Csizmadia, Pratt, Cheng, Xu, Greiner ...

Covariant, causal, nonequil. approach - formulated in terms of local rates.

$$
\Gamma_{2\rightarrow 2}(x)\equiv \frac{dN_{scattering}}{d^4x}=\sigma v_{rel}\frac{n^2(x)}{2}
$$

transport eqn.: $f_i(\vec{x}, \vec{p}, t)$ - phase space distributions

$$
p^{\mu}\partial_{\mu}f_{i}(\vec{x},\vec{p},t) = \overbrace{S_{i}(\vec{x},\vec{p},t)}^{\text{source}} + \overbrace{C_{i}^{el}\cdot[f](\vec{x},\vec{p},t)}^{\text{Zel}\cdot} + \overbrace{C_{i}^{inel}\cdot[f](\vec{x},\vec{p},t)}^{\text{trueL}} + \overbrace{C_{i}^{inel}\cdot[f](\vec{x},\vec{p},t)}^{\text{trueL}} + \dots
$$

algorithms: OSCAR code repository @ http://nt3.phys.columbia.edu/OSCAR

HERE: utilize MPC algorithm DM, NPA 697 ('02)

D. Molnar @ HIC2007, July 16-19, 2007 3

rate is ^a local and manifestly covariant scalar

for particles with momenta p_1 and p_2 :

$$
\Gamma(x) = \sigma v_{rel} n_1(x) n_2(x) = \sigma \frac{\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}}{E_1 E_2} n_1(x) n_2(x)
$$

(n/E is ^a scalar)

an equivalent alternative form is $v_{rel} = \sqrt{(\vec{v}_1 - \vec{v}_2)^2 - (\vec{v}_1 \times \vec{v}_2)^2}$

[in cascade algorithms, rate is evaluated in the pair c.o.m. frame, where ~ $\vec{v}_1||\vec{v}_2$ and thus $v_{rel} = |\vec{v}_1 - \vec{v}_2|$]

Example: Molnar's Parton Cascade

Elementary processes: elastic 2 \rightarrow 2 processes + $gg \leftrightarrow q\bar{q}$, $q\bar{q} \rightarrow q'\bar{q}' + ggg \leftrightarrow gg$

Equation for $f^{i}(x, \vec{p})$: $i = \{g, d, \bar{d}, u, \bar{u}, ...\}$

$$
p_{1}^{\mu}\partial_{\mu}\tilde{f}^{i}(x,\vec{p}_{1}) = \frac{\pi^{4}}{2} \sum_{jkl} \iiint_{2} \left(\tilde{f}_{3}^{k}\tilde{f}_{4}^{l} - \tilde{f}_{1}^{i}\tilde{f}_{2}^{j} \right) \left| \mathcal{M}_{12\to 34}^{i+j \to k+l} \right|^{2} \delta^{4}(12-34) + \frac{\pi^{4}}{12} \iiint_{2} \left(\frac{\tilde{f}_{3}^{i}\tilde{f}_{4}^{i}\tilde{f}_{5}^{i}}{g_{i}} - \tilde{f}_{1}^{i}\tilde{f}_{2}^{i} \right) \left| \mathcal{M}_{12\to 345}^{i+i \to i+i+l} \right|^{2} \delta^{4}(12-345) + \frac{\pi^{4}}{8} \iiint_{2} \left(\tilde{f}_{4}^{i}\tilde{f}_{5}^{i} - \frac{\tilde{f}_{1}^{i}\tilde{f}_{2}^{i}\tilde{f}_{3}^{i}}{g_{i}} \right) \left| \mathcal{M}_{45\to 123}^{i+i \to i+i+l} \right|^{2} \delta^{4}(123-45) + \tilde{S}^{i}(x,\vec{p}_{1}) \leftarrow \text{initial conditions}
$$

with shorthands:

$$
\tilde{f}_i^q \equiv (2\pi)^3 f_q(x, \vec{p}_i), \quad \int_i \equiv \int \frac{d^3 p_i}{(2\pi)^3 E_i}, \quad \delta^4(p_1 + p_2 - p_3 - p_4) \equiv \delta^4(12 - 34)
$$

D. Molnar @ HIC2007, July 16-19, 2007 5

 $.2 \rightarrow 2$

Hydrodynamic limit

mean free path:

$$
\lambda(x) = \frac{1}{\text{cross section} \times \text{density(x)}}
$$

• Ideal fluid limit $\lambda \rightarrow 0$: local equilibrium

 $T^{\mu\nu}_{i\lambda} = (e+p)u^{\mu}u^{\nu} - pg^{\mu\nu}$ $\partial_{\mu}S^{\mu}=0 \Rightarrow$ entropy conserved

• Viscous hydro $\lambda \ll length \; \& \; time \; scales:$ near local equilibrium

dissipative dynamics in terms of transport coefficients and relaxation times

$$
e.g., \quad \textbf{shear viscosity}\,\, \eta \approx 0.8 \frac{T}{\sigma_{tr}}\,, \qquad \textbf{relaxation time}\,\, \tau_{\pi} \approx 1.2 \lambda_{tr}
$$

Israel, Stewart ('79) ...

two main frameworks for near-equilibrium evolution:

causal viscous hydrodynamics Israel, Stewart; ... Muronga, Rischke; Romatschke et al; Heinz et al... main challenge - acausality and instability

covariant transport DM

much more difficult numerically but fully stable and causal

Which limit are we in at RHIC??

D. Molnar @ HIC2007, July 16-19, 2007 8

sharp cylinder $R = 5$ fm, $\tau_0 = 0.2$ fm/c, $b = 7.5$ fm, $dN^{cent}/dy = 300$

anisotropy increases with cross section, and develops early ($\sim 1-2$ fm/c)

parton transport model MPC diffuse nuclear geometry $dN/d\eta$ based on EKRT saturation Au+Au \heartsuit 130 GeV, $b = 8$ fm

- HIJING (minijet+radiation) initconds
- binary transverse profile
- 1 parton \rightarrow 1 π hadronization

large RHIC v_2 : perturbative $2 \rightarrow 2$ rates insufficient, need $15 \times$ higher

mainly increase in σ_{tr} matters about 3× larger with 3 \rightarrow 2

 \Rightarrow big help but likely not enough (need $v_2(p_T)$ results)

No, still not ideal fluid

DM & Huovinen, PRL94 ('05): **final** $v_2(p_T)$

large gradients

 \Rightarrow even a tiny viscosity matters

[identical RHIC Au+Au initconds, $b = 8$ fm, binary profile, $T_0 = 0.7$ GeV, e=3p EOS]

Classical transport rates get arbitrarily large as $\lambda_{MFP} \rightarrow 0$

BUT, quantum mechanics: $\Delta E \cdot \Delta t \geq \hbar/2$ $+$ kinetic theory: $T \cdot \lambda_{MFP} \geq \hbar/3$ Gyulassy & Danielewicz '85 $\eta \approx 4/5 \cdot T/\sigma_{tr}$ $s \approx 4n$ gives minimal viscosity: $\eta/s = \frac{\lambda_{tr}T}{5} \geq 1/15$

 $\mathcal{N}=4$ SYM + gauge-gravity duality: $\eta/s\geq 1/4\pi$ Policastro, Son, Starinets, PRL87 ('02) Kovtun, Son, Starinets, PRL94 ('05)

might be ^a universal lower bound - but general proof lacking

 \Rightarrow no ideal fluids - "most perfect" are those with minimal viscosity

 $[$ "most" is crucial - perfect \equiv ideal already since '50s]

initially "better than perfect", after $\tau \sim 1-3$ fm "less than perfect"

 $\Rightarrow \eta/s = const$ needs growing $\sigma(\tau) \propto 1/T^2 \propto \tau^{2/3}$

η/s for transport

"minimal" viscosity - corresponds to $\lambda_{tr} \approx 1/(3T_{eff}) \approx 0.1$ fm at $\tau_0 = 0.1$ fm

estimate from average density: $\lambda_{tr} = \frac{1}{\langle n \rangle \sigma_{tr}}$

for $b = 8$ fm @ RHIC, transport with 47 mb gives

$$
\lambda_{tr}(\tau_0) = \frac{\tau_0 A_T}{\sigma_{tr} dN/d\eta} \sim 1 - 2 \times 10^{-2}
$$
 fm

estimate from transport opacity χ : assuming 1D Bjorken expansion

$$
\chi = \int dz \,\rho(z)\sigma_{tr} \sim \int d\tau \rho_0 \frac{\tau_0}{\tau} \sigma_{tr} = \frac{\tau_0}{\lambda_{tr}(\tau_0)} \ln \frac{L}{\tau_0}
$$

for $b = 8$ fm @ RHIC, transport with 47 mb gives $\chi \approx 20$

 $\rightarrow \lambda_{tr}(\tau_0) \sim 1.5 - 2 \times 10^{-2}$ fm (!)

 $\Rightarrow \sigma_{q\bar{q}} \approx 50$ mb is already better than best-case scenario

in fact, the perturbative QCD $\sigma_{TOT} \sim \alpha_s^2/\mu_D^2$ already has this built in, since $\mu_D = gT!$

although it is the transport cross section that matters,

$$
\sigma_{tr} \sim \frac{\alpha_s^2}{s} ln \frac{s}{\mu_D^2} \sim \frac{g^4}{T^2} ln \frac{1}{g^2}
$$

is still proportional to $\sim 1/T^2$ for typical momenta.

hydro/transport RHIC comparison, now with "minimal viscosity" $\Rightarrow \sigma_{q}(\tau = 0.1 \text{ fm}) \sim 4 - 9 \text{ mb}$ [4 mb for center of collision zone]

DM '06: $b = 8$ fm

⇒ still $20-30$ % drop in v_2 due to dissipation, even at low p_T

Now apply this at LHC ... DM, arXiv:0707.1251

and predict $v_2(p_T)$ for "minimum viscosity" system, i.e., maximal scattering rates

from ^a transport perspective, there are 3 relevant scales:

 $\sigma_{tr} \cdot dN/d\eta$, T_{eff} , and τ_0/R

[DM & Gyulassy, NPA697 ('01)]

RHIC vs LHC

- I. nuclear geometry identical (gold \simeq lead)
- II. larger $dN_{ch}/d\eta \sim 1200 2500$, highly uncertain but irrelevant(!)

 $\lambda_{tr} \propto \sigma_{tr} \cdot dN/d\eta$ fixed by minimal viscosity requirement

III. higher typical momenta

for massless dynamics, momenta scale with initial T_{eff} ($\langle p_T \rangle$, or for saturation model Q_{sat})

provided there are no other scales in the problem

 \Rightarrow universal $v_2(\frac{p_T}{Q_s})$, i.e., $v_2^{LHC}(p_T) \approx v_2^{RHIC}(p_T \frac{Q_s^{RHIC}}{Q^{LHC}})$ estimate Q_s^{RHIC}/Q_s^{LHC} from saturation condition

$$
Q_s^2 = \frac{2\pi^2}{C_F} \alpha_S(Q_s^2) \ xG(x = \frac{Q_s}{\sqrt{s}}, Q_s^2) \ T_A
$$

 $\Rightarrow Q_s^{LHC}/Q_s^{RHIC} \approx 1.5$ (central collisions)

refine for $b \neq 0$ with $\langle p_T^2 \rangle$ from k_T -factorized GLR as in Adil et al, PRD73 ('06)

$$
\frac{dN_g}{d^2x_Tdp_Td\eta} = \frac{4\pi}{C_F}\frac{\alpha_s(p_T^2)}{p_T}\int d^2k_T\,\phi_A(x_1,\vec{p}_1,\vec{x}_T)\,\phi_B(x_2,\vec{p}_2,\vec{x}_T)
$$

$$
\Rightarrow Q_s^{LHC}/Q_s^{RHIC} \sim \sqrt{\frac{\langle p_T^2 \rangle^{LHC}}{\langle p_T^2 \rangle^{RHIC}}} \approx 1.3 - 1.5 \quad \text{for } b = 8 \text{ fm}
$$

at a given pT, v_2 at LHC will be smaller than at RHIC in contrast, $SPS \rightarrow RHIC$ it stayed about same

IV. higher T_{eff} also means higher σ , since $\lambda_{tr} \approx \frac{1}{3T_{eff}}$ quantum bound

i.e., need $v_2(p_T)$ for $1.3 - 1.5 \times$ larger σ

 \Rightarrow would be small $5-10\%$ INCREASE in $v_2(p_T)$ relative to naive scaling

V. higher Q_{set} also (likely) means faster thermalization $\tau_0 \sim 1/Q_s$ also increases initial density $n_0 \sim 1/\tau_0$, i.e., decreases η/s

 \Rightarrow IV + V = no need to adjust σ at all

only change is in the last scale τ_0/R - controls interplay between longitudinal and transverse dynamics

starting earlier at LHC gives more Bjorken cooling $T \sim 1/\tau^{1/3}$

upon correction for cooling: factor 6 decrease in τ_0 gives only 20% less v_2

i.e., $Q_{s}^{LHC}/Q_{s}^{RHIC} \rightarrow \approx (Q_{s}^{LHC}/Q_{s}^{RHIC})^{2/3}$ in scaling formula

needs to be studied in detail - but for 50% variation in τ_0 corrections to the above rescaling should not be significant $($few\%$)$

Conclusions

perturbative rates and large v_2 at RHIC: $2 \rightarrow 2$ is insufficient but $3 \leftrightarrow 2$ may work (still open)

there is a $20 - 30$ % dissipative reduction of elliptic flow at RHIC even if scattering rates saturate their quantum bounds ("minimal viscosity" $\eta/s =$ $1/(4\pi)$

if LHC and RHIC plasma are both "minimally viscous", expect

$$
v_2^{LHC,5500}(p_T) \thickapprox v_2^{RHIC,200}(p_T \cdot k^{2/3})
$$

with $k \approx 1.3 - 1.5$ (GLR estimate for $b = 8$ fm).

Open issues

initial geometry (eccentricity ε)

-- gluon saturation models can give $\sim\,1.3\times$ larger ε than for binary profile (depends on model details)

this mainly affects interpretation because $v_2 \sim \varepsilon$ (allows for larger η/s)

missing $3 \leftrightarrow 2$ processes

not ^a big issue here because our viscosity is FIXED by the entropy. Extra scattering channels decrease η below the quantum bound, unless all cross sections are reduced at the same time.