
Bulk viscosity of QCD matter near the critical 
temperature

 Kirill Tuchin 

ETD-HIC, June 16-19, 2007, McGill U., Montreal, Canada

in collaboration with D. Kharzeev

1



Motivation

1.Hydrodynamical equations with η/s<<1 quantitatively describe the RHIC data.

2

2



Motivation

1.Hydrodynamical equations with η/s<<1 quantitatively describe the RHIC data.

2

2.It is very challenging to understand this result in QCD due to its enormous 
complexity at large coupling. The closest analogue of QCD which can be 
solved (using the AdS/CFT conjecture) at large coupling is N=4 SUSY Yang-
Mills. Surprisingly, this exotic theory gives result consistent with the data.

2



Motivation

1.Hydrodynamical equations with η/s<<1 quantitatively describe the RHIC data.

2

2.It is very challenging to understand this result in QCD due to its enormous 
complexity at large coupling. The closest analogue of QCD which can be 
solved (using the AdS/CFT conjecture) at large coupling is N=4 SUSY Yang-
Mills. Surprisingly, this exotic theory gives result consistent with the data.

3.Since N=4 SUSY YM is exactly conformally invariant the corresponding 
matter has vanishing bulk viscosity ζ=0. However, this is not necessarily true 
for QCD matter which conformal invariance is broken by quantum 
fluctuations.

2



Motivation

1.Hydrodynamical equations with η/s<<1 quantitatively describe the RHIC data.

2

4.Fortunately, we can determine a non-perturbative QCD contribution to the 
bulk viscosity ζ without invoking any exotic theories. 

2.It is very challenging to understand this result in QCD due to its enormous 
complexity at large coupling. The closest analogue of QCD which can be 
solved (using the AdS/CFT conjecture) at large coupling is N=4 SUSY Yang-
Mills. Surprisingly, this exotic theory gives result consistent with the data.

3.Since N=4 SUSY YM is exactly conformally invariant the corresponding 
matter has vanishing bulk viscosity ζ=0. However, this is not necessarily true 
for QCD matter which conformal invariance is broken by quantum 
fluctuations.

2



η(ω)

(

δilδkm + δimδkl −

2

3
δikδlm

)

+ ζ(ω)δikδlm =
1

ω
lim
k→0

∫ ∫
∞

0

ei(ωt−kr)〈[θik(t, r), θlm(0)]〉dtd3x

Kubo formula for bulk viscosity

where            is the operator of the stress tensor.θik(x)
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〈O〉v ∼
[

M0e
−

8π

b g2(µ)

]d

Low-energy theorems (LET) in vacuum 

• Conformal symmetry of QCD (@ m=0) is broken by vacuum fluctuations. 
However, there is still a certain unbroken symmetry which manifests itself as a 
set of LET. Consider an operator of canonical dimension d:

(by RGE)

5

Novikov, Shifman, 
Vainshetein, Zakharov 

1981
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i lim
q→0

∫
dx eiqx 〈T [O(x),

β(αs)

4αs

F 2(0)]〉 = (−d)〈O〉v

LET in vacuum (cont.)
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• we derive i

∫
dx〈T θµ

µ
(x), θν

ν
(0)〉connected = 〈θµ

µ
(0)〉(−4)
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L =
|εv|

m2

1

2
eχ/2 (∂µχ)2 + |εv| e

χ (1 − χ)

θ
µ

µ
= − 4 |εv| e

χ

Effective Dilaton Lagrangian 

• LET can be saturated by a single scalar field χ 

7

Migdal, Shifman, 1982

• The field χ is referred to as the dilaton. In gluodynamics it corresponds to the 
scalar glueball. In the real world, it mixes up with light quarks to produce the 
σ-meson.  
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Ω = −T ln Z = −T ln

∫

DÃµ
a exp

(

−
1

4g2

∫

1/T

0

dτ

∫

d3x F̃ 2

µνF̃
aµν

)

LET at finite temperature

• At finite temperature there is an additional dimensional parameter T. The 
grand potential Ω per unit volume can be written in imaginary time formalism   
as

8

Ellis, Kapusta, Tang 1998
Shushpanov, Kapusta, Ellis 1999
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✴ Note, that on the lattice one computes not <θμμ>T but,  <θμμ>T - <θμμ>0 

(subtracting the vacuum expectation value), i.e.

✴Denote

Sum rule for the spectral density

9

Kharzeev, KT 2007

(E − 3P )LAT = 〈θµ
µ〉T − 〈θµ

µ〉0

〈θµ

µ
〉0 = −4|εv|

9
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2

∫

∞

0

ρ(u,"0)

u
du = −

(

4 − T
∂

∂T

)

〈θ〉T = T 5 ∂

∂T

(E − 3P )LAT

T 4
+ 16|εv|

•  The following exact sum rule holds

(E − 3P )LAT = 〈θµ
µ〉T − 〈θµ

µ〉0

〈θµ

µ
〉0 = −4|εv|
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Extracting the bulk viscosity

• In order to extract bulk viscosity we need an ansatz for the spectral density ρ

✴ In pQCD (high frequencies) ρ(ω)~αs2ω4. This divergent part is subtracted 
on both sides of the sum rule. 

✴ At small frequencies we assume the following functional form which is 
odd in ω and has correct ω→0 limit:

• We have

ρ(ω,#0)

ω
=

9 ζ

π

ω2
0

ω2
0 + ω2

ζ =
1

9 ω0

{

T 5 ∂

∂T

(E − 3P )LAT

T 4
+ 16|εv|

}

10
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Extracting the bulk viscosity (cont.)

• Parameter ω0 is a  scale at which the perturbation theory becomes valid.

1.5Tc

1.05Tc

3.0Tc

6.0Tc

pQCD

• In the region 1< T/Tc <3 we find ω0 ≈ (T/Tc) 1.4 GeV

• Tc=0.28 GeV; |εv|=0.62 Tc4.

11

Kaczmarek, Karsch, Zantow, 
Petreczky, 2004
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Lattice data

12

Boyd et al (Bielefeld) , 1996
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Bulk viscosity from the lattice

13

This result in a qualitative 
agreement with the recent 

lattice calculation. 
Meyer, 2007
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Bulk viscosity from the lattice 
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0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
T!Tc0

1

2

3

4

Ζ "1!fm3#

θ
µ

µ
= −∂µπ

a
∂

µ
π

a
+ 2m

2

π
π

a
π

a
+ · · ·

Bulk viscosity is

• small at T>>Tc in accord 
with expectations from 
pQCD.

• small at T<<Tc due to a 
derivative interactions

• large at T ≈ Tc  where it 
becomes the dominant 
correction to the ideal 
hydrodynamics.

see also Paech, Pratt, 2006

14



Implications
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P = P0 − ζ "∇ · "v

Bulk viscosity and relaxation processes

• In general, pressure in a moving gas or liquid P is different from the one in a 
static case P0. Assuming that the deviation is small and noting that P is scalar 
we can write

16

ζ characterizes dependence of the forces in the medium on divergence of v, 
while η characterizes forces depending on direction of v and its gradient. 
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!∇ · !v = −
1

ρ

dρ
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• If a system contains degrees of freedom which cannot be easily excited, 
then the pressure cannot follow the rapid change in density and is different 
from the equilibrium value P0. Large ζ → large P-P0.

• Large deviation from equilibrium implies generation of a large amount of 
entropy: energy is dissipated in the relaxation process.
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dN
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τ
⇒ N(t) = Nin e

−t/τ + N0(1 − e
−t/τ )

Relaxation time τ

• All relaxation processes are characterized by a common asymptotic form of 
time-dependence
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where  N is a parameter characterizing the state of the system and τ is the 
relaxation time. 
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Sound propagation

• Consider propagation of a sound wave of frequency ω and wave vector  
k=ω/c, where c2=(∂P/∂ρ) and P=P(ρ;ω,τ).
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A part of the 
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★ In relativistic medium   
c∞=1/√3 (no interactions)
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Relaxation time 

• At ω→0 (static, adiabatic 
case) we can use the lattice 
data to determine the 
relaxation time.

• Lessons:

1. At T≈Tc relaxation 
processes are very slow. 

2.The system is far from 
equilibrium. 

3. Speed of sound is             
c ≈ c∞=1/√3 >> c0.
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Dilaton excitations in QGP

1.We have demonstrated that existence of a colorless scalar excitation of the 
trace of energy-momentum tensor (dilaton) is a very important feature of QGP 
near Tc.

2.Unlike in vacuum where the dilaton is massive (it is a part of the scalar glueball), 
at finite T it becomes massless.
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Propagation of a jet through QGP (A toy model)

21

• A jet propagating through the medium generates a dilaton sound wave in its 
wake. This is a shock wave of finite thickness ~ τc∞ = τ/√3.
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Summary

•We derived an exact sum rule 
for the spectral density of θμμ 

correlator which relates it to 
E-3P computed on the lattice.

•We used it to estimate the bulk 
viscosity in gluodynamics and 
found it to be large near T=Tc. 

•A (small) contribution from light 
quarks will soon be calculated.

•Large ζ implies existence of a 
massless colorless scalar 
excitation of QGP ➪ important 
for energy loss, Mach cone etc.   
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Work in progress!

22


