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Kubo formula for bulk viscosity

where            is the operator of the stress tensor.θik(x)
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d3x θ00, O]〉eq = 〈[H, O]〉eq = i

〈

∂O

∂t

〉

eq

= 0Indeed

3

3



ρ(ω, #p) = −

1

π
ImGR(ω, #p)

Euclidean Green’s function

• It is convenient to use the Euclidean Green’s function. First, introduce the 
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〈O〉v ∼
[

M0e
−

8π

b g2(µ)

]d

Low-energy theorems (LET) in vacuum 

• Conformal symmetry of QCD (@ m=0) is broken by vacuum fluctuations. 
However, there is still a certain unbroken symmetry which manifests itself as a 
set of LET. Consider an operator of canonical dimension d:

(by RGE)

5

Novikov, Shifman, 
Vainshetein, Zakharov 

1981
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i lim
q→0

∫
dx eiqx 〈T [O(x),

β(αs)

4αs

F 2(0)]〉 = (−d)〈O〉v

LET in vacuum (cont.)
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• we derive i

∫
dx〈T θµ

µ
(x), θν

ν
(0)〉connected = 〈θµ

µ
(0)〉(−4)
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L =
|εv|

m2

1

2
eχ/2 (∂µχ)2 + |εv| e

χ (1 − χ)

θ
µ

µ
= − 4 |εv| e

χ

Effective Dilaton Lagrangian 

• LET can be saturated by a single scalar field χ 

7

Migdal, Shifman, 1982

• The field χ is referred to as the dilaton. In gluodynamics it corresponds to the 
scalar glueball. In the real world, it mixes up with light quarks to produce the 
σ-meson.  
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Ω = −T ln Z = −T ln

∫

DÃµ
a exp

(

−
1

4g2

∫

1/T

0

dτ

∫

d3x F̃ 2

µνF̃
aµν

)

LET at finite temperature

• At finite temperature there is an additional dimensional parameter T. The 
grand potential Ω per unit volume can be written in imaginary time formalism   
as

8

Ellis, Kapusta, Tang 1998
Shushpanov, Kapusta, Ellis 1999
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DÃµ
a exp

(

−
1

4g2

∫

1/T

0

dτ

∫

d3x F̃ 2

µνF̃
aµν

)

LET at finite temperature

• At finite temperature there is an additional dimensional parameter T. The 
grand potential Ω per unit volume can be written in imaginary time formalism   
as

〈O〉 ∼ Λd f(Λ/T )

(

T
∂

∂T
− d

)n

〈O〉 =

∫

1/T

0

dτn

∫

d3xn . . .

∫

1/T

0

dτ1

∫

d3x1 〈θ
µn

µn

(τn, xn) . . . θµ1

µ1
(τ1, x1) O(0, 0)〉connected

• Dimensional analysis: Λ ∼ M0 e
−

8π

b g2(µ)with

• Differentiating with respect to (-1/4 g2) we obtain 

∫

1/T

0

dτ

∫

d3x〈θν
µ(x), θν

ν(0)〉connected =

(

T
∂

∂T
− 4

)

〈θµ
µ(0)〉• In particular,

8

Ellis, Kapusta, Tang 1998
Shushpanov, Kapusta, Ellis 1999

GE(ω → 0,"0) = 2

∫
∞

0
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✴ Note, that on the lattice one computes not <θμμ>T but,  <θμμ>T - <θμμ>0 

(subtracting the vacuum expectation value), i.e.

✴Denote

Sum rule for the spectral density

9

Kharzeev, KT 2007

(E − 3P )LAT = 〈θµ
µ〉T − 〈θµ

µ〉0

〈θµ

µ
〉0 = −4|εv|

9
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2

∫

∞

0

ρ(u,"0)

u
du = −

(

4 − T
∂

∂T

)

〈θ〉T = T 5 ∂

∂T

(E − 3P )LAT

T 4
+ 16|εv|

•  The following exact sum rule holds

(E − 3P )LAT = 〈θµ
µ〉T − 〈θµ

µ〉0

〈θµ

µ
〉0 = −4|εv|
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Extracting the bulk viscosity

• In order to extract bulk viscosity we need an ansatz for the spectral density ρ

✴ In pQCD (high frequencies) ρ(ω)~αs2ω4. This divergent part is subtracted 
on both sides of the sum rule. 

✴ At small frequencies we assume the following functional form which is 
odd in ω and has correct ω→0 limit:

• We have

ρ(ω,#0)

ω
=

9 ζ

π

ω2
0

ω2
0 + ω2

ζ =
1

9 ω0

{

T 5 ∂

∂T

(E − 3P )LAT

T 4
+ 16|εv|

}

10
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Extracting the bulk viscosity (cont.)

• Parameter ω0 is a  scale at which the perturbation theory becomes valid.

1.5Tc

1.05Tc

3.0Tc

6.0Tc

pQCD

• In the region 1< T/Tc <3 we find ω0 ≈ (T/Tc) 1.4 GeV

• Tc=0.28 GeV; |εv|=0.62 Tc4.

11

Kaczmarek, Karsch, Zantow, 
Petreczky, 2004
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Lattice data

12

Boyd et al (Bielefeld) , 1996
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Bulk viscosity from the lattice

13

This result in a qualitative 
agreement with the recent 

lattice calculation. 
Meyer, 2007
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Bulk viscosity from the lattice 
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0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
T!Tc0

1

2

3

4

Ζ "1!fm3#

θ
µ

µ
= −∂µπ

a
∂

µ
π

a
+ 2m

2

π
π

a
π

a
+ · · ·

Bulk viscosity is

• small at T>>Tc in accord 
with expectations from 
pQCD.

• small at T<<Tc due to a 
derivative interactions

• large at T ≈ Tc  where it 
becomes the dominant 
correction to the ideal 
hydrodynamics.

see also Paech, Pratt, 2006

14



Implications
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P = P0 − ζ "∇ · "v

Bulk viscosity and relaxation processes

• In general, pressure in a moving gas or liquid P is different from the one in a 
static case P0. Assuming that the deviation is small and noting that P is scalar 
we can write

16

ζ characterizes dependence of the forces in the medium on divergence of v, 
while η characterizes forces depending on direction of v and its gradient. 
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!∇ · !v = −
1

ρ

dρ
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• If a system contains degrees of freedom which cannot be easily excited, 
then the pressure cannot follow the rapid change in density and is different 
from the equilibrium value P0. Large ζ → large P-P0.

• Large deviation from equilibrium implies generation of a large amount of 
entropy: energy is dissipated in the relaxation process.
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dN
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N0 − N

τ
⇒ N(t) = Nin e

−t/τ + N0(1 − e
−t/τ )

Relaxation time τ

• All relaxation processes are characterized by a common asymptotic form of 
time-dependence
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where  N is a parameter characterizing the state of the system and τ is the 
relaxation time. 
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Sound propagation

• Consider propagation of a sound wave of frequency ω and wave vector  
k=ω/c, where c2=(∂P/∂ρ) and P=P(ρ;ω,τ).
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A part of the 
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★ In relativistic medium   
c∞=1/√3 (no interactions)
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Relaxation time 

• At ω→0 (static, adiabatic 
case) we can use the lattice 
data to determine the 
relaxation time.

• Lessons:

1. At T≈Tc relaxation 
processes are very slow. 

2.The system is far from 
equilibrium. 

3. Speed of sound is             
c ≈ c∞=1/√3 >> c0.
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Dilaton excitations in QGP

1.We have demonstrated that existence of a colorless scalar excitation of the 
trace of energy-momentum tensor (dilaton) is a very important feature of QGP 
near Tc.

2.Unlike in vacuum where the dilaton is massive (it is a part of the scalar glueball), 
at finite T it becomes massless.
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Propagation of a jet through QGP (A toy model)

21

• A jet propagating through the medium generates a dilaton sound wave in its 
wake. This is a shock wave of finite thickness ~ τc∞ = τ/√3.
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Summary

•We derived an exact sum rule 
for the spectral density of θμμ 

correlator which relates it to 
E-3P computed on the lattice.

•We used it to estimate the bulk 
viscosity in gluodynamics and 
found it to be large near T=Tc. 

•A (small) contribution from light 
quarks will soon be calculated.

•Large ζ implies existence of a 
massless colorless scalar 
excitation of QGP ➪ important 
for energy loss, Mach cone etc.   
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Work in progress!

22


