

Ideal Hydrodynamics

Pasi Huovinen

J. W. Goethe Universität

JET Summer School

June 16, 2012, McGill University, Montreal, Canada

Multiplicity @ LHC $∼ 15000$

c Dirk H. Rischke

Conservation laws

Conservation of energy and momentum:

 $\partial_{\mu}T^{\mu\nu}(x) = 0$

Conservation of charge:

 $\partial_{\mu}N^{\mu}(x)=0$

Local conservation of particle number and energy-momentum.

⇐⇒ Hydrodynamics!

This can be generalized to multicomponent systems and systems with several conserved charges:

$$
\partial_{\mu}N_{i}^{\mu}=0,
$$

 $i =$ baryon number, strangeness, charge. \ldots

Consider only baryon number conservation, $i = B$.

- \Rightarrow 5 equations contain 14 unknowns!
- \Rightarrow The system of equations does not close.
- \Rightarrow Provide 9 additional equations or Eliminate 9 unknowns.

So what are the components of $T^{\mu\nu}$ and N^{μ} ?

• N^{μ} and $T^{\mu\nu}$ can be decomposed with respect to arbitrary, normalized, time-like 4-vector u^{μ} ,

$$
u_{\mu}u^{\mu} = 1
$$

• Define ^a projection operator

$$
\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}, \quad \Delta^{\mu\nu}u_{\nu} = 0,
$$

which projects on the 3-space orthogonal to u^{μ} .

• Then

$$
N^\mu = n u^\mu + \nu^\mu
$$

where

- $n = N^{\mu}u_{\mu}$ is (baryon) charge density in the frame where $u = (1, 0)$, local rest frame, LRF
- $\nu^{\mu} = \Delta^{\mu\nu} N_{\nu}$ is charge flow in LRF,

and

$$
T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - P\Delta^{\mu\nu} + q^{\mu}u^{\nu} + q^{\nu}u^{\mu} + \pi^{\mu\nu}
$$

 $\epsilon \equiv u_{\mu} T^{\mu\nu} u_{\nu}$ energy density in LRF $P \equiv -\frac{1}{3} \Delta^{\mu\nu} T_{\mu\nu}$ isotropic pressure in LRF $q^{\mu} \equiv \Delta^{\mu \alpha} T_{\alpha \beta} u^{\beta}$ energy flow in LRF $\pi^{\mu\nu} \equiv [\frac{1}{2}(\Delta^{\mu}{}_{\alpha}\Delta^{\nu}{}_{\beta} + \Delta^{\nu}{}_{\beta}\Delta^{\mu}{}_{\alpha}) - \frac{1}{3}\Delta^{\mu\nu}\Delta_{\alpha\beta}]T^{\alpha\beta}$ (trace-free) stress tensor in LRF

• The 14 unknowns in 5 equations:

$$
\begin{array}{cc}\nN^{\mu} & 4 \\
T^{\mu\nu} & 10\n\end{array}\n\right\} \Leftrightarrow\n\begin{cases}\n n, \epsilon, P & 3 \\
q^{\mu} & 3 \\
\nu^{\mu} & 3 \\
\pi^{\mu\nu} & 5\n\end{cases}
$$

- So far u^{μ} is arbitrary. It attains a physical meaning by relating it to N^{μ} or $T^{\mu\nu}$:
	- 1. Eckart frame:

$$
u^\mu_E \equiv \frac{N^\mu}{\sqrt{N_\nu N^\nu}}
$$

 u^{μ} is 4-velocity of charge flow, $\nu^{\mu}=0$. The 14 unknowns are $n, \epsilon, P, q^{\mu}, \pi^{\mu\nu}, u^{\mu}$.

2. Landau frame:

$$
u^\mu_L \equiv \frac{T^{\mu\nu}u_\nu}{\sqrt{u_\alpha T^{\alpha\beta}T_{\beta\gamma}u^\gamma}}
$$

 u^{μ} is 4-velocity of energy flow, $q^{\mu}=0$. The 14 unknowns are $n, \epsilon, P, \nu^{\mu}, \pi^{\mu\nu}, u^{\mu}$.

• In general, the hydrodynamical equations are not closed and cannot be solved uniquely.

Ideal hydrodynamics

Suppose particles are in local thermodynamical equilibrium, i.e., single particle phase space distribution function is given by:

$$
f_i(x,k) = \frac{g}{(2\pi)^3} \left[\exp\left(\frac{k_\mu u^\mu(x) - \mu(x)}{T(x)}\right) \pm 1 \right]^{-1}
$$

where

 $T(x)$ and $\mu(x)$: $\;\;$ local temperature and chemical potential $u(x)^\mu$: local 4-velocity of fluid flow.

Then kinetic theory definitions give

$$
N^{\mu}(x) = \sum_{i} q_{i} \int \frac{d^{3} \mathbf{k}}{E} k^{\mu} f_{i}(x, k) = n(T, \mu) u^{\mu}
$$

$$
T^{\mu\nu}(x) = \sum_{i} \int \frac{d^{3} \mathbf{k}}{E} k^{\mu} k^{\nu} f_{i}(x, k)
$$

$$
= (\epsilon(T, \mu) + P(T, \mu)) u^{\mu} u^{\nu} - P(T, \mu) g^{\mu\nu}
$$

where

$$
n(T,\mu) = \sum_{i} q_i \int d^3 \mathbf{k} f_i(x, E) \text{ is local charge density,}
$$

$$
\epsilon(T,\mu) = \sum_{i} \int d^3 \mathbf{k} Ef_i(x, E) \text{ is local energy density and}
$$

$$
P(T,\mu) = \sum_{i} \int d^3 \mathbf{k} \frac{\mathbf{k}^2}{3E} f_i(x, E) \text{ is local pressure.}
$$

Note! $f(x, E)$ is distribution in local rest frame: $u^{\mu} = (1, 0)$.

 \rightarrow Local thermodynamical equilibrium implies there is no viscosity:

$$
\nu^{\mu}=q^{\mu}=\pi^{\mu\nu}=0.
$$

Ideal fluid approximation:

$$
N^{\mu} = nu^{\mu}
$$

$$
T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\mu}
$$

- Local equilibrium \Rightarrow no viscosity: $\nu^{\mu} = q$ $\mu = \pi^{\mu\nu} = 0.$
- Now N^{μ} and $T^{\mu\nu}$ contain 6 unknowns, ϵ , P , n and u^{μ} , but there are still only 5 equations!
- In thermodynamical equilibrium ϵ , P and n are not independent! They are specified by two variables, T and $\mu.$
- $\bullet\,$ The equation of state (EoS), $\,P(T,\mu)\,$ eliminates one unknown!
- Any equation of state of the form

$$
P = P(\epsilon, n)
$$

closes the system of hydrodynamic equations and makes it uniquely solvable (given initial conditions).

Remark: $P = P(\epsilon, n)$ is not a complete equation of state in ^a thermodynamical sense.

A complete equation of state allows to compute all thermodynamic variables.

For example, $s = s(\epsilon, n)$: $ds = 1/Td\epsilon - \mu/Tdn$ (1st law of thermod.)

$$
\frac{1}{T} = \frac{\partial s}{\partial \epsilon}|_n, \qquad \frac{\mu}{T} = -\frac{\partial s}{\partial n}|_{\epsilon}, \qquad P = Ts + \mu n - \epsilon
$$

 $P = P(\epsilon, n)$ does not work!

$$
\frac{\partial P}{\partial \epsilon}|_n = ? \qquad \frac{\partial P}{\partial n}|_{\epsilon} = ?
$$

However, $P = P(T, \mu)$ does work!

$$
dP = sdT + nd\mu \Rightarrow s = \frac{\partial P}{\partial T}|_{\mu}, \qquad n = \frac{\partial P}{\partial \mu}|_{T}
$$

Entropy in ideal fluid

is conserved!

 $\partial_\mu S^\mu=0$

where $S^{\mu}=su^{\mu}$.

P. Huovinen @ JET summer school, June 16, 2012 11 CDirk H. Rischke 11

Usefulness of hydro?

 $\overline{ }$

 $\Bigg\}$

 \int

- Initial state: unknown
- Equation of state:
- Transport coefficients:
- Freeze-out: unknown

[⇒] Predictive power?

− "Hydro doesn't know where to start nor where to end" (M. Prakash)

Usefulness of hydro?

- Initial state: unknown
- Equation of state: want to study
- Transport coefficients: want to study
- Freeze-out: unknown

Need More Constraints!

"Hydrodynamical method"

- 1. Use another model to fix unknowns (and add new assumptions. . .)
	- initial: color glass condensate or pQCD+saturation
	- initial and/or final: hadronic cascade
	- etc.
- 2. Use data to fix parameters:

Equations of motion

Conservation laws lead to the equations of motion for relativistic fluid:

$$
Dn = -n\partial_{\mu}u^{\mu}
$$

\n
$$
D\epsilon = -(\epsilon + P)\partial_{\mu}u^{\nu}
$$

\n
$$
(\epsilon + P)Du^{\mu} = \nabla^{\mu}P,
$$

where

$$
D = u^{\mu} \partial_{\mu} \quad \text{and} \quad \nabla^{\mu} = \Delta^{\mu \nu} \partial_{\nu}.
$$

Bjorken hydrodynamics

- At very large energies, $\gamma \rightarrow \infty$ and "Landau thickness" $\rightarrow 0$
- Lack of longitudinal scale ⇒ scaling flow

$$
v = \frac{z}{t}
$$

P. Huovinen @ JET summer school, June 16, 2012 16

• Practical coordinates to describe scaling flow expansion ar e

– Longitudinal proper time τ :

$$
\tau \equiv \sqrt{t^2 - z^2} \quad \Leftrightarrow \quad t = \tau \cosh \eta
$$

– Space-time rapidity η :

$$
\eta = \frac{1}{2} \ln \frac{t+z}{t-z} \quad \Leftrightarrow \quad z = \tau \sinh \eta
$$

• Scaling flow $v = z/t \Rightarrow$ fluid flow rapidity $y = \eta$:

$$
y = \frac{1}{2} \ln \frac{1+v}{1-v} = \frac{1}{2} \ln \frac{1+z/t}{1-z/t} = \eta
$$

• Ignore transverse expansion: Hydrodynamic equations turn out to be particularly simple:

$$
\left. \frac{\partial \epsilon}{\partial \tau} \right|_{\eta} = -\frac{\epsilon + P}{\tau} \tag{1}
$$
\n
$$
\left. \frac{\partial P}{\partial \eta} \right|_{\tau} = 0 \tag{2}
$$
\n
$$
\left. \frac{\partial n}{\partial \tau} \right|_{\eta} = -\frac{n}{\tau} \tag{3}
$$

- Eq. $(2) \Rightarrow$
	- No force between fluid elements with different η ! $P = P(\tau)$, no η -dependence!

• Eq. (2) + thermodynamics:

$$
0 = \frac{\partial P}{\partial \eta}\bigg|_{\tau} = s \frac{\partial T}{\partial \eta}\bigg|_{\tau} + n \frac{\partial \mu}{\partial \eta}\bigg|_{\tau}
$$

If $n = 0$, $T = T(\tau) \Rightarrow T = \text{const.}$ on $\tau = \text{const.}$ surface.

• In general T and ϵ not constant on $\tau =$ const. surface, but usually they are assumed to be

 \Rightarrow boost invariance: the system looks the same in all reference frames!

$$
\epsilon = \epsilon(\tau), \quad n = n(\tau)
$$

• Note that still

$$
\frac{\partial}{\partial \eta}T^{\mu\nu} \neq 0 \neq \frac{\partial}{\partial \eta}u^{\mu}
$$

Vector and tensor quantities at finite η Lorentz boosted from values at $\eta = 0$

• Thermodynamics:

$$
d\epsilon = T ds + \mu dm
$$

$$
\epsilon + P = Ts + \mu n
$$

• Eq. (1):

$$
\frac{\partial \epsilon}{\partial \tau} + \frac{\epsilon+P}{\tau} = 0
$$

$$
\Rightarrow T\frac{\partial s}{\partial \tau} + \mu \frac{\partial n}{\partial \tau} + T\frac{s}{\tau} + \mu \frac{n}{\tau} = 0
$$

(Eq. (3))
$$
\Rightarrow \frac{\partial s}{\partial \tau} + \frac{s}{\tau} = 0
$$

$$
\Rightarrow s(\tau) = s_0 \frac{\tau_0}{\tau}
$$

$$
\Rightarrow s\tau = \text{const.} \Rightarrow \frac{dS}{d\eta} = \text{const.}
$$

independent of the equation of state!

• Time evolution of baryon density:

Eq. (3)
$$
\Rightarrow n(\tau) = n_0 \frac{\tau_0}{\tau} \Rightarrow dN/d\eta = \text{const}
$$

also independent of the EoS.

- Time evolution of energy density and temperature depend on the EoS.
- Assume ideal gas equation of state, $P=\frac{1}{3}$ $\frac{1}{3}\epsilon$, $\epsilon \propto T^4$:

$$
\begin{array}{rcl} \mathsf{Eq.} \text{ (1)} & \Rightarrow & \frac{\partial \epsilon}{\partial \tau} + \frac{4\epsilon}{3\tau} = 0 \\ \\ & \Rightarrow & \epsilon(\tau) = \epsilon_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{4}{3}} \\ & \Rightarrow & T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{1}{3}} \end{array}
$$

 \bullet Note: τ_0 : initial time, thermalization time

Application: Initial energy density estimate

- 1. "Bjorken estimate"
	- At $y=0$, $E_T=E$
	- Thus measuring

$$
\left. \frac{\mathrm{d} E_T}{\mathrm{d} y} \right|_{y=0}
$$

gives total energy at $y=0.$

• Estimate the initial volume:

$$
V = A \,\Delta z = \pi R^2 \tau_0 \,\Delta \eta
$$

• Thus

$$
\epsilon = \frac{1}{\pi R^2} \frac{E}{\tau_0 \Delta \eta} = \frac{1}{\pi R^2 \tau_0} \frac{dE_T}{dy}
$$

• Take $R = 6.3$ fm and $\tau_0 = 1$ fm/c:

Q SPS:
$$
\frac{dE_T}{dy} \approx 400
$$
 GeV $\rightarrow \epsilon \sim 3.2$ GeV/fm³
\n**Q RHIC:** $\frac{dE_T}{dy} \approx 620$ GeV $\rightarrow \epsilon \sim 5.0$ GeV/fm³

• Note that in this approach

$$
\epsilon(\tau) = \epsilon_0 \frac{\tau_0}{\tau}
$$

No longitudinal work is done.

• Pressure does work during expansion, $dE = -Pdt$:

$$
\frac{\partial \epsilon}{\partial \tau} = \frac{\epsilon + P}{\tau} \Rightarrow d(\epsilon \tau) = P d\tau
$$

Highly nontrivial

2. Entropy conservation

• Assume ideal gas of massless particles:

$$
s = 4n \Rightarrow \frac{dS}{dy} = 4\frac{dN}{dy}
$$

$$
s = \frac{4g}{\pi^2}T^3
$$

$$
\epsilon = \frac{3g}{\pi^2}T^4
$$

• With $s\tau$ = const. these give

$$
\epsilon_0 = \frac{3}{\pi^{\frac{2}{3}} R^{\frac{8}{3}} \tau_0^{\frac{4}{3}} g^{\frac{1}{3}}} \left(\frac{\mathrm{d}N}{\mathrm{d}y}\right)^{\frac{4}{3}}
$$

Q RHIC:
$$
\frac{dN}{dy}
$$
 \approx 1000

$$
g = 40 \text{ (2 flavours + gluons)}
$$

$$
\Rightarrow \epsilon_0 \approx 6.0 \text{ GeV/fm}^3
$$

Transverse expansion and flow

- Transverse expansion will set in latest at $\tau = R/c_s \approx 10$ fm
- Lifetimes in one dimensional expansion ~ 30 fm
- One dimensional expansion an oversimplification
- 2+1D: longitudinal Bjorken, transverse expansion solved numerically
- 3+1D: expansion in all directions solved numerically

• Define speed of sound c_s :

$$
c_s^2 = \frac{\partial P}{\partial \epsilon}\Big|_{s/n_b}
$$

- large $c_s \Rightarrow$ "stiff EoS"
- small $c_s \Rightarrow$ "soft EoS"
- For baryon-free matter in rest frame

$$
(\epsilon + P)D u^{\mu} = \nabla^{\mu} P \qquad \Longleftrightarrow \qquad \frac{\partial}{\partial \tau} u_{\mu} = -\frac{c_s^2}{s} \partial_{\mu} s
$$

 \Rightarrow The stiffer the EoS, the larger the acceleration

Initial conditions

- Initial time from early thermalization argument (+finetuning...)
- Total entropy to fit the multiplicity
- Density distribution?
- Multiplicity is proportional to the number of participants
- Glauber model: number of participants/binary collisions

$$
N_{part}(b) = \int dx dy T_A(x + b/2, y)[\dots]
$$

where

$$
T_A(x,y) = \int_{-\infty}^{\infty} dz \,\rho(x,y,z) \qquad \text{and} \qquad \rho(x,y,z) = \frac{\rho_0}{1 + e^{\frac{r - R_0}{a}}}
$$

are nuclear thickness function and nuclear density distribution

• "Differential Optical Glauber:" Number of participants per unit area in transverse plane:

$$
n_{\rm WN}(x, y; b) = T_A(x + b/2, y) \left[1 - \left(1 - \frac{\sigma}{B} T_B(x - b/2, y) \right)^B \right] + T_B(x - b/2, y) \left[1 - \left(1 - \frac{\sigma}{A} T_A(x - b/2, y) \right)^A \right]
$$

Number of binary collisions per unit area

$$
n_{\rm BC}(x,y;b) = \sigma_{pp} T_A(x+b/2,y) T_B(x-b/2,y)
$$

- MC-Glauber:
	- − sample $\rho(x, y, z)$ to get the positions of nucleons in 2 nuclei
	- − count $#$ of nucleons closer than $\sqrt{\sigma_{\rm pp}/\pi}$ in the collision
	- $-$ this gives n_{WN} and n_{BC}
	- − repeat to get enough statistics

Various flavors of Glauber

- 1. eWN: energy density $\epsilon(x,y;b) \propto n_{\mathrm{WN}}$
- 2. eBC: energy density $\epsilon(x,y;b) \propto n_{\rm BC}$
- 3. sWN: entropy density $s(x,y;b) \propto n_{\mathrm{WN}}$
- 4. sBC: entropy density $s(x,y;b) \propto n_{\rm BC}$
- 5. any combination of these!
- multiplicity as function of centrality $\Longrightarrow \epsilon(x,y;b)=\kappa\cdot\epsilon_{\rm WN}+(1-\kappa)\cdot\epsilon_{\rm BC}$ or $s(x,y;b)=\lambda\cdot s_{\textrm{WN}}+(1-\lambda)\cdot s_{\textrm{BC}}$

Equation of state

- Final state includes π 's, K 's, nucleons...
	- \Rightarrow EoS of interacting hadron gas

 \Rightarrow well approximated by non-interacting gas of hadrons and resonances

$$
P(T) = \sum_{i} \int \mathrm{d}^3 p \frac{p^2}{3E} f(p, T)
$$

• Plasma EoS (=massless parton gas) with proper statistics and $\mu_B \neq 0$:

$$
P(T,\mu) = \frac{(32 + 21N_f)\pi^2}{180}T^4 + \frac{1}{9}\mu_B^2 T^2 + \frac{1}{192\pi^2}\mu_B^4 - B
$$

 \Rightarrow First order phase transition by Maxwell construction

• OR parametrized lattice result (only at $\mu_B = 0$): ⇒ match your favourite smoothly to HRG

When to end?

- Particles are observed, not fluid
- How and when to convert fluid to particles?
- i.e. how far is hydro valid?

- Kinetic equilibrium requires scattering rate [≫] expansion rate
- Scattering rate $\tau_{\rm sc}^{-1} \sim \sigma n \propto \sigma T^3$
- Expansion rate $\theta = \partial_{\mu}u^{\mu}$
- Fluid description breaks down when $\tau_{\rm sc}^{-1} \approx \theta$
- \rightarrow momentum distributions freeze-out
- $\tau_{\rm sc}^{-1} \propto T^3 \rightarrow$ rapid transition to free streaming
- Approximation: decoupling takes place on constant temperature hypersurface Σ_{fo} , at $T = T_{\text{fo}}$

Cooper-Frye

• Number of particles emitted $=$ Number of particles crossing $\Sigma_{\rm fo}$

$$
\Rightarrow \quad N = \int_{\Sigma_{\rm fo}} \mathrm{d} \Sigma_{\mu} \, N^{\mu}
$$

• Frozen-out particles do not interact anymore: kinetic theory

$$
\Rightarrow N^{\mu} = \int \frac{d^3 \mathbf{p}}{E} p^{\mu} f(x, p \cdot u)
$$

$$
\Rightarrow N = \int \frac{d^3 \mathbf{p}}{E} \int_{\Sigma_{\text{fo}}} d\Sigma_{\mu} p^{\mu} f(x, p \cdot u)
$$

• Invariant single inclusive momentum spectrum: (Cooper-Frye formula)

$$
E\frac{\mathrm{d}N}{\mathrm{d}\mathbf{p}^3} = \int_{\Sigma_{\mathrm{fo}}} \mathrm{d}\Sigma_{\mu} p^{\mu} f(x, p \cdot u)
$$

Cooper and Frye, PRD 10, 186 (1974)

P. Huovinen @ JET summer school, June 16, 2012 32

Elliptic flow v_2

spatial anisotropy \rightarrow final azimuthal momentum anisotropy

• Anisotropy in coordinate space + rescattering [⇒] Anisotropy in momentum space

$$
\frac{\partial}{\partial \tau} u_x = -\frac{c_s^2}{s} \frac{\partial}{\partial x} s \quad \text{and} \quad \frac{\partial}{\partial \tau} u_y = -\frac{c_s^2}{s} \frac{\partial}{\partial y} s
$$

Elliptic flow v_2

• Fourier expansion of momentum distribution:

 $\mathrm{d}N$ $\mathrm{d}y\, p_T \mathrm{d}p_T \,\mathrm{d}\phi$ = 1 2π $\mathrm{d}N$ $\frac{\alpha_1}{\mathrm{d}y\, p_T \mathrm{d}p_T} (1+2v_1(y, p_T)\cos\phi+2v_2(y, p_T)\cos2\phi+\cdots)$

 v_1 : Directed flow: preferred direction v_2 : Elliptic flow: preferred plane

sensitive to speed of sound $c_s^2 = \partial p/\partial e$ and shear viscosity η

Measures of anisotropy

• Spatial eccentricity

$$
\epsilon_x = \frac{\langle \langle y^2 - x^2 \rangle \rangle}{\langle \langle y^2 + x^2 \rangle \rangle} = \frac{\int dx dy \,\epsilon \cdot (y^2 - x^2)}{\int dx dy \,\epsilon \cdot (y^2 - x^2)}
$$

• Momentum anisotropy

$$
\epsilon_p = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle} = \frac{\int dx dy T^{xx} - T^{yy}}{\int dx dy T^{xx} - T^{yy}}
$$

• Au+Au @ RHIC, $b = 6$ fm:

- ϵ_x decreases during the evolution \Rightarrow elliptic flow is self-quenching
- Most of ϵ_p is built up early in the evolution

v_2

- Not only collective but also thermal motion
- Elliptic flow v_2 a.k.a. p_T -averaged v_2 :

$$
v_2 = \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_x^2 + p_y^2 \rangle} = \frac{\int d\phi \cos(2\phi) \frac{dN}{dy d\phi}}{dN/dy}
$$

• p_T -differential v_2

$$
v_2(p_T) = \frac{\int d\phi \cos(2\phi) \frac{dN}{dy p_T dp_T d\phi}}{\int d\phi \frac{dN}{dy p_T dp_T d\phi}}
$$

- If $m_1 > m_2$, $v_2(m_1) > v_2(m_1)$, but $v_2(p_T, m_1) < v_2(p_T, m_2)$!
- No contradiction, since

$$
v_2 = \frac{\int dp_T \, v_2(p_T) \frac{dN}{dp_T}}{\int dp_T \, \frac{dN}{dp_T}}
$$

 ϵ_p vs. v_2

• Au+Au @ RHIC, $b = 7$ fm:

- NO clear correspondence
- especially if one includes resonance decays

Why $m_1 < m_2 \Rightarrow v_2(p_T, m_1) > v_2(p_T, m_2)$?

Each element has unit volume, decouples at the same time at the same temperature. Flow velocity in plane is larger than out of plane, $|v_x| > |v_y|$.

Boltzmann distribution and Cooper-Frye formula:

$$
v_2(p_T) = \frac{I_2\left(\frac{\gamma_x v_x p}{T}\right) - e^{\frac{E}{T}(\gamma_x - \gamma_y)}I_2\left(\frac{\gamma_y v_y p}{T}\right)}{I_0\left(\frac{\gamma_x v_x p}{T}\right) + e^{\frac{E}{T}(\gamma_x - \gamma_y)}I_0\left(\frac{\gamma_y v_y p}{T}\right)}
$$

$$
= \frac{C_1 - e^{\lambda \sqrt{m^2 + p^2}}C_2}{C_3 + e^{\lambda \sqrt{m^2 + p^2}}C_4}
$$

mass increases, numerator decreases and denominator increases $\rightarrow v_2$ decreases

Early thermalization?

- \bullet ϵ_p/ϵ_x almost independent of b , i.e. the initial value of ϵ_x
- \bullet Before thermalization, $\tau<\tau_0$ system expands to all directions, ϵ_x decreases

CPeter F. Kolb

- \implies Hydrodynamical evolution must start early or final v_2 is too small
- \bullet We do not know if v_2 could build up before thermalization...

event-by-event

- shape fluctuates event-by-event
- all coefficients v_n finite

Success of ideal hydrodynamics

 \bullet p_T -averaged v_2 of charged hadrons:

• works beautifully in central and semi-central collisions

 \bullet but why is $v_{2,\rm obs} > v_{2,hydro}$ in most central collisions?

Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias Au+Au at RHIC

not perfect agreement but plasma EoS favored

Lattice EoS

- ideal hydro, Au+Au at $\sqrt{s_{NN}} = 200$ GeV
- chemical equilibrium

• s95p: $T_{dec} = 140$ MeV

• EoS Q: first order phase transition at $T_c = 170$ MeV, $T_{dec} = 125$ MeV

Thermal models

- Hadronic phase: ideal gas of massive hadrons and resonances
- in chemical equilibrium

- Particle ratios $\Longleftrightarrow T \approx 160-170$ MeV temperature
- Evolution to $T \approx 100 120$ MeV temperature
- \Rightarrow In hydro particle ratios become wrong

Chemical non-equilibrium

- Treat number of pions, kaons etc. as conserved quantum numbers below T_{ch} (Bebie et al, Nucl.Phys.B378:95-130,1992)
- $P = P(\epsilon, n_b)$ changes very little, but $T = T(\epsilon, n_b)$ changes...

- Longitudinal expansion does work $(p \, \mathrm{d} V) \Rightarrow \frac{\mathrm{d} E_T}{\mathrm{d} u}$ decreases
- If particle $\#$ is conserved, $\langle p_T \rangle$ decreases
- In chemical equilibrium mass energy of baryon-antibaryon pairs is converted to kinetic energy $\Rightarrow \langle p_T \rangle$ increases!

More realistic EoS

- ideal hydro, Au+Au at $\sqrt{s_{NN}} = 200$ GeV
- \bullet $T_{\rm chem} = 150\,$ MeV

• EoS Q: $T_{dec}=120$ MeV, $s_\text{ini}\propto N_{bin}$ $\tau_0=0.2$ fm/ c

- \bullet s95p, $\tau_0=0.8{:}$ $T_{dec}=120$ MeV, $s_\mathrm{ini}\propto N_{bin}$, $\tau_0=0.8$ fm/ c
- \bullet s95p, $\tau_0=0.2$: $T_{dec}=120$ MeV, $s_\mathrm{ini}\propto N_{bin}+N_{part}$, $\tau_0=0.2$ fm/ c

Summary

- Hydrodynamics is ^a useful tool to model collision dynamics
	- approximation at its best
	- but it can reproduce (some of) the data
- we have observed hydrodynamical behaviour at RHIC and LHC