McGill.CA / Science / Department of Physics

Physical Society Colloquium

Biological tissues as mechanical metamaterials

Lisa Manning

Department of Physics
Syracuse University

In multicellular organisms, properly programmed collective motion is required to form tissues and organs, and this programming breaks down in diseases like cancer. Recent experimental work highlights that some organisms tune the global mechanical properties of a tissue across a fluid-solid transition to allow or prohibit cell motion and control processes such as body axis elongation. What is the physical origin of such rigidity transitions? Is it similar to zero-temperature jamming transitions in particulate matter, or glass transitions in molecular or colloidal materials? Over the past decade, our group and others have shown that models for confluent tissues, where there are no gaps or overlaps between cells, exhibit a rigidity transition that depends on cell shape. A similar transition is also seen in models for biopolymer networks. I will use the framework of “higher-order rigidity”, recently implicated in origami rigidification, to discuss similarities and differences between rigidity in particulate matter and rigidity in confluent tissues and fiber networks. This suggests that many biological tissues may tune their rigidity using the same mechanisms as mechanical metamaterials. I will also discuss recent work to test which mechanisms are operating in real biological systems.

Livestream: https://www.youtube.com/watch?v=B82Kmiin--g

Friday, February 19th 2021, 15:30
Tele-colloquium