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Appendix 2B: Cascade phenomenology and
spectral analysis

One of the properties of turbulence to which we appeal
to justify the cascade model developed in the following
chapters is that the dynamical interactions are strongest
between structures whose sizes are nearly the same. This
means that for the energy flux to pass from a large to a
small eddy/structure it must pass through numerous
intermediate steps: large structures don’t spontaneously
break up into numerous small ones but instead pass
energy flux from one scale to another in a cascade-like
manner. The development below is close to Rose and
Sulem (1978) and shows simply that on condition that
1 < b < 3, the main contribution to the dynamically
significant vn across structures of size ln is from wave-
numbers in the octave near wavenumber 1/ln.

Following Section 2.4, consider the dynamically
significant velocity gradient. We will express vn in
terms of E(k):

vn
2 ¼

D
jDvð�l nÞj2

E
¼
D
jvð�rÞ � vð�rþ�l nÞj2

E
ð2:114Þ

¼ 2
n
hv2i � hvð�rÞvð�rþ�lnÞi

o
ð2:115Þ

The first term, hv2i ¼ uð0Þ is the total energy,ð1
0
dp EðpÞ (we will not worry about constant factors

such as p etc.). The second term is just the trace of the
velocity correlation tensor uðlnÞ ¼ uiiðlnÞ. Now:

uð�lnÞ ¼
ð
d�p e

ip�ln euð�pÞ ð2:116Þ

but in our case (isotropic turbulence) ln ¼ j�lnj and
�p��ln ¼ plncosy, where y is the angle between p and ln.
Hence:

uðlnÞ ¼
ð1

0

dp EðpÞ
ð

O

dd�1Oeiplncosy ð2:117Þ

where O is the (solid) angle in Fourier space. In
spherical polar coordinates (y,f) (d = 3), we have
dd�1O ¼ cosy dy df. Then we have:

vn2 ¼ hjDvðlnÞj2i ¼
ð1

0

dp EðpÞð1�
ð

O

dd�1OeiplncosyÞ

¼
ð1

0

dp EðpÞ
ð

O

dd�1Oð1� eiplncosyÞ

ð2:118Þ
where we have used the fact that the normalization
has been defined so that:ð
O
dd�1O ¼ 1 ð2:119Þ

To estimate this integral in Eqn. (2.118), we use
kn ¼ 2p

ln
and divide the range of integration into three

parts:

ðIÞ 0 	 p 	 knffiffiffi
2

p ðlow frequencyÞ;

ðIIÞ knffiffiffi
2

p 	 p 	
ffiffiffi
2

p
ðmedium frequencyÞ;

ðIIIÞ ffiffiffi
2

p
kn 	 p < 1 ðhigh frequencyÞ:

We will now consider each case, starting with the
limiting cases I, III.

Term (I)
pln is small, i.e. pln ! 0 and discarding all imaginary
parts in first order term of p (since we know a priori
that the integral must be real) we are left (ignoring
constant factors) with second-order terms ΟððplnÞ2Þ:
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ðkn=
ffiffi
2

p

0

dp ðplnÞ2EðpÞ � ln
2
ðkn=
ffiffi
2

p

0

dp p2 EðpÞ � ln
2hjoj2i

ð2:120Þ
where we have used EoðpÞ ¼ p2EðpÞ. This is the large-
eddy contribution to vn2. This result can be under-
stood physically in the following way. The effect of
large-scale vorticity is to produce a nearly constant
velocity gradient across the eddy, and the velocity
difference will be approximated by lnoðpÞ (since
o ¼ r��v and we are interested in a “typical” gradi-
ent), hence the mean squared difference will be:

ln
2hjoj2i ¼ ln

2
ðkn=
ffiffi
2

p

0

dp p2 EðpÞ ð2:121Þ

Term (III)
This is the small-eddy contribution. pln ! 1:ð
O

dd�1Oð1� eiplncosyÞ ! 1 ð2:122Þ

since the exponential will oscillate very rapidly and
will yield zero on average. So the contribution to vn2

due to small structures is

ð1
ffiffi
2

p
kn

dp EðpÞ ð2:123Þ

where the contributing wavenumbers are greater
than

ffiffiffi
2

p
kn. The physical interpretation is that the

small-scale eddies cause the boundary of ln-scale eddy
to execute a highly convoluted random walk. In the
mean, the effect is diffusive. The diffusion constant
depends on the mean square velocity of all the con-
tributing eddies, which is:

ð1
ffiffi
2

p
kn

dp EðpÞ ð2:124Þ

Term (II)
Take

En 

ð ffiffi

2
p

kn

kn=
ffiffi
2

p
dp EðpÞ

ð
O

dd�1O ¼ ð1� eiplncosyÞ

ð2:125Þ

as the definition of energy in band n. We will investi-
gate under which conditions this term is the main
contribution to vn2. When it dominates terms I and
II, the energy spectrum is termed “local,” since most
of the contribution to the dynamically significant
quantity vn2 is due to structures with neighbouring
wavenumbers; otherwise, it is “nonlocal.” The final
expression for vn2

�
ðIÞ þ ðIIÞ þ ðIIIÞ

	
is:

vn
2 � ln

2
ðkn=
ffiffi
2

p

0

dp p2 EðpÞ þ En þ
ð1
ffiffi
2

p
kn

dp EðpÞ

ð2:126Þ
Due to the scaling, the dominant behaviour of the
spectrum will be a power law. We now consider
how the value of the scaling exponent affects the
relative value of various terms. Considering
EðpÞ � p�b (ignoring constant factors) then
(I) becomes:

ln
2

ðkn=
ffiffi
2

p

0

dp p2 p�b ¼ ln
2 p3�b

����
kn=

ffiffi
2

p

0

(
� ln2kn3 for b < 3
! 1 for b > 3

ð2:127Þ
When b 
 3 then the term diverges – this
low-frequency divergence is called an “infrared catas-
trophe” and indicates that the spectrum is dominated
by low frequencies – it will be nonlocal.

Term (III) becomes:ð1

ffiffi
2

p
kn

dp p�b � p1�b

����
1

0

(
� kn1�b for b > 1
! 1 for b < 1

ð2:128Þ
Hence if b < 1 the term diverges, we have an “ultra-
violet catastrophe,” and again the spectrum is non-
local, this time due to dominance of the higher
frequencies.

We can now conclude that if 1 < b < 3, all the
terms are dominated by the contributions from wave-
numbers near kn ¼ 2p

ln
, and hence the spectrum will be

local. Now as long as b > 1, term III is negligible and
the sum of terms I and II can be approximated by:

vn
2 � ln

2
ðkn
0

dp p2 EðpÞ; b > 1 ð2:129Þ

Classical turbulence, modern evidence
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(we are interested in an order-of-magnitude estimate
only; the angular integration will give a constant
correction to the above of order unity).

When viscosity is negligible, the only way to define
a quantity with dimensions of time is as follows:

tn ¼ ln
vn

�
�ðkn

0

dp p2EðpÞ
	�1=2

ð2:130Þ

which is an estimate of the eddy turnover time.
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