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Finally we obtain the enstrophy flux through the nth
octave in Fourier space:

PðOÞ
n ¼ On

tn
� kn3EðknÞ�

kn3EðknÞ
	�1=2

ð2:82Þ

If we assume that this is constant in a steady state and
independent of n, then Z e PðOÞ

n and we obtain the
spectrum in the constant enstrophy flux regime:

EðkÞ � Z2=3k�3 ð2:83Þ

Using either dimensional analysis or the Tauberian
theorems (Box 2.2), we can obtain the corresponding
real-space result:

Dv � Z1=3Dx ð2:84Þ

These formulae (sometimes called the “Kraichnan”
laws; Kraichnan, 1967) need some refinement since
the picture of enstrophy being passed mainly from
one octave to a neighbouring octave (without sign-
ificant direct, nonlocal transfer over many octaves) is
only strictly valid if the cascade was local, b < 3. Since
we have found b ¼ 3, we may anticipate that this
“marginal” case will involve at least logarithmic
corrections. This is indeed the case.`

The result b ¼ 3 shows that every octave in two
dimensional turbulence contributes approximately
equally (to within the log corrections) to the non-
linear dynamics, the cascade is on the borderline
between local and nonlocal. Each eddy turnover
time tn is approximately equal. Note that the non-
localness of two-dimensional cascades is quite serious;
for example (Kevlahan and Farge, 1997), numerical
simulations on 1024 � 1024 grids with the usual
Newtonian viscosity dissipation term (i.e. a Laplacian)
find b � 4 or larger depending on the boundary
conditions, but b � 3 for various higher powers (up
to 8th) of a Laplacian (i.e. using “hyperviscosity”).
This implies that the spectral exponent b depends
on the details of the dissipation term. Due to the
effects of nonlocalness, two-dimensional turbulence
is thus in many ways more complex than three-
dimensional turbulence, and since no clear direct
evidence for a two-dimensional cascade has been
found in the atmosphere (or in other geophysical

systems), its status as a useful geophysical model is
uncertain (it may, however, be relevant in soap films:
e.g. Guttenberg and Goldenfeld, 2009).

Before proceeding, note that since
EoðkÞ ¼ k2EðkÞ, if the small scales were dominated
by an energy flux cascade, we would obtain
EoðkÞ ¼ k2k�5=3, which would diverge for large wave-
numbers, and hence enstrophy could not be con-
served. We therefore conclude that enstrophy must
be cascaded from large to small scales through a k�3

regime, and energy flux from smaller to larger scales
via a k�5/3 regime, an “indirect” cascade. At the lowest
wavenumbers, we must either introduce an energy
sink, or we obtain a spectral peak (at kE) that moves
to lower and lower wavenumbers in time (the value is
determined by dimensional arguments). Fig. 2.8
shows a schematic diagram for the latter case, assum-
ing that injection of both enstrophy and energy fluxes
occurs at the same (intermediate) scale. Finally, the
dissipation wavenumbers may be estimated by
dimensional arguments as in 3D turbulence: we find

kdiss ¼ ðZ=n3Þ1=6.

2.6 Atmospheric extensions
2.6.1 Applying isotropic turbulence to the
atmosphere: the Gage–Lilly model
Because of the additional conserved enstrophy flux in
2D, the cascades are more complicated than in
3D, depending notably on the (possibly different)
injection scales for ε, Z. If we follow the classical
model which first assumes isotropy, then – due to

Log10E(k)

Log10k

k3 k –5/3

k3

ki kdisskE

Fig. 2.8 A schematic illustration of the 2D enstrophy cascade with
both energy and enstrophy fluxes injected at wavenumber ki. The
energy flux is cascaded to lower wavenumbers while the enstrophy
flux is cascaded to higher wavenumbers.
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the � 10 km atmospheric scale height – we are forced
to introduce at least two isotropic turbulent
regimes: a 3D isotropic regime at scales smaller
than 10 km, and another 2D isotropic turbulent
regime at large scales. From the discussion above,
we can see that numerous forcing and dissipation
length scales and mechanisms will be required.
Indeed, by the early 1980s, theorists had produced
a series of complicated ad hoc conceptual models
which involved a small-scale 3D direct energy cas-
cade, a larger-scale direct enstrophy cascade and
finally a very large-scale indirect energy cascade,
the whole system involving three distinct sources
of turbulent flux (e.g. Lilly, 1983).

The first major experiment devoted to testing the
2D/3D model was the EOLE experiment. It used the
dispersion of constant-density balloons (Morel and
Larchevêque, 1974; this is similar in principle to some
of Richardson’s methods used to obtain Fig. 1.1), and
the balloons stayed (nearly) on isopycnals (i.e. surfaces
of constant density), not on isobars. Due to the
hydrostatic relation r ¼ �g�1@p=@z, the vertical spec-
trum of r: E(kz) � kz

�br has exponent br ¼ bp – 2 so
that a key difference between isopycnals and isobars is
that while the latter are gradually sloping (bP > 3) the
former are highly variable with large-scale average
slopes diminishing at larger and larger scales.

The original conclusions of the EOLE analysis
(Morel and Larchevêque, 1974) were that the turbu-
lence in the 100–1000 km range was two-dimensional.
However, even then discrepancies were noted between
the relative diffusivity and the velocity structure
function results. Later, and more importantly, the
conclusions contradicted those of the GASP and
MOZAIC analyses (which found k�5/3 out to hun-
dreds of kilometres; see below). This motivated the
reanalysis of the original (and still unique) dataset by
Lacorta et al. (2004), who used velocity structure
functions (which they called “finite scale relative vel-
ocities”) and other techniques to show that, on
the contrary, the data followed the Dx1/3 law (i.e.
b ¼ 5/3), thus vindicating Richardson over this range
and invalidating the original conclusions. Fig. 2.9
shows their reanalysis, which supports Richardson
over the range of about 200–2000 km.

Interestingly, it seems that to properly under-
stand the behaviour below about 200 km we must
revisit their reanalysis! This is because although
Lacorta et al. (2004) interpolated the EOLE satellite

tracked-balloon positions every hour, the actual data
were at lower temporal resolution – “mostly” every
2.4 hours – and neither the original nor the recent
reanalysis attempted to understand the consequences
of this temporal smoothing. The basic effect is
straightforward to calculate (the detailed calculations
are postponed to Appendix 6A since we haven’t yet
developed all the necessary theory). If the mean
advection velocity is u0 (estimated by Lacorta et al.,
2004, as � 100 km/h), and the balloon position is
sampled at intervals of Dt, then the estimated veloci-
ties are effectively averaged over distances u0Dt. This
temporal and spatial averaging decreases the variabil-
ity for distances<u0Dt, i.e. on distance scales less than
the typical advection distance. Surprisingly neither
Lacorta et al. (2004) nor Morel and Larchevêque
(1974) seem to have noticed this, instead attempting
to find physical interpretations for the behaviour down
to 50 km even though u0Dt according to their own data
was at least 200 km. For example, Lacorta et al. (2004)
claim that “at distances smaller than 100 kmour results
suggest an exponential decay with e folding time of
about 1 day in rough agreement withMorel and Larch-
evêque (1974).” In Fig. 2.9, we show that even the slope
for the range affected by the averaging is roughly as
expected theoretically (assuming space-time scaling up
to planetary scales: see Appendix 6A). In other words,
the re-reanalysis of EOLE is compatible with
Richardson's scaling results over the entire observed
range, not only 200–2000 km.
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Fig. 2.9 Second-order velocity structure function estimated from
the EOLE balloons. The theoretical effect of the low temporal
resolution is discussed in Appendix 6A; it predicts the break as
indicated on the left by the reference line, slope 1 (added to the
original with break point corresponding to Δt ¼ 2.4 hours and u0 ¼
100 km/h, both numbers from their paper). The right-hand arrow
shows the true limit ~2000 km. Adapted from Lacorta et al. (2004).
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Although at the time the EOLE experiment was
influential, it did not include the determination of the
spectrum, which was inconvenient to estimate
because of the uneven distribution of the balloons.
The first serious estimates of the horizontal wind
spectrum had to await the GASP experiment
(Fig. 2.10a), which was apparently incompatible
with the early EOLE interpretations. The key diffi-
culty was that the GASP spectra showed that k�5/3

wind spectra extended out to scales much larger
than the scale height of 10 km (up to several hun-
dred kilometres). This motivated the development
of the more sophisticated “Gage–Lilly” model (Fig.
2.10a: Lilly, 1989). This model suffers from many
unsatisfactory ad hoc features, especially the up-
scale k�5/3 energy flux regime from roughly 1 km
to ~200 km (dashed line in Fig. 2.10a), which Lilly
describes as “escaped” 3D energy transformed to
quasi-2D stratified turbulence. The same feature
was termed “squeezed 3D isotropic turbulence” by
Högström et al. (1999). Other difficulties are the
unknown flux sinks in the 2D/3D transition region,
an unknown large-scale energy flux dissipation
mechanism (surface drag?), and speculative energy
and enstrophy flux sources at � 2000 km.

2.6.2 The real transition is from k�5/3 to
k�2.4. . . and it is spurious: a review of the
classical aircraft campaigns and a new one
(TAMDAR)
Even if we accept the plausibility of the various
mechanisms invoked in the Gage–Lilly model,
the evidence for 2D turbulence is scant: barely an
octave in scale of the k�3 regime even in the
classical (oft-reproduced) GASP spectrum
(Fig. 2.10a). Actually, more careful examination of
the original GASP analyses proves even more
damaging to the k�3 hypothesis: while Fig. 2.10a
was a composite of all the available data, the more
relevant spectrum is the rarely cited Fig. 2.10b,

Wavelength
(km–1)

Quasi 2D Quasi 3D

S
in

ks
? 

T
ra

ns
iti

on
?

Convective
energy input

Solar
energy flux
input

Enstrophy
flux input

–3

–5/3

–5/3

–5/3

Wavenumber (radians m–1)

S
pe

ct
ra

l E
ne

rg
y 

D
en

si
ty

 (
m

2 s
–3

)

102

101

103

104

105

106

107

10–6 10–5 10–4 10–3 10–2

103 102 101 100 10–1104

(a)

Wavelength (km–1)

S
pe

ct
ra

l E
ne

rg
y 

D
en

si
ty

 (
m

2 s
–3

)

Potential Energy
Kinetic Energy

1200 480 2404800

10–5 10–4

48
104

106

105

107

–3

–5/3

120

Wavenumber (radians m–1)

–2.4

(b)

Fig. 2.10 (a) A schematic of the standard model updated to take
into account the results of the GASP experiment. The figure is
adapted from Lilly (1989) and schematically illustrates the
“Gage–Lilly” model. Note that the 2D enstrophy cascade region
spans much less than an order of magnitude in scale whereas the
speculative inverse energy flux cascade (dashed line) spans over

two orders of magnitude. (b) GASP spectrum of long-haul flights
(> 4800 km) adapted from Gage and Nastrom (1986) with the
reference lines corresponding to the horizontal and vertical
behaviour discussed in the text (exponents 5/3, 2.4, i.e. ignoring
intermittency corrections corresponding to Hh¼ 1/3, Hv¼ 0.7 as well
as to the 2D isotropic turbulence slope –3).

2.6 Atmospheric extensions

39



Comp. by: ESuguna Stage: Revises1 Chapter No.: 2 Title Name: LOVEJOYandSCHERTZER
Date:16/11/12 Time:15:20:50 Page Number: 40

which shows only the relevant long-haul flights
(> 4800 km). The interpretation of this spectrum
is more straightforward than the composite since
the composite effectively involves somewhat differ-
ent ensembles of flights as one moves to larger and
larger scales. However, the long-haul spectrum
shows no hint whatsoever of a k�3 regime; instead,
one sees k�5/3 at small scales followed by an almost
perfect k�2.4 spectrum at the larger scales.

A more recent large-scale campaign to estimate
spectra has also used instrumented commercial
aircraft: the MOZAIC campaign of > 7600 flights
between 9.4 and 11.8 km (Cho and Lindborg, 2001;
Lindborg and Cho, 2001). Not surprisingly, it is very
close to the GASP spectrum, and Fig. 2.11 conveni-
ently summarizes and compares the two. Again it can
be seen that any k�3 regime must be very narrow, and
that in any case k�5/3 behaviour at small scales
followed by k�2.4 at large scales (without any k�3

regime) explains the observations quite accurately.
By reproducing key figures and adding appropriate

reference lines, we can see that the same k�5/3 to
k�2.4 behaviour with similar transition scales
(40–200 km) explains other aircraft wind spectra
(Gao and Meriwether, 1998: 11 legs of the scientific
Electra aircraft, which also flew along isobars but at
� 6 km; see Fig. 2.12); for stratospheric spectra, see
Fig. 2.13 (Bacmeister et al., 1996). Lovejoy et al.
(2009) also find similar behaviour in the tropo-
spheric Gulfstream 4 scientific aircraft spectra
already discussed in Chapter 1 (Fig. 2.14).

So why is there a break in the spectrum at scales
from 40 to 400 km: highly variable yet significantly
larger than the atmospheric scale height? And why
is it not visible in other spectra of strongly non-
linearly linked fields, such as the radiances (Fig. 1.2)
or the temperature or humidity (including from the
same aircraft: compare Figs. 1.6c and 2.14)? The
answer is surprisingly simple: it suffices that the
aircraft have a small but nonzero slope, so that after
a critical distance the fluctuations it measures no
longer reflect the horizontal statistics, but rather the
vertical ones.
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Fig. 2.12 The averaged spectra adapted from Gao and Meriwether
(1998) at 6 km altitude with the horizontal and vertical exponents
discussed here indicated as reference lines. Reproduced from
Lovejoy et al. (2010).
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Fig. 2.11 A comparison of the GASP and MOZAIC spectra from
commercial aircraft flying on isobars, adapted from Skamarock
(2004), reproduced from Lovejoy et al. (2010). The thick lines show
the behaviour predicted if the atmosphere has a perfect k�5/3

horizontal spectrum but estimated from an aircraft following
roughly horizontal trajectories until about 100 km (indicated by
the arrows) and then following gradually sloping trajectories
(either on isobars or gradual changes in altitude due to fuel
consumption).
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To see how this works, consider Fig. 2.15a, which
is a contour plot of the mean squared horizontal
wind differences hDv2ðDx,DzÞi for various lags (Dx,
Dz) in the vertical plane. It was obtained from data
over the year 2009 from a fleet of short-range com-
mercial aircraft flying over the continental USA; the
overall sample contained over 14 500 aircraft legs
(TAMDAR: Moninger et al., 2003; Mamrosh et al.,
2006) sampled somewhat irregularly, but at roughly
20 km resolution in the horizontal. Our investigation
required distinguishing statistics on isobars from
those on isoheights, and thus required high-accuracy
GPS altitude measurements. For our purposes, an
essential TAMDAR improvement with respect to the
more widespread, older AMDAR equipment was thus
that the former included accurate GPS altimetry that
enabled altitude differences (Dz) to be estimated to
within � 4 m, a level of accuracy essential for distin-
guishing isobars and isoheights. At the same time
wind differences are measured to within � 2.5 m/s.
Although it is possible to estimate Dz, Dv from two
different aircraft, here only data from single legs were
considered. This eliminates the (relatively poor)

absolute sensor calibration from the problem, as the
wind differences measured from single aircraft only
require accurate relative calibrations. Using data from
single aircraft not only yields much higher-accuracy
measurements, but it also greatly simplifies the analy-
sis of the – otherwise extremely complex to analyse –
problem of highly nonuniform statistical sampling of
Dv2 in (Dx, Dy, Dz, Dp, Dt) space that results when
considering wind differences from two different air-
craft with numerous particularities including geo-
graphical distributions determined by the
commercial flight corridors. More details can be
found in Pinel et al. (2012).

In Fig. 2.15a one can see that the empirical con-
tours (dark) are nearly of the form theoretically pre-
dicted (light) for scaling stratified turbulence
discussed in Chapter 6:

hDv2ðDx,DzÞi ¼ C

����Dxls
����þ
����Dzls

����
1=Hz

 !xð2Þ
ð2:85Þ

where Hz is the ratio of the horizontal to vertical wind
exponent and x(2) is the exponent of S2 (Eqns. (2.71),
(2.73)), the second-order “structure function
exponent,” and ls is the “sphero-scale,” which is
the scale at which fluctuations have roughly the
same vertical and horizontal extents. At scale ls,
we have hDv2ðls, 0Þi ¼ C ¼ hDv2ð0, lsÞi so that the
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Fig. 2.13 Stratospheric ER2 spectra adapted from Bacmeister et al.
(1996, Fig. 5). This is a random subset of 1024 s legs, again with
reference slopes added. Reproduced from Lovejoy et al. (2010).
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data, see Section 6.3. The curves are for the longitudinal and
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spectrum at larger scales. Adapted from Lovejoy et al. (2009).
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Fig. 2.15 (a) A contour plot of the mean squared transverse (top) and longitudinal (bottom) components of the wind, as estimated by a year’s
(� 14 500) TAMDAR flights, 484 000 wind difference measurements. All the fluctuations were from a single aircraft at different parts of its
trajectory, and only trajectories between 5 and 5.5 km were used. Black shows the empirical contours, grey the theoretical contours assuming
scaling stratification and the functional form indicated in the text. The numbers next to the contours are the values of the contours (italics is
theory, bold is empirical, to improve the statistics, reflection symmetries were used). Reproduced from Pinel et al. (2012). (b) A sample of six
fractal aircraft trajectories (fractal dimension � 1.56) from NASA’s ER2 aircraft during missions near Antarctica. The aircraft flew along isomachs
but there was a mean vertical “drift” of �1 m/km (reference line) caused by the lightening of the aircraft due to fuel consumption. Adapted
from Lovejoy et al. (2004). (c) For the TAMDAR data this shows the mean vertical displacement for points on isobars defined by Δp < 0.126 mb
(373 000 differences were used, flight legs between 5 and 5.5 km). The reference line shows a slope Hisobar ¼ 0.80 corresponding to a fractal
dimension of Disobar ¼ 1þ 0.80¼1.80. Each point is the average of over 1000 measurements. Reproduced from Pinel et al. (2012). (d)
Comparison of mean squared wind differences of the transverse component of the wind from TAMDAR data sampled from near isobars (Δp<
1.26 mb), near isoheights (Δz< 20 m) and from sloping isobars i.e. Δp < 1.26 mb and slope s > 3.2 � 10�4 (the longitudinal components gave
very similar behaviour). We see that the latter has the theoretical vertical exponent for a nonfractal vertical section, 1.4, the Δp< 1.26 mb curve
has (for scales>�140 km) the exponent 1.1 theoretically predicted for the fractal isobars: 1.1¼ Hisobar 1.4, whereas the curve for Δz< 20 m has
the theoretical isoheight exponent. Reproduced from Pinel et al. (2012).
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corresponding structures are “roundish,” hence the
name. From the regression onhDv2i in Fig. 2.15a,
the best-fit empirical parameters are Hz � 0.57, x(2)
� 0.80 and ls � 1.0x 10�3 m. TheHz value is very close
to the theory value (Hz¼ (1/3)/(3/5)¼ 5/9¼ 0.56); see
Chapter 6, although x(2) is a little larger than the theory
value 2H ¼ 2/3, and ls is close to values measured in
vertical lidar scans of pollution backscatter and to the
somewhat less direct aircraft estimates in Lovejoy et al.,
2004, 2009). The constant C � 4.5 � 10�6 m2/s2 is
hDvðls2Þi � hε2=3l2=3s i; the equality is approximate
since there are intermittency corrections due to the
highly variable nature of ε, ls (Lovejoy et al., 2008);
ignoring these issues, taking C � ε2=3l2=3s we obtain
ε�10�5m2/s3. This low estimate of ε (see Chapter 8)
and slightly larger value of x(2) could thus be
explained by intermittency corrections.

From the functional form in Eqn. (2.85) we can
consider two particularly simple extreme cases: pure
horizontal and pure vertical displacements. In the
former case we easily see that the mean squared hori-
zontal differences vary as hDv2ðDxÞi / Dxxhð2Þ with
xhð2Þ ¼ xð2Þ � 0:8, whereas in the latter case the
mean squared vertical differences hDv2ðDzÞi /
Dzxvð2Þ with xvð2Þ ¼ xð2Þ=Hz � 1:4. Since the spectral
exponent b ¼ 1 þ x(2) (Eqn. (2.73)) this implies
different horizontal and vertical spectral exponents:
bh ¼ 1.8, bv ¼ 2.4.

In order to determine the spectrum measured
from real aircraft trajectories, we need a model of
the latter. For example, in Chapter 6 we consider a
simple intermediate model involving a trajectory
along a constant slope s; i.e. using Dz ¼ sDx in Eqn.
(2.85), we find a critical value Dxc such that for Dx <
Dxc the horizontal behaviour is dominant whereas for
Dx > Dxc the vertical behaviour is dominant. It is
therefore easy to imagine that, depending on how flat
the aircraft trajectory is, at small scales b � 1.8, yet at
large enough scales one could readily obtain a verti-
cally dominated spectrum with a transition to b� 2.4,
as found in the campaigns discussed above.

However, things are potentially more complicated
than this simple constant-slope model. As discussed
in Chapter 6, both the proportionality constant in
Eqn. (2.85) and ls depend on highly variable turbulent
fluxes (energy and buoyancy force variable fluxes),
and Fig. 2.15b shows that trajectories are not uniform
with constant slope, but can be fractal. However the
trajectories in the figure are from aircraft whose

autopilot flies on lines of constant Mach number,
and this is quite unusual. It is more typical for aircraft
to follow isobars; single long, high-resolution
(280 m) isobaric aircraft trajectories are discussed in
Chapter 6, but here we use the TAMDAR data,
which are short (< �400 km) and sampled somewhat
irregularly (on flat legs, typically every �20–30 km,
much more frequently when changing altitude levels).
This low sampling rate in individual legs is largely
compensated for by the overall high number of
TAMDAR legs: for example, 484 000 individual
wind differences were used to estimate the contours
in Fig. 2.15a. By sampling only wind differences from
measurements nearly on the same isobar, we can
determine the statistics of vertical isobaric cross-
sections. Fig. 2.15c shows that on the isobar the
mean vertical displacement <Dz> � Dx

Hisobar with
Hisobar � 0.80, so that the isobar is fractal (fractal
dimension 1þHisobar ¼ 1.80 in vertical sections; see
Chapter 3).

We can now combine our information about
<Dv2(Dx, Dz)> with our knowledge of the fractal
structure of the isobars to see how <Dv2> varies on
various trajectories (Fig. 2.15d). For example, we have
already shown from Eqn. (2.85) that on isoheights
hDv2ðDxÞi / Dxxhð2Þ with xh(2) ¼ x(2) ¼ 0.8,
and this is confirmed in Fig. 2.15d. Let us now
consider the behaviour along isobars. As in the
constant-slope model discussed above, in Eqn. (2.85)
for small horizontal displacements, the horizontal
term dominates and we obtain the same result as
for isoheights, i.e. hDv2ðDxÞi / Dxxhð2Þ � Dx0:8.
However, for large enough displacements the
second term in Eqn. (2.85) becomes dominant
so that we expect hDv2ðDxÞi / hjDzðDxÞjixvð2Þ �
DxHisobarxvð2Þ � DxHisobarxð2Þ=Hz � Dx1:1; this is also
confirmed in Fig. 2.15d, although the behaviour is
only dominant for scales > ~140 km. As a final test
of the model, we can restrict our attention to those
isobars which are also steeply sloping (in the figure,
with slope > 0.32 m/km). In this case, the fractality of
the isobars is no longer important, for a large range in
Dx only the vertical displacement is dominant and we
expect hDv2ðDxÞi / Dxxvð2Þ � Dx1:4, which is also
verified in the figure.

As a final comment we remark that in a recent
paper Frehlich and Sharman (2010) used nearly the
same TAMDAR data but reached an opposite conclu-
sion: that <Dv2> was the same on isoheights as on
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isobars. However, detailed analysis in Pinel et al.
(2012) shows that this conclusion was likely spurious,
the reason being the inappropriate use of TAMDAR
data over the numerous flight segments where the
aircraft changed altitude levels. The corresponding
altitude resolution was much lower over these sloping
sections than over the roughly flat ones, so much so
that the purported isoheight data analyses were not
really from isoheights at all – so the data analyses
including these low-vertical-resolution sections were
unable to adequately distinguish isoheight and isobar
data. The TAMDAR system is programmed to sample
much more frequently when the aircraft changes
altitude levels, so that if care is not taken this low
resolution can seriously bias the estimates, making it
impossible to distinguish isoheight and isobar statis-
tics. This was graphically demonstrated by Pinel
et al. (2012), who could almost exactly reproduce
the findings of Frehlich and Sharman (2010)
by including these low-resolution segments, yet
(as Fig. 2.15d shows) when they are removed the

difference between isoheight and isobar statistics
becomes clear. Additional evidence pointing to bias
was the fact that when the low-resolution data points
were removed the horizontal scaling of <Dv2> was
greatly improved.

This anisotropic scaling model of the vertical
structure is developed further in Chapter 6, but it
can easily quantitatively reproduce the observations
leading to the reinterpretation of the Nastrom–Gage
spectrum (Fig. 2.16a). In the new model, rather
than having sources and sinks at precisely defined
scales separated by wide ranges with no sources or
sinks (the classical inertial ranges), the energy flux
is instead from solar heating modulated by scaling
cloud fields, so that the input is over a wide range
of scales in a scaling manner (in accord with the
observed scaling of the radiance: Figs. 1.2 and 1.3).
In this reinterpretation, the large-scale (low-wave-
number) k�2.4 is simply a spurious consequence of
the not carefully accounted for effects of anisotropic
turbulence on the aircraft motion.
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Fig. 2.16 (a) Reinterpretation of the Nastrom–Gage spectrum, as discussed in the text. The transition to large-scale k�2.4 behaviour is a
spurious consequence of aircraft travelling along gently sloping trajectories, as discussed in detail in Chapter 6. Reproduced from Lovejoy and
Schertzer (2010). (b) The enstrophy spectrum (¼ n2E(n), where E(n) is the wind spectrum and n is the principal spherical harmonic
wavenumber), adapted from Boer and Shepherd (1983). The three curves are from January data; the solid line is for the vertically integrated
atmosphere, the lines indicate stationary (spatial spectrum of the monthly average), and the transient is the deviation from the monthly
average. Over the range n � 5–30 (700–4000 km) the exponents of the spectra of the transient and vertically averaged atmosphere are
extremely close to the vertical value β � 2.4, but the stationary spectrum exponent is β � 4. No β � 3 regime is observed (dashed line).
Reproduced from Lovejoy et al. (2010).
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2.6.3 The classical approach: conclusions
from analyses and reanalyses
The interpretation of aircraft data in terms of large-
scale 2D turbulence was very influential, and other
evidence about atmospheric structure and statistics
were generally interpreted in the same way. The prob-
lem was that the special 2D exponent b ¼ 3 provided
the only theoretical framework for explaining spectra
with b > 5/3. The long absence of a credible alterna-
tive theory tempted even early investigators to “shoe-
horn” their spectra into the k�3 mould. For example,
by “eyeballing” four spectra over less than an octave in
scale, Julian et al. (1970) concluded that 2.7 < b < 3.1
for the horizontal wind. In the 1980s larger datasets
became available, and it was possible to make more
direct tests of 2D turbulence theory from atmospheric
analyses (Boer and Shepherd, 1983) and later from
the ECMWF ERA40 reanalyses (Strauss and Ditle-
vsen, 1999). Although Boer and Shepherd (1983) gave
cautious support to b � 3 and to a 2D interpretation,
in hindsight and with the benefit of a simple theory
predicting b � 2.4, their conclusions seem unconvin-
cing (Fig. 2.16b). Similarly, when interpreting their
reanalyses, Strauss and Ditlevsen (1999) found that “b
� 2.5–2.6 . . . significantly different than the classical
turbulence theory prediction of 3,” but again close to
the value 2.4.

Today, we can revisit wind spectra using the
state-of-the-art successor to the ERA40 reanalysis –
the ECMWF interim reanalysis whose spectra were
already presented in Fig. 1.5b, and to which we
return in Chapter 4 – and calculate the spectrum
directly without Strauss and Ditlevsen’s complex
2D preprocessing. Fig. 2.17 shows the angle integ-
rated spectrum of the zonal wind at each tropo-
spheric 100 mb level, compensated by the average
k�2.4 behaviour so as to accentuate the small devi-
ations. Also shown in the figure are straight reference
lines. These are not regressions but rather the pre-
dictions of the stratified anisotropic scaling model
discussed in Chapter 6: the slopes are those empiric-
ally estimated in the vertical direction from
dropsondes (Fig. 6.2; Lovejoy et al., 2007). Regres-
sions on the reanalysis spectra from k ¼ 2 to k ¼ 30
(i.e. 5000–330 km) give b differing by less than 0.05
throughout the data-rich lower 4 km, rising to only
0.2 at 10 km (� 200 mb). Following the discussion of
the previous section, we should not be surprised if

these small differences are the consequences of
either intermittent aircraft and/or sonde motion
(Chapter 6).

2.6.4 Evidence from satellite altimeter
winds over the ocean
One way of overcoming the problems and limitations
of in-situ wind measurements is to use remote
sensing. The most direct remote method is to use
the Doppler shift from clear-air radar turbulence
measurements. However, existing datasets are over
fairly narrow ranges of scales. In addition, the radar
measures the radial wind component, which system-
atically changes direction as the radar scans to build
up a three-dimensional field. This makes the inter-
pretations complicated and tempts users to make
“products” based on complex-to-analyse assumptions
about the statistics in order to correct for these effects.

An alternative is to use ocean surface data from
satellite scatterometers to measure wave heights and to
correlate these with surface winds over the oceans.
Such satellite wind products have been developed since
the mid 1980s and rely on measurements of Bragg
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Fig. 2.17 The isotropic spectrum of the zonal component of the
wind at 200, 300, 400, . . ., 1000 mb from the ECMWF interim
reanalysis for January 2006 between � 45� latitude. The straight
lines are not regressions, rather they have the slopes of the
horizontal wind in the vertical direction as estimated by dropsondes
in Lovejoy et al. (2007). It can be seen that the isobaric velocity
spectra have exponents close to the vertical values, and this is
especially true of the data-rich lower levels. The 200 mb spectrum
falls off a little too quickly at high wavenumbers, possibly due to
poor-resolution data below �1000 km. The scaling starts at k ¼ 2–3,
corresponding to n ¼ 4–6 in Fig. 2.16b. Reproduced from Lovejoy
et al. (2010).
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scattering amplitudes of ocean waves at the typically
centimetric scatterometer wavelength (e.g. 2.1 cm
from the SeaSat scatterometer, Fig. 2.18a, and 2.2 cm
for the QuikScat data in Fig. 2.18b). At these wave-
lengths, the scatterometer is sensitive to capillary
waves whose amplitudes are only indirectly related
to the local winds. Correlating the scatterometer
backscatter with the wind speed is only part of the
problem; more difficult is determining the wind direc-
tion. At the moment, this is currently done by observ-
ing the same patch of ocean at different angles and by
using meteorological reanalyses to help remove
remaining directional ambiguities. The final product
is thus dependent in a number of subtle ways on
various assumptions about the nature of the turbu-
lence and of the numerical models. Bearing this in
mind, we refer the reader to some early scatterometer
results that had spectral exponents quite near b ¼ 5/3
(see the regression lines in Fig. 2.18a; Freilich and
Chelton, 1986): over the range 200–2200 km, the
regression estimates for the tropics were b � 1.9, and
for themid-latitudes b� 2.2.More recent products use
more sophisticated algorithms, but the results are not
much different: Fig. 2.18b shows spectra using the
DIRTH algorithm (Patoux and Brown, 2001). As can
be seen, the spectrum is almost perfectly scaling with
b ¼ 2.4: the (sloping) isobaric value. Although the
value of the exponent may well depend on some of
the assumptions that went into its derivation, these
assumptions would be unlikely to transform an other-
wise nonscaling spectrum into a scaling one. In other
words, the fact that the spectrum is nearly a perfect
power law over the observed range is highly significant
and in itself would be difficult to explain with the 2D/
3D model. Similar but yet more recent results
using 10 years of data (instead of one year; King and
Kerr, 2010), are shown in Fig. 2.19, showing that the
exponents are apparently even lower, very close to
the Kolmogorov value (the isotropic 2D turbulence
result x(2) ¼ 2 corresponding to b ¼ 3, is completely
off the scale!). Also indicated is the Bolgiano–
Obukhov value x(2) ¼ 2 (3/5) – K(2) � 1.15 (the
horizontal line) which would be expected for a near-
surface layer sloping in the vertical direction (K(2) �
0.05 is the empirical intermittency correction; see
Chapters 5, 6).

Finally we could add that a recent QuickScat paper
(Xu et al., 2011) claims that b varies geographically
from 1.6 to 2.9, but these estimates are based on little
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Fig. 2.18 (a) The spectra of sea surface winds as estimated from
the SeaSat scatterometer over four regions in the Pacific Ocean
(regions 1, 2 are the South Pacific, regions 3, 4 are the north Pacific),
adapted from Freilich and Chelton (1986). The smallest wavenumber
corresponds to about 2200 km, the reference lines (added) have
slopes –3, –5/3. (b) The kinetic energy spectrum estimated over
the oceans over a year, using QuikScat satellite altimeter data
(adapted from Patoux and Brown, 2001). DIRTH is the recommended
product; also shown are reference lines –5/3, –3 (in the original),
with –2.4 reference line added. Largest scale is 1700 km, smallest is
2 � 25 ¼ 50 km.
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more than an octave in scale. In fact, all the data are
very close to b ¼ 1.8, with high wavenumber devi-
ations from scaling accounting for most of the
regional spectral differences.

2.6.5 The continuing difficulties with the
classical model and inferences from
numerical simulations
In order to improve on these speculative mechanisms
needed to combine isotropic 2D and isotropic 3D
turublence, efforts have been made to reproduce “real-
istic” k�3 to k�5/3 transitions in numerical models.
This is not a trivial question, because of the possibility
of “three-dimensionalization” of two-dimensional
flows discussed in Ngan et al. (2004), i.e. the likelihood
that three-dimensional turbulence can destabilize an
otherwise 2D flow. For the moment, the results are at
best equivocal. For example, most numerical weather
models do not display the transition (Palmer, 2001),
while others may display it although over very small
ranges – e.g. the Skamarock (2004) WRF (regional)
model spectra, which are in fact very close to k�2.4

(Fig. 2.20). To date, the most convincing k�3 to k�5/3

transitions in numerical models have been produced
using the SKYHI model on the earth simulator

(Takayashi et al., 2006; Hamilton et al., 2008), yet as
pointed out by Lovejoy et al. (2010) they have the
poorest fit to GASP observations precisely over the
range �400–3000 km which their (painstakingly
crafted) k�5/3 to k�3 transition is supposed to explain.
In other words, this model “success” may make them
less rather than more realistic! In addition, Smith
(2004) has shown that at least in the case of the
quasi-geostrophic simulation by Tung and Orlando
(2003), high wavenumber k�5/3 regimes are in reality
spurious consequences of energy build-up due to unre-
solved high wavenumbers with respect to an incor-
rectly “tuned” hyperviscosity.

2.6.6 Empirical determination of the
direction of the cascade
Another way to test the classical 2D/3D model and to
compare it to the anisotropic scaling model is to
examine the spectral energy transfers due to the non-
linear terms. A 2D cascade will display an upscale
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Fig. 2.19 Regression exponents for the second-order wind
structure function x(2) estimated by regression over the “meso beta
scale” (20–200 km), from 10 years of QuikScat sensor data with 1800
km swaths at 25 km resolution, adapted from King and Kerr (2010).
The three curves are for somewhat different parts of the Pacific
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Fig. 2.20 Sample spectra from WRF forecasts of zonal wind
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claimed that this shows a “clear k�3 regime” for the solid (oceanic)
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downpointing arrows, upper left). Except for the extremes, the
spectra again follow the isobaric predictions k�2.4 very well over
most of the range. Reproduced from Lovejoy et al. (2010).

2.6 Atmospheric extensions

47



Comp. by: ESuguna Stage: Revises1 Chapter No.: 2 Title Name: LOVEJOYandSCHERTZER
Date:16/11/12 Time:15:20:56 Page Number: 48

energy transfer, a 3D cascade a downscale transfer
(Section 2.5.2); furthermore, the usual schematics
(e.g. the Gage–Lilly model, Section 2.6.1) also assume
that the corresponding ranges are “inertial,” i.e. with
no sources or sinks, so that the fluxes are roughly
constant in Fourier space. In comparison, in the
anisotropic scaling model things can be much more
complicated, since the sources and sinks (which will
be largely solar heating and infrared cooling) will be
scaling and nonlinearly coupled to the dynamical
fields (via the scaling cloud field).

The empirical determination of the direction of the
energy fluxes is very demanding, since in principle all
wind components and their derivatives are required.

However, with the help of the assumption of statistical
isotropy, Lindborg (1999) related the sign of the third-
order velocity structure function <Dv3> to the direc-
tion of the cascade. The results (using MOZAIC air-
craft data) showed mostly negative third-order
structure functions (even out to 1000 km) in agree-
ment with a downward (i.e. 3D) cascade. But the signs
were not consistent (see Fig. 2.21a, which also shows
that their third-order structure functions are close to
those theoretically predicted for sloping isobaric air-
craft trajectories). An algorithmic correction intro-
duced by Cho and Lindborg (2001), although not
clearly explained, surprisingly yielded a more opposite
conclusion.
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Fig. 2.21 (a) Third-order structure
functions (diagonal contributions)
adapted from Plate 1 of Cho and
Lindborg (2001). Light grey indicates a
negative sign, dark grey, positive,
indicating large- to small-scale and
small- to large-scale transfers,
respectively. The theoretical reference
lines were added with slopes
corresponding to the predictions of
the sloping isobaric trajectory model
presented here (Section 2.6.2 and
Chapter 6) with the third-order vertical
structure function xv (q) ¼ qH – K(q) ¼
1.82 (using q ¼ 3, H ¼ 0.77, K(3) �
0.49) and horizontal structure function
with xh (q) ¼ xv (q) Hz ¼ 0.83 (Hz ¼
0.46; parameters from Chapter 6 and
Lovejoy et al., 2010). The transition is
not far from the 40 km found in the
Gulfstream 4 analyses (Chapter 6).
(b) The third-order structure function
of the horizontal wind normalized by
the second-order function (the
skewness) estimate QuickScat
scatterometer data from the N4WP
region of the Pacific. These are
monthly averages of I ¼ skewness; <
0 means large- to small-scale cascade.
The left is averaged over the 250–1000
km (“meso-a”) scale range, the right
over the 25–250 km (“meso-β”) range.
Although the transfer is
predominantly from large to small, it is
highly intermittent in accord with
the finding here from the ECMWF
reanalysis (Figs. 2.22, 2.23) and with
the predictions of the scaling model.
Adapted from Fig. 6 of Kerr and King
(2009).
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Fig. 2.23 (a)The angular integral of T(k) for each year: 2005, 2006, 2007 The average of the three is the medium grey line which is only clearly
distinguishable to the right of the 0.8 position (it’s the line that barely drops below the axis at log10k¼ 0.9). The thick darker lines that roughly define
the envelope are the isotropic energy spectrum E(k) (top) and its negative (bottom). (b) The corresponding plots ofP(k), which is the integral of T(k),
over wavenumbers higher than k for each year: 2005, 2006, 2007. The average of the three (medium grey) is again only clearly distinguishable when
its drop below the upper envelope at about log10k � 1.0. The thick darker lines that define the envelope are the same as in Fig. 2.23a.
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Fig. 2.22 (a) The sign of T(k) for each
of the three years analysed. Black
indicates T> 0, white, T< 0. The
horizontal axis is kx (zonal), the vertical
axis, ky (meridional); the largest
wavenumber corresponds to 330 km,
the smallest to 10 000 km (more
accurately, � 45� about the equator
and 0–90� , 90–180� , 180–270� , 270–0�
longitude). (b) The same as Fig. 2.22a,
but for the ensemble 2005–2007
(right) and the disagreement areas (in
grey, left).
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Recently, Kerr and King (2009), using QuickScat
scatterometer data, similarly found that the sign of the
flux fluctuates as the horizontal lag (scale) changes
(Fig. 2.21b).

To test this out in a more direct way (without the
third-order structure functions and isotropy assump-
tions), we can use the ECMWF interim reanalysis
products; here the zonal and meridional winds at
700 mb for the years 2005–2007. The main weakness
is the hybrid nature of the reanalyses and the neglect
of the contribution of the vertical wind terms (the
minimum reanalysis scale is 166 km, which is much
larger than the atmospheric thickness). Let us recall
that the classical (isotropic) spectral energy transfer
T(k, t) is defined by the triple velocity correlations
coming from nonlinear interactions and which
satisfy:

@

@t
þ 2nk2

� �
Eðk, tÞ ¼ Tðk, tÞ ð2:86Þ

where E(k, t) is the spectrum as a function of time (see
e.g. Lesieur, 1987). The same equation holds before
averaging over all wave-vector directions (i.e. without
hypothesizing isotropy). In this case consider respect-
ively hv2i ¼ uð0Þ and the spectral transfer Tð�k, tÞ that
depends on the vector (�k ðûð�k, tÞ is the Fourier trans-
form of u: Appendix 2A). The relationship between
the two transfers is merely:

TðkÞ ¼
ð

j k0j¼k

Tðk0 Þdk0 ð2:87Þ

(i.e. angle integration). Because the isobaric
surfaces are orthogonal to the pressure gradients, the
spectral transfer for the “horizontal” velocity along
the isobars is somewhat simpler than its more general
expression on isoheights (advection is then the unique
nonlinear term in the Navier–Stokes equations). One
can show (Appendix 2C) that in this case, written out
explicitly and considering only the horizontal
transfer:

Tð�kÞ ¼ 2kx Im

��
u
e�ðue2Þþ �ve�ðuve Þ

�

þ2ky Im

�
hue�ðuve Þi þ �ve�ð ve2Þ

� ð2:88Þ

where we have used the notation u ¼ vx, v ¼ vy (zonal
and meridional components). The vertical wind was

ignored because in the reanalyses the vertical scales
are so much smaller than the smallest horizontal scale
(here 1.5�, i.e. 166 km).

Fig. 2.22a shows sgn(T(k)) when sections of the
reanalyses are used in the calculations. Each 700 mb
field was broken into sections from � 45� latitude
(this avoids strong distortions from the map
projection), and four disjoint 90� longitudinal
sections. It can be seen by comparing the results for
the different years that the distribution is not at all
isotropic, and that much of the details of the anisot-
ropy persist from one year to another (note that
standard Hann windowing techniques were used for
the numerical Fourier transforms). Fig. 2.22b shows
that over half of the wavevectors agree on the sign for
each of the three years, but that the region of agree-
ment has a highly complex fractal-like structure. In
order to investigate further, we calculated the classical
transfer, T (Eqn. (2.87)).

Fig. 2.23a shows the result: the sign oscillates every
octave or so in scale, in a largely reproducible way
from year to year, yet there is no obvious 2D/3D
transition, nor source/sink-free inertial range. At the
largest octave or so in scales (smallest k), the transfer
is positive (from large to small). Finally, we can cal-
culate the total flux from scales larger than k�1 to
smaller scales:

PðkÞ¼
ð1

k

Tiðk0Þdk0 ð2:89Þ

This is shown in Fig. 2.23b. Although the integration
naturally smoothes out some of the oscillations pre-
sent in T(k), there is still no obvious pattern, with
the overall direction/sign changing every factor of 4–
5 in scale. Note that here, as for T, at the very high
wavenumbers the hyperviscous effects mean that the
transfer is poorly estimated and should be ignored.
In both Figs. 2.23a and 2.23b we have superposed the
envelope defined by the isotropic energy spectrum
(see the discussion of this and the slightly different
spectrum calculated in Chapter 6 from the 2006
reanalyses). This comparison shows that the magni-
tude of the transfer closely follows the spectrum
itself. Other attempts to test the direction of the
cascade using aircraft estimates of the sign of the
third-order velocity structure function (Fig. 2.21b)
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have found similar chaotic/complex variations of
cascade direction with scale, much more in accord
with a scaling input and output of energy over a
wide range.

2.7 Summary of emergent laws in
Chapter 2
We derived several scaling laws in dimensional form
in both real space and Fourier space (spectra) by
using turbulent fluxes linked to the Navier–Stokes
equations in three dimensions (the Kolmogorov–
Obukhov law, Eqn. (2.90), top) and two dimensions
(the Kraichnan law, middle), and linked to the equa-
tion of passive scalar advection (the Corrsin–Obu-
khov law, bottom):

Dv ¼ ε1=3jDrj1=3; EvðkÞ ¼ ε2=3k�5=3

Dv ¼ Z1=3jDrj; EvðkÞ ¼ Z2=3k�3

Dr ¼ w1=2ε�1=6jDrj1=3; ErðkÞ ¼ wε�1=3k�5=3

ð2:90Þ

Each equation depends on a turbulent flux: the energy
flux (3D, ε), the enstrophy flux (2D, Z) and the
passive scalar variance flux (w), respectively. For
the moment, each is considered to be classical, i.e.
the fluxes are � constant (spatially homogeneous,
quasi-Gaussian, nonintermittent). To emphasize that
the above assumes isotropy, we have replaced the
spatial lag Dx used in the earlier sections by the
modulus of the vector lag Dr.

The general form of these laws is:

Df ¼ φjDrjH ð2:91Þ

for fluctuations Df in a turbulent field f, flux φ and
exponent H. This is the prototypical emergent atmos-
pheric law. In this classical form it is valid only for
weakly variable fluxes and for statistical isotropy,
assumptions which the pioneers doubted would allow
them to be valid in the atmosphere over scales much
larger than several hundred metres. However, the rest
of this book shows how to generalize φ to a highly
variable multifractal cascade process and for the

isotropic vector norm scale notionjDrj replaced by
an anisotropic scale functionkDrk. Finally, we
assumed that the fluctuation was simply a difference,
but this is not always adequate – so that, for example,
when H is outside the range 0–1, the notion of fluctu-
ation Df itself can be refined with the help of wavelets
(Section 5.5).

The general relations between real-space fluctu-
ations and Fourier-space spectra are obtained using
the Wiener–Khinchin theorem (see Appendix 2A for
a demonstration), and the specific relations that
apply in scaling systems are obtained using
Tauberian theorems. The Wiener–Khinchin the-
orem is valid for statistically stationary processes
and relates the autocorrelation R(t) to the power
spectrum E(o):

RðtÞ ¼


vðtÞvðt � tÞ

�
¼
ð1

�1
do eþiotEðoÞ

ð2:92Þ

R(t) is related to the “D-variance” of the fluctuation,
i.e. the second-order structure function S2(t):

S2ðtÞ ¼
D
DvðtÞ2

E
¼

�

vðtÞ � vðt � tÞ
	2�

¼ 2

�D
vðtÞ2

E
�
D
vðtÞvðt � tÞ

E� ð2:93Þ

or in terms of the power spectrum:

S2ðtÞ ¼ 2
�
Rð0Þ � RðtÞ

	
¼ 2

ð1

�1
doEðoÞð1� eþiotÞ

ð2:94Þ

In scaling regimes, we have power law spectra
EðoÞ � o�b, and we can use a Tauberian theorem
to conclude that R(t), S2(t) also follow power laws:

EðoÞ � o�b , RðtÞ � txð2Þ; b < 1 ð2:95Þ

where the condition b < 1 is needed for low-
frequency convergence. A high-frequency (small-
scale) cutoff is also needed, but one is always
present in discretely sampled data. For the struc-
ture function:

2.7 Summary of emergent laws in Chapter 2
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