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Data analysis

The space-time variability of natural systems, can often be broken up into various
“scaling ranges” over which the fluctuations vary in a power law manner with
respect to scale. Over these ranges, the fluctuations follow

H
Av=0, Ax
—— The flux at resolution Ax

Taking the gt" power and ensemble averaging, we see that the statistical characterization
of the fluctuations in terms of generalized structure function:

5.9 (0= o1 )ae” - (o )=(L)", g(a)=ar-x(o

Hence, we seek H, K(q)

With universality: K(g)=-"(¢"~q) i.e. we seek H, C,, o



Empirical analysis: Estimating fluxes
from the fluctuations

Explicit multiplicative cascades and we examined some of their consequences,
notably that the general statistics of the cascades can be specified by their
statistical moments via the simple multifractal cascade equation:

() =250

The empirical determination of the outer scale is fairly straightforward. Consider
L.s the “effective outer scale” where the cascade begins, and use the symbol

A= LeglL
for the (unknown scale ratio from the beginning of the cascade and the resolution

of the flux ¢. We will instead use the symbol A as the ratio of a convenient
reference scale to the resolution scale.
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obey the generic multiscaling relation
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Scaling range flux estimates

If atmospheric dynamics are controlled by scale invariant turbulent cascades of various
(scale by scale) conserved fluxes @ then in a scaling regime, the (absolute) fluctuations

Al(Ax) in an observable I (e.g. wind, temperature or radiance) over a distance Ax are
related to the turbulent fluxes by a relation of the form:

Av(Ax) = QAX"

This is a generalization of the Kolmogorov law for velocity fluctuations (the latter has H =
1/3 and @ = €",m = 1/3 where € is the energy flux to smaller scales). Without knowing
nor H - nor even the physical nature of the flux - we can use this to estimate the
normalized (nondimensional) flux ¢’ at the smallest resolution (Ax = A) of our data:

Av _oAx" 9

(&) {pax™) (o) "
Note that if the fluxes are realizations of pure multiplicative cascades then the
normalized 1 powers are also pure multiplicative cascades, so that ¢’ =@/<e>=1is a
normalized cascade (<@> is the ensemble mean large scale flux, i.e. the climatological
value, it is independent of scale, hence there is no need for a subscript).

The fluctuation, Av (Ax) can be estimated in various ways; in 1-D a convenient method
(which works for the common situation where 0 < H < 1) is to use absolute
differences:  Av(Ax)=|v(x+Ax)—v(x)



Dissipation scale flux estimates

For data at resolutions high enough for viscous dissipation to be important, the
scaling law can no longer be used to estimate the fluxes. In the atmosphere these
scales are typically millimetric and such data is rarely encountered. However in
reanalyses, the finest resolutions are regularized using artificial “hyper - viscosities”,
so that their interpretation must be different. To see this, consider the example of
the energy flux, recalling that at the dissipation scale the viscous term is dominant:

At dissipation scales, viscous

e=vy-Vy .
term dominates

where v is the viscosity, v the velocity. Standard manipulations give:

2
(v, v, (Av)z
e=V ~+——| =V| —
z’ dx; o, Ax

i,j=1

(the i, j index the velocity components). Therefore if Ax is in the dissipation
range (e.g. the finest resolution of the model) then:

1/2
£
Ay = (V] Ax Note different exponent




Hyperviscosity

Since the meteorological models and reanalyses actually use hyper-
viscosities w ith hyper-viscous coefficient v* and a Laplacian taken to the

power h (typically h =3 or 4), we have:
* 2h
E=Vy- V7Y
which leads to the estimate
€ 172
Av x( *) Ax"
\%

In all cases, we therefore have (independently of h):

Av e

, —

¢ = <Av> — <81/2> Exponent independent of h




N Powers (General)

We see that this is the same the dissipation scale estimate with ¢=¢%3, the only
difference is that for the wind field, the exponent 1 = 1/2 holds in the dissipation
range rather than 1 = 1/3 which holds in the scaling regime. If we introduce K,(q)
which is the scaling exponent for the normalized n flux ¢’ then :

r_ @ el . e q i QLK(fm)
! _<(p>_<g“> hence <(P >_<(<g“>] >_qu(n)
Defining K, (q) <8§>= 27 FKal@)

which for universal multifractals yields

K, (Q) = ﬂaKl(Q)

(note: K,(q) = K(q)), i.e. in obvious notation:

C,.,=n"C,

This shows that: K, (q)=K.(qn)—gK.(n)

In =

Comparing the dissipation estimate (1] = 1/2) and the scaling range estimate (1 = 1/3),
we have:

3Y :
o= = . 3
Cl,dlss ( 2 ) Cl,scallng For Wind’ a=1-8 hence: (Ej =2.07




Passive scalars

The extension of this discussion to passive scalars is also relevant and shows
that the interpretation of the empirically/numerically estimated fluxes in terms
of classical theoretical fluxes can be nontrivial. Denoting by p the density of the
passive scalar, and y its variance flux, the dissipation range formula is:

dp

% ~ PKQ recall: ¥ =— 5

: : . Molecular diffusivity
K is the molecular diffusivity, hence:

Ap = ()C / K)l/z Ax Dissipation range

2

Whereas the corresponding formula in the scaling range is

Ap = x"e " A" the Corrsin-Obukhov law

1/2 A—1/6
The combined effective flux ¢ =Y &

N Two (presumably statistically
dependent) cascade quantities
rather than just one




Early evidence of

cascades: Precipitation
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Scale-dependent TRMM PR Attenuation Corrected
Reflectivity Factor [ Z,] (1176 consecutive orbits -- ~70 days)

§ Z, = scale-dependent, attenuation corrected, reflectivity factor Lovejoy et al 2008
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TRMM satellite data, =1000
orbits
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Lovejoy et al 2009
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Geostationary IR data
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K(qg) satellite data
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Results on reanalyses

Ciuni

G

a

H

Lesrew (km)
Lesrns (km)
Tetttime (days)
o (%)

h,

1.0

0.102 + 0.009
0.101 = 0.009
1.77 £ 006
0.54

13000

6300

46

032 + 004

T

240

0.077 = 0.005
0.072 = 0.005
1.90 + 0.006
0.77

20000

16000

58

035 £ 002

u

240

0.084 + 0.006
0082 + 0.007
1.85 £+ 0012
0.77

13000

8000

29

031 £ 009

v

240

0.087 £ 0012
0.085 + 0013
1.85 £ 0011
0.78

16000

10000

29

0.28 + 0.10

w

0.40

0.121 £+ 0007
0.115 £+ 0.008
192 £+ 0.009
0.14

16000

13000

37

033 £ 010

Z

335

0.088 + 0.006
0.083 £ 0.005
190 £+ 0012
1.26

63000

40000

290

052 £ 030




Model and reanalysis exponents

ECMWF interim

1.86
0.081
12700

1.89
0.074
20000

1.70
0.095
12700

ERA40

193
0.096
12000

211
0.094
14500

1.75
0.094
11000

20CR

1.87
0.089
11200

1.85
0.088
11200

1.73
0.077
35000

GEM

168
0.104
11000

194
0077
8300

160
0.100
11800

GFS

1.80
0.082
9000

200
0.080
8600

1.74
0.091
9000

aircraft

194
0088
25000

1.78
0.107
5000

1.81
0083
10000

Table 4.2b A comparison of the 1000 mb fields. The triplets (GEM) represent the parameter estimates for integrations of t = 0, 48,
144 hours, and the pairs (GFS) for t = 0, 144 hours.

T (GEM)
T (GFS)
u (GEM)
u (GFS)
h (GEM)
h (GFS)

G

0.125
0.142
0.121
0.114
0.109
0.128

0.115
0.138
0.122
0.107
0.106
0.128

0.112

0.123

0.112

a

164
1.72
168
1.80
181
1.86

1.68
1.71
162
1.84
1.80
1.81

1.69

161

1.77

Lesr (km)
25700
27 900
11000
12300
15900
21700

20500
26000
11000
11200
13800
20900

25700

12300

14100

6 (%)
027
0.59
032
0.54
051
0.46

0.26
060
036
064
049
046

0.80

1.24

1.51




Aircraft estimates
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Horizontal spatial Scaling exponents

State variables

Precipitation
Passive scalars
Radiances

Topography
Sea surface temperature

Aerosol concentration

Infrared
Visible
Passive microwave

Altitude
SST (see Table 8.2)

G

0.09

(0.12)

0.11, (0.08)
0.09

(0.09)

04
0.08

0.08
0.08
0.1-0.26

0.12
012

1.9
(1.9)
1.8
1.8
(1.9)

1.5
1.8

1.5
1=
1.5
1.8
19

H

1/3, (0.77)

(—0.14)

0.50, (0.77)

0.51
(1.26)

0.00
033

0.3
0.2
0.25-05

0.7
0.50

B

16, (24)
(0.4)

1.9, (24)
19

(3.3)

0.2
16

15
15
1.3-16

2.1
18

Les

(14 000)

(15 000)
5000 (19 000)
10000

(60 000)

32 000
25 000

15 000
10 000
5000-15 000

20 000
16 000




Satellite Scaling exponents

Channel Wavelength  Resolution & (%) line” & (%)uni” a () H Legr (km)
(km)
VIRS 1 0630 pm 88 060 071 135 0077 0.19 g800
VIRS 2 1.60 pm 88 0.83 137 141 0.079 0.21 5000
VIRS 3 375 pm 22. 1.10 158 199 0.065 0.27 17 800
VIRS 4 10.8 pm 88 048 053 156 0.081 0.26 12600
VIRS 5 12. 0 pm 88 047 0.81 163 0.084 0.33 15800
AVHRR 14 vis' 0.58-0.68 um 22 _ _ 192 0.075 0.32 18 700
AVHRR 14 IR 11.5-125 pm 22 _ _ 1.91 0.079 0.36 25200
MTSAT” 10.8 pm 30 _ _ 15 0.74 0.31 40000
Photography 0.3-0.7 pm 05-5m _ _ 1.77 0.061 061 _

“ This is the residual with respect to pure power-law scaling.

¥ This is the residual with respect to universal multifractal scaling with & = 1.5, C, _ 0.08, only the outer scale is fit to each channel.
 These were from 153 visible, 214 IR scenes each 280 x 280 km over Oklahoma, from Lovejoy et al. (2001), Lovejoy and Schertzer (2006).
4 This is the average of the north-south and east-west parameters; see Table 4.7.

Table 4.8b The characteristics of the five (TRMM) TMI channels and the Precipitation Radar reflectivity (not rain rate), from Lovejoy et al.
(2009a). All used vertical polarization. The H estimates are based on structure functions.

Channel  Wavelength Resolution & (%) line? &%) uni® a C, H Letr (km)
(km)

™I 3.0 cm (106 GHz) 1114 140 155 135 0.255 0.50 15900

TMI 3 1.58 cm (1935 GHz) 556 1.71 193 1.76 0.193 0331 6900

™IS 143 cm (22.24 GHz) 278 1.62 1.82 193 0.157 0453 5000

™I 6 8.1 mm (37 GHz2) 278 1.73 1.95 1.76 0.15 0377 4400

™I 8 351 mm (855 GHz) 139 140 1.70 1.90 0.102 0.238 6300

TRMM Z 22 cm (13.2 GHz) 43 6.0 46" 150 063 000 32000




Observables:
additive and multiplicative processes

Linear scaling part,

Al = fAXH <  additive

Observable:
multiplicative Multiplicative cascade

and additive




The fractal H model

(fractal dimenension= 2-H)
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Spectral analysis

Basic equation

Hence we can use
spectral analysis

Af = pAx"

R(Ax)=(f(x)f(x—Ax)) autocorrelation
S(A’C):<(f(x)—f(x—m))2> Structure function
S(Ax)=2(R(0)- R(Ax)) Relation between them

R =(0f ) 1) = [r()e s

—00

R(Ax) = I E(k)eikmdk Wiener-Khintchine theoreom

R(0)= TE(k)dk

[

. Real space-
S(Ax): ZJ(l—ekm)E(k)dk Fourier space relation

0




Tauberian
theorem

If the spectrum is of power law form:
E(k)=k™

then put

k= Ak
E(M)=L"E(k)

so that:

S(Ax/A) =2 [ (1= A PE(K /MNP ak’ = L0 (Ax)

so that we conclude:

S(Ax)=Ax*; H=(B-1)/2

(a similar result holds for R(Ax)).

We conclude:

POWER LAWS <->F.T. POWER LAWS

Note this is valid for 1<B<3 (0<H<1) for S(Ax), 1>B>-1; for R(Ax) (-1/2<H<0) (see later)



Practical spectral analysis

The aim is to make the most accurate spectrum

[

= <‘%‘2> f(k) = _fwf(X)e_ikx dx

With finite data, we obtain finite spectrum over a length n:

2751 k— 1
Discrete transform =—2 f

We want: (f(\k/)) ~ £ (k)

There is a both high wavenumber and low wavenumber bound (k=1/n, 1 respectively).



High wavenumbers: Aliasing

[ I I I I I | [ —
| ’ ' —
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o — | I | | I | l ‘ I -
0 1 2 3 4 5 6 7 8 9 10

=1

Red sinusoid, blue sinusoid,
frequency m, =0.9 frequency m, =0.1

In general, when a sinusoid of frequency ® is sampled with frequency ®, the resulting
samples are indistinguishable from those of another sinusoid of frequency |[®-Nwo,| for

any integer N (here, take N=1:  |1-0.9|=0.1

Two different sinusoids that fit the same set of samples (points at frequency w .= 0.9, 0.1). The black points are
at a slightly higher frequency (1). If we try to reproduce the sample with Fourier analysis, we will generally
have contributions from more than one frequency. To avoid aliasing it is sufficient that the original signal has

no frequencies above the Nyquist frequency = ®./2.

Analogue data at a fixed resolution At (by definition: it takes two “pixels” to define a sinusoid, i.e. 2At) has no
frequencies >1/ (2At) so that the criterion is satisfied if the sampling is at intervals At. Digital data with interval

At will be aliased if it is sampled at intervals <At.



Examples of Aliasing

Example of spatial aliasing is the
Moiré pattern one can observe in a

poorly pixelized image of a brick
wall

Aliasing example of the A letter in Times
New Roman. Left: aliased image, right:
anti-aliased image.




Windowing, low wavenumbers/frequencies

Problem:

The low wavenumbers will be essentially the same as:

(Ignore high /
wavenumber

issues) Hence: (JT(\k/))dm - fgnx(k/) s f(k/)

e b dx = JB ’k"dx Where Bn(‘x):

—_
~
—_~
»
N—
N —
E~,
o'—.:

0; otherwise

The gv(k) Thus “smears” the spectrum out so that we don’t well resolve the spectral
n amplitudes very well. This is called “spectral leakage” because the variance at one
wavenumber gets spread to neighbouring wavenumbers

Solution: we “premultiply the function f(x) by an appropriate “windowing
function” W(x)

-7 =

window

O C—

f(x)W(x) e ™ dx

Many “windows” are possible, it doesn’t make much difference which is used. Try

1 2mx
Hann window w(x)= E(I_COS(TD 0<x<n

0 otherwise

This is narrower in Fourier space, hence less “leakage”

; 0<x<n m—%eikmsin—



A few of the windows in the literature....

Rectangular window Fourier transform Triangular window Fourier transform
i 1 ' °
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Hann window Fourier transform
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Ex: Spectrum of temperature flux

Temperature °C

_3 "
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This is the spectrum (thin line) of the fluxes from the aircraft transect shown in at right with its average over logarithmically spaced
bins (thick line) along with a reference line with slope -0.89 (K(2) = 0.11, the value for C; = K’'(1) = 0.06, o« = K”(1)/K’(1) = 1.8).
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Practical spectral analysis

Estimate spectral exponent B= 1+§(2) = 1+2H-K(2)

1
(-
e\

|
(-
-m. T

Loglok

The cor{ensated spectra for an ensemble of 50 realizations, 214 each, a = 1.8, C; = 0.1, intermittency correction = K(2) =
0.18, with H increasing from top to bottom from -7/10 to 7/10. The dashed horizontal line is the theoretical behaviour
indicated over the range used to estimate the exponent (i.e. the highest and lowest factor of 109> in wavenumber has
been dropped). Each curve was offset in the vertical for clarity.



Analysis using fluctuations

Af = @Ax”
T

Need definition of fluctuation

Classical: fluctuation = difference: Af(Ax) = f(x)-f(x+Ax)

K(q)
q q qH q). q L
5,(a0) = a7 ()=o) " = 2% (gt )=(-L VT g()=a -k (o)
) . . Ci [ a
With universality: K(q)=—=(a"~q) i.e. we seek H, C,, o

%(Q)=qH—K(q)=qH—%(q“—q)




H=0.4:
Fluctuations
Growing

H=-0.8:
Fluctuations
Decreasing

H=0.4:
Fluctuations
Growing

H=-0.4:
Fluctuations
Decreasing

H=0.4:
Fluctuations
Growing

AT = pAt"”

Megaclimate
Veizer: 290 Mys - 511Myrs BP (1.23Myr)

Megaclimate
Zachos: 0-67 Myrs (370 kyr)

Macroclimate
Huybers: 0-2.56 Myrs (14 kyrs)

Climate
Epica: 25-97 BP kyrs (400 yrs)

Macroweather
Berkeley: 1880-1895 AD (1 month)

Weather
Lander Wy.: July 4-July 11, 2005 (1 hour)

50

100

150

t




Aircraft structure function estimates
4! Long(AX) * LOng(AX)

Slopes = &(q);

TR T A N R

2
10km | Log AX ~ 1000km

Lo~

4 km 40 km

Fluctuations as differences

Temperature (Upper left),
humidity (upper right), log
potential temperature (lower
left)

The structure functions of order g = 0.2, 0.4, ..., 1.9, 2.0 are shown (from bottom to top). All have been nondimensionalized by dividing by
the absolute mean first difference at the finest scale (280 m)



E(q)

Log0
1.5

1 O %’(1)=H-C1

T

_________________ C /4
0.5 £7(1) = -alC, &(q)=qH - K(q)=gH ~—~(q"~q)

L2 3 41

The structure function exponents for T, log0, h from the aircraft data analysed in the previous slide.
The exponents were estimated by fitting the structure functions over the “optimal” range 4 — 40 km.







Differences, tendencies

Fluctuations defined as a difference:

(Av)diﬁ :v(x+Ax/2)—v(x—Ax/2)

Ax
L 1 X+
Tendencies AV(AX)=E V(x')dx"s v(x)=v(x)—v(x)
X
H>0; p=>1|2 ! T t At t+AL Structure
Weather : ' : Function
e bo [(ms)

" “fluctuation”

T “tendency”

H<0; B=<1| 4
Spectral
plateau ]
10 dy <At< 300 yr ¥

AT (At)=T(t+ At)—T(t)

s(an)=(jar ()"

Tendency s.f
(rms)




Difference, Tendency, Haar fluctuations

Differences: The difference in temperature between t and t+At

Tendency: The average of the temperature (with overall mean
removed) between t and t+At

Haar: The difference between the average of the temperature
from t and t+At/2 and from t+At/2 and t+At

Relations: When 1 > H > 0: Haar = difference
When 0 > H > -1: Haar = tendency



X 20 K Composite with
Hourly S corresonding slopes as
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Defining fluctuations using wavelets

(1)

We have seen that data analyses constantly rely on defining fluctuations at a given
scale and location; the simplest definition of fluctuation at position x, scale Ax, being
Av(x, Ax) = v(x+Ax) - v(x). Note that since we typically assume that the statistics of the
fluctuations are independent of position, we previously suppressed the x argument.
We have already mentioned that other definitions of fluctuation are possible and are
occasionally necessary, let us examine this a bit more closely.

Consider the statistically translationally invariant process v(x) in 1-D: the statistics are
thus independent of x and this implies that the Fourier components are “d correlated”:

(M(R)9(K)) =8

~

;(k)‘2>; v(k)= Je_ikxv(x)dx

. | | E(k)= (k) ) =1
If it 1s also scaling then the spectrum E(k) is a power law: (where here
and below, we ignore constant terms such as factors of 2w etc.). In terms of its Fourier
components, the fluctuation is thus:
Av(x,Ax)=v(x+Ax)—v(x)= jeikx;/(k)(eik“ —1)dk




Defining fluctuations using wavelets

(2)

y ikAx
so that the F.T. of Av(x,Ax) is V(k)(e 1). We first consider the statistics of quasi-Gaussian

processes for which C; = 0, (q) = Hq. Exploiting the statistical translational invariance, we
drop the x dependence and relate the second order structure function to the spectrum:

(|av(ax)f )= 4f e (Jo (k)7 sin® (ki’“ )dk et sin’ (ki’“ )dk

As long as the integral on the right converges, then the usual Tauberian
argument shows that:

(JAv(Ax) yoe A = [P sin’ (kﬁx jdk e A

so that B = £(2)+1 = 2H +1 (C, = 0 here). However, for large k, the integrand = k® which has a
large wavenumber divergence whenever B<1. However, since for small £, sin” (kAx / 2) o< &’ ,
there will be a low wavenumber divergence only when 3>3.

COﬂC|USiOn:<|AV(AX)|2>W”| be dominated by wavenumbers k = 1/Ax only if:
1<[<3, or equivalently, 0<H<1




Defining fluctuations using wavelets

(3)

In the divergent cases, although real world (finite) data will not diverge, the
structure functions will no longer characterize the fluctuations, but will depend
spuriously on the either the highest or lowest wavenumbers present in the data. In
the quasi gaussian case, or when C, is small, we have §(2) ~ 2H and we conclude
that the using first order differences to define the fluctuations leads to second order
structure functions being meaningful in the sense that they adequately characterize
the fluctuations whenever 1<3<3, i.e. 0<H<I.

Since 0<H<I is the usual range of geophysical H values, and the difference
fluctuations are very simple, they are commonly used. However, we can see that
there are limitations; in order to extend the range of H values, it suffices to define
fluctuations using finite differences of different orders. To see how this works,
consider using second (centred) differences:

Av(x,Ax) = v(x)— %(v(x+ Ax)+v(x— Ax)) = jeikx;(k)[l—%(eikM/z + e_"kmz)}dk

e~ o [ kAXY
:2J€lka(k)Sln(Tj dk
repeating the above arguments we can see that the relation B =£(2)+1 holds now
for 1<B<5, or (with the same approximation) 0<H<2.




Defining fluctuations using wavelets

(4)

More generally, going beyond Gaussian processes we can consider intermiitent FIF

~ ~ - ik Ax -H 7
processes, which have V(k) = 8(k)|k| ! . we see that the F.T. of Av(x,Ax) 1s (e B 1)|k| S(k).

v(k) =k e(k
This implies that for low wavenumbers, v(k)= k| e(k) (k<<1/Ax) whereas at high
. Ly~
wavenumbers, v(k) =k " (k) (>>1/Ax) hence since the second characteristic function of €(x)

has logarithmic divergences with scale for both large and small scales (log <83»> = K(q)logA ),
we see that for 0<H<I, that the fluctuations Av(Ax) are dominated by wavenumbers £ = 1/Ax, so
that for this range of H, fluctuations defined as differences capture the variability of Ax sized
structures, not structures either much smaller or much larger than Ax.

More generally, since the F.T. of the nt" derivative d"v/dx" is and the finite
derivative is the same for small k but “cut-off” at large k, we find that nt" order
fluctuations are dominated by structures with k =1/Ax as long as 0 < H <n. This
means that Av(Ax) does indeed reflect the Ax scale fluctuations.

Finally, summing is the inverse of a finite difference (integration the inverse of
differentiation), hence we can n =-1 and extend the range to -1<H<0 by summing.



Definition of wavelets

In wavelet analysis, one defines fluctuations with the help of a basic
“mother wavelet” ¥(x) and performs the convolution:

Av(x A= | v(x’)‘P(x,A_xx)dx’

!

Needed to convert to “fluctuations”

where we have kept the notation Av to indicate “fluctuation”. The basic “admissibility”
condition on ¥(x) (so that it is a valid wavelet) is that it has zero mean.




Some simple wavelets

Fluctuations defined as a difference:
(A), = V(X +Ax/2)=v(x—Ax/2)
‘-P(x) = 6()6— 1/ 2)_ 8(.X+ 1/ 2) “poor man’s” wavelet

Fourier: sin(k/2)

Check: Iv(x')ﬁ(x:xx—ljdx'zJ.v((x”+%)Ax+x)6(x”)Axdx”=Axv(x+%j = X-x 1

2 Ax 2
and same for second & function

Fluctuations defined as second differences:

(Av)m = %(v(x+Ax/2)+v(x—Ax/2))—v(x)

P (x)= %(5(X+%j+5(X—%D—8(x) the second finite

difference wavelet

Fourier: sin’(k/4)




Tendency Fluctuation

In terms of wavelets, this can be seen to be equivalent to using the wavelet:

1 [-L/2,L/2] (x )
L

‘P(x) = I[—I/Z,I/Z] (x) - ; L>>1

where | is the indicator function:

( ) _ 1 a<lx< b
[a:t] 0 otherwise




Haar fluctuations and wavelets

2 x+Ax/2 X
M (v A0)= | [ v()ad = [ ()| o
A.X X x=Ax/2

where we have added the extra 1/Ax factor so that the scaling is the same as for the poor
man’s fluctuation, i.e. §y,,(q) = &(q) for processes with 0<H<I.

1/2; 0<x<1/2
Haar wavelet Y(x)= -1/2; -1/2<x<0 Fourier: 2ik™'sin*(k/4)

0; otherwise

~1/3; 1/3<x<1

Quadratic Haar: 1< e<i)s ,

; —1/3<x< : . .

\P(x): Fourier: ﬁ(sm(k/?))—smk)
-1/3; -1<x<-1/3

0; otherwise



Haar and poor man’s wavelets

‘i’(x)

1-1/L

T

This shows the “poor man’s wavelet black bars representing the amplitudes of Dirac o
functions, (the basis of the usual difference structure function, valid for 0<H<I), the Haar
wavelet (the basis of the Haar structure function, uniform blue shading, the second difference of
the running sum, valid for -1<H<1), and the wavelet used for the “tendency” structure function
valid for -1<H<O0), stippled shading.




Comparison with Mexican Hat

¥ (x) /\W Mexican hat

. 2
2nd difference d” _op

(& functions) \ _ ‘P(x) oc We

-1.0 - 0.5 1.0

[ 05
x . . . . /_.——
Quadratic Haar
\ L

-1/3

The popular Mexican hat wavelet (the second derivative of the Gaussian red, valid for -1<H<2)
compared with the (negative) second finite difference wavelet (black bars representing the
relative weights of & functions, valid for 0<H<2)), and the second order “quadratic” Haar
wavelet (blue) obtained from the third difference of the running sum (i.e.

Av(Ax) =[(s(x+Ax)—s(x—Ax)) /3= (s(x+Ax/3)—s(x— Ax/3)) |/ Ax where s() s the

running sum valid for -1<H<2).



Various wavelets

T T o T

Poor man’s 2s1n k/2
x 1/2 x+1/2
(first difference)
. 1 1 1 o2
2nd difference 5(5(x+5)+5(x—5)]—5(x) sin® (k /4) =0 ~0
2 k kL
Tendenc Iy (x _M; L>>1 —(sin = |-L"sin| = J 2sin kL zk-l
y =122, ]( ) 3 >> k (2) (2) kgz)~0 sl
Haar 1/2; 0<x<l1/2 2ik_1 San(k/4) zk zk‘l
Y(x)= -1/2; -1/2<x<0

0; otherwise

Quadratic Haar =S5 BSOS , ~k2 ~k-1
W(x) = 2/3 -1/3<x<1/3 ﬁ(sin(k/?,)—sink)
—-1/3; -1<x<-1/3
0; otherwise
d2 _2 2 2
' P(x)oc L2 2 k2 ~k2 —K22
Mexican Hat (¥) =~ ke k e



Range of exponents over which average fluctuations at scale At corresponds to frequency 1/At

H ~ 2 _
Ay =(@)Ar” so)={iof)-o*  potr2n-k()
Fluctuation = constant
Statistic Range of H Range of f3 Comment Multifractal
“correction”
Spectrum —oco < B < o0 -B
—c0o < H < oo E(w)~=o
Difference O<H<1 1<[3+|((2)<3 “Poor man’s wavelet”

Tendency Fluctuation -1<H<0 -1<[3+|((2)<1 Average with overall mean
removed (standard )
deviation= “Climactogram”, _Slmple )
also called the “Aggregated | INterpretation
Standard Deviation”)

Haar -1<H<1 -1<|3+|((2)<3 Difference of means of first

and second halves of
interval

Detrended Fluctuation -1<H<(n+1) _1<|3+|((2)<3+2n Also multifractal extension

Analysis (DFA, polynomial (MFDFA), usually linear: n=1,
order n Not a wavelet
Mexican Hat Wavelet 2"d Derivative of a Gaussian
o< H <2 —o<B+K(2)<5
Generalized Haar -m<H<n 1-2m<[3+|((2)<3+2n Interpretation not simple



Difference, Tendency, Haar fluctuations

;. O, v=v(x+Ax)—v(x)
Difference
operator

1
fend ) TAXV ) Exﬁx§+m V,S,)

Differences: (AV(AX))WE‘SAXV

Tendency: (Av(Ax))

Tendency ope{étor

Or equivalently: Series with
(AV(Ax)) — LS SV' . va — EV’(X') mean
tend | Ay ’ \ » removed
Haar: Haar Summation
' oyerator operator

(Av(Ax)) = Axv=é8§x,25v=é((s(x)+s(x+Ax))—2s(x+Ax/2))

2] 5 - 3 ) sy s

Hv= _(n;cl) & s

Ax/(n+1)



Relation between tendencies, differences and Haar
fluctuations

H Ax = 27/Ax/2SAx/2 — 26Ax/2TAx/2

d
: . o, v=C_ v, H<O0
The “saturation” relations: AV T Siend Vs

d
TAxvzcdiﬁ‘V; H>0
d

where C,,, C,, are proportionality constants and =indicates equality in the random

d
variables in the sense of probability distributions (a=b if Pr(a>{) = Pr(b>{) where “Pr”
means “probability”” and { is an arbitrary threshold).

Hmv ZTMZSMQV ZTMQV C

' T.v, H<0
ﬂmv—ZSMQTM/zv 28m/2v Cly05vs H>0

where C’,,,,, 'y are “calibration” constants (only a little different from the unprimed quantities — they
take into account the factor of two and the change from Ax/2 to Ax).

(Av);
< s =Cl; H>0 . .
<(A > This shows that at least for scaling processes that the Haar
< structure functions will be the same as the difference (H>0) and
<(Av : > tendency structure functions (H<0), as long as these are
<(A =Coss H<O “calibrated” by determining C’y5 and C’y,, .
4 tend>




L0g1,S(Ax)? Ax5()

Comparing Haar, difference and tendency structure
0.6 functions for multifractal simulations

-0.2|

: = ké"v 14
0.4 AV

-0.6

T

The compensated Haar structure function (thick), the difference structure function (thin,
8“ below the axis, for H =3/10 (bottom) and 1/10 orange, second up), and the tendency
0 . structure function (third from bottom, thin red, H =-1/10), and top, thin green, H =-3/10.

50 simulations of 216, reduced to 214 by averaging (improve the high frequencies) , divided in half due to periodicity
(improve the low frequencies)



Comparison of different methods for estimating scaling exponents

03¢

65(2)

02t Usual (Poor
- Man’s) s.f

Spectrum

Tendency s.f. _
-0.3¢}

This shows the regression estimates of the compensated exponents for the spectra 8§(2) = & (2) \umerics&(2)iheory (red, perfect methods give

8 (2) = 0), Haar structure function (g =2, green), quadratic, g =2 MFDFA (dashed), The usual difference (poor man’s) structure function (g
=2, blue, for H>0), and the tendency structure function (g =2, same line, blue for H<0).



