PHYS 616 Multifractals and Turbulence

Lecture 1: Introduction: Our multifractal world

Which chaos for geophysics?

Deterministic Chaos?

Low Dimensional Nonlinear Dynamics I

Nonlinear Mappings

Discrete time (=n) evolution of a few variables (\underline{x}):

Z, C are complex numbers

$$Z_{n+1} = Z_n^2 + C$$

The Mandelbrot set

Low Dimensional Nonlinear Dynamics II Give

Flows

Continuous time (=t) evolution of a few degrees of freedom (<u>X</u>): $\frac{d\underline{X}}{dt} = \underline{F}(\underline{X})$

Lorenz equations:

where r, b, σ are positive constants.

some details Few degrees of freedom... few applications chaos (definitio

High Dimensional Nonlinear Dynamics

Nonlinear PDE 's

Fields/spatial structures evolving in time Example: Navier-Stokes Equations:

$$\frac{\partial \underline{\mathbf{v}}}{\partial t} + (\underline{\mathbf{v}} \cdot \nabla) \underline{\mathbf{v}} = -\frac{\nabla p}{\rho} + v \nabla^2 \underline{\mathbf{v}} + \underline{\mathbf{f}}$$
$$\nabla \cdot \underline{\mathbf{v}} = \mathbf{0}$$

where \underline{v} = velocity, t = time, p = pressure, ρ = density, v = viscosity, \underline{f} = b ody forces (e.g. stirring, gravity).

1 second of wind data

Scale Invariance

The simplest scale invariant system: Isotropic Scale Invariance and fractal sets

Fractal Dimension:

d=dimension of space D= fractal dimension of set C=d-D= fractal codimension

Scale invariance:

$$n(\lambda L) = \lambda^D n(L)$$

D=scale invariant

Same form after zoom by factor λ .

Meteorological measuring network

Fractal set: each point is a station

9962 stations (WMO)

The fractal dimension of the network= 1.75

Slice of the Universe

1068 galaxies with apparent magnitude m<15.5 and located in the region $8hr<\alpha<17hr$ and 26.5"< $\delta<32.5$. The sample's depth is 150 Mpc (units of 100 km sec Mpc).

Fractal analysis of galaxies as points

Scaling analysis of a "Slice of the Universe". The linear scaling range extends from a few up to about 50 Mpc, the size of the largest circle embedded in the sample. From Garrido, Lovejoy and Schertzer 1996.

Is the large scale structure of the universe scaling to 1000Mpc?

Number density

Multiscaling of the Navier-Stokes equations $\vec{x} \rightarrow \frac{\vec{x}}{2}$ $\overline{\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v}} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \vec{v} + \vec{f}$ Zoom factor λ Rescaling $\nabla \cdot \vec{v} = 0$ of the velocity (constraint used to eliminate p) where \vec{v} = velocity, t = time, p = pressure, H is an $\vec{v} \rightarrow \frac{\vec{v}}{\lambda^{H}}$ arbitrary ρ = density, v = viscosity, f = body forces (stirring, gravity) scaling exponent $t \rightarrow \frac{t}{\lambda^{1-H}}$ Kolmogorov's Law: Considering $\varepsilon = -\frac{\partial v^2}{\partial t}$ energy flux to smaller scales to be invariant, we obtain Rescaling of time, viscosity, H = 1/3, hence for mean shear $\nu \rightarrow \frac{\nu}{\lambda^{1+H}}$ forcing follow $\Delta \vec{\mathbf{v}} \approx \varepsilon^{1/3} \Delta \mathbf{x}^{1/3} \, .$ $E(k) = k^{-5/3}$ from dimensional considerations This already leads to singularities: $\vec{f} \rightarrow \frac{f}{\gamma 2 H - 1}$ $\frac{\partial \vec{v}}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} \approx \Delta x^{-2/3} \to \infty$ $\Delta x \rightarrow 0 \Delta x$

Emergent laws and Complexity

The relative simplicity of the high level laws is due to a *reduction of the complexity* of the system

If all existing emergent laws are used to describe a system, the remaining complexity is *irreducible*

Differences, tendencies, wavelet coefficients

Cascading Turbulent flux Anisotropic Space-time Scale function Fluctuation /conservation exponent

Fourier domain:

$$\begin{pmatrix} Variance_{observables} \\ wavenumber \end{pmatrix} = \begin{pmatrix} Variance_{flux} \\ wavenumber \end{pmatrix} (wavenumber)^{-2H} \qquad \text{Space: } E(k) \approx k^{-\beta} \\ = (wavenumber)^{-\beta} \qquad \text{Time: } E(\omega) \approx \omega^{-\beta} \end{cases}$$

The weather regime: The emergent laws hold up to planetary scales (Horizontal scaling)

 $E(k) = k^{-\beta}$

Energy Spectra

Scaling geometric sets of points = fractals Scaling fields=multifractals

$$E(k) \propto k^{-\beta}$$

 $k=2\pi/L=$ wavenumber, $\beta=$ spectral exponent

Scale invariance

$$E(\lambda^{-1}k) = \lambda^{\beta}E(k)$$

 β Invariant under zoom by factor λ in real space.

Examples in the spatial domain

The Atmosphere 1) horizontal

u

The atmosphere: 2) The inner scale... in rain Stereophotography of rain drops (the 10% largest), roof of the physics building

The atmosphere: 3) Atmospheric Boundary Conditions

 $Log_{10}E(k)$ (m³)

Ocean Colour: Mies sensor, experimental region

