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Scaling	  	  	  

∂v
∂t

+ (v ⋅∇)v = −
∇p
ρa

+ ν∇2v + f
  1 

∇ ⋅ v = 0   2 

where v is the velocity,  t is the time, p is the pressure, ρa is the (fluid) air density, ν is the 3 
kinematic viscosity, and f represents the body forces (per unit volume) due to stirring, gravity. 4 
Eq. 3 expresses conservation of momentum, whereas eq. 4 expresses, conservation of mass in an 5 
incompressible fluid: mathematically it can be considered simply as a constraint used to 6 
eliminate p. 7 

These equations are known to be formally invariant under isotropic “zooms” x = λ1x′ , as 8 
long as one rescales the other variables as: 9 

v = λγ v ′v
t = λ−γ v +1 ′t
ν = λγ v +1 ′ν
f = λ2γ v −1 ′f   10 

γv is an arbitrary scaling exponent (singularity; hence the possibility of “multiple scaling” 11 
discussed below; we do not consider the pressure since as noted, it is easy to eliminate it with the 12 
incompressibility condition.  13 

Sec+on	  2.2.2	  

Incompressible	  Navier-‐
Stokes	  equa+ons	  

scaling	  



Indeed,  consider the energy flux ε = −∂v2 / ∂t  we find: 1 

x = λ1 ′x
ε = λ−1+3γ v ′ε  2 

If it is scale invariant, we obtain γv = 1/3, hence: for fluctuations in the velocity Δv over distances 3 
(lags) Δx, we obtain for the mean shear: 4 

Δx = λ1Δ ′x
Δv = λ1/3Δ ′v  5 

If we eliminate λ this is perhaps more familiar:  6 

Δv =
Δx
Δ ′x

⎛
⎝⎜

⎞
⎠⎟
1/3

Δ ′v
 7 

or in dimensional form: 8 

Δv ≈ ε1/3ΔxHv ; Hv = γ v = 1 / 3  9 

which was first derived by (Kolmogorov, 1941).  A similar scaling argument in Fourier space 10 
yields the famous    k-5/3 energy spectrum: 11 

E(k) = ε2/3k−5/3
 12 

 13 
 14 

This already implies nondifferentiability: 1 
∂v
∂x

= lim
Δx→0

Δv
Δx

≈ Δx−2 /3 →∞
  2 

The	  Kolmogorov	  law	  spectral	  form	  

The	  energy	  dissipa+on/energy	  flux	  ε	


The	  Kolmogorov	  law	  real	  space	  form	  



Conserva8on	  of	  Turbulent	  Fluxes	  1:	  Reynold’s	  number	  

The ratio of the nonlinear term to the dissipative (viscous) term in the Navier-Stokes equation 1 
can be estimated using  the “Reynolds” number: 2 

Re ~ Nonlinear terms
Linear damping

=
v ⋅∇v
ν ∇2v

~ V ⋅ L
ν

 3 

where V is a “typical” velocity of the largest scale motions L (the “outer” scale).  In the 4 
atmosphere, Re is usually estimated by taking V ≈ 10 m/s or structures size 104 km (see ch. 8 for 5 
more precision, discussion).  At standard temperature and pressure the viscosity of air is ν =    6 
10-5 m2/s  hence Re ≈ 1012.  7 

2.2.3	  	  

Reynold’s	  number	  



We now show that under certain conditions of mathematical regularity, the integral of the 1 
energy rate density ε of a fluid parcel is conserved by the non-linear terms of the Navier-Stokes 2 
equation: 3 

∂v
∂t

= −(v ⋅∇)v −∇ p
ρ f

⎛

⎝⎜
⎞

⎠⎟
+ ν∇2v  4 

Multiplying both sides by v: 5 

ε = − 1
2
∂v2

∂t
= −v ⋅ v ⋅∇( )v − v ⋅∇( ) p

ρ f

⎛

⎝⎜
⎞

⎠⎟
+ νv ⋅∇2v  6 

Because of incompressibility (i.e., ∇ ⋅ v = 0 ), this can be written: 7 

ε = −∇⋅ 1
2
v2 + p

ρ f

⎛

⎝⎜
⎞

⎠⎟
v

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ νv ⋅∇2v  8 

Conserva8on	  of	  Turbulent	  Fluxes	  2:	  nonlinear	  terms	  

We	  shall	  see	  that	  this	  is	  a	  flux	  in	  
Fourier	  space	  



Integrating over a volume of space V, it yields (due to Gauss' divergence theorem that transforms 1 
volume integrals of divergences to surface integrals):  2 

 V
∫ε dV  = − ∇ ⋅

1
2
v2 +

p
ρ f

⎛

⎝⎜
⎞

⎠⎟
v

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V

∫ dV =  − 1
2
v2 +

p
ρ f

⎛

⎝⎜
⎞

⎠⎟
v

S
∫ ⋅dS

 3 

where the right hand integral is over the surface only.  The first term in the surface integral 4 
represents the transfer of kinetic energy across the surface, the second is the work done by 5 
pressure forces; there is no net source or sink of ε  inside the volume. 6 

We now consider the dissipation term ν∇
2v .  Multiplying by v, ignoring the surface term 7 

we obtain: 8 

V
∫ε dV  = νv ⋅

V
∫∇2v dV

 9 

Now, using vector identities, we have: 10 
v ⋅∇2v = − ∇ × v 2 − ∇ ⋅ (∇ × v) × v[ ]  11 

The second term an the right hand side is a divergence, when integrated over a volume it can be 12 
rewritten as a surface integral (Gauss’ theorem): 13 

 V
∫ε dV  = −ν

V
∫ ∇ × v 2 dV − ν (∇ × v) × v[ ]

S
∫ ⋅dS

 14 

Since the surface integral vanishes if S is a current surface (dS ⊥ v)  or a rigid boundary (v = 0); 15 
it can be ignored if we take it to infinity.  In these cases, the right hand side integrand is a 16 
positive definite quantity, ν > 0 , and hence the viscosity is always dissipative (decreases the 17 
total energy).  Conversely, if ν = 0, then ε is “conserved” by the nonlinear terms, and even when 18 

ν . 0, the dissipation will only be important at small scales where the derivatives ∇ × v  (i.e. the 19 
vorticity) are important. 20 

Conserva8on	  of	  Turbulent	  Fluxes	  3:	  dissipa8on	  

The	  change	  of	  energy/
mass/+me	  in	  a	  volume	  
depends	  only	  on	  the	  
viscosity	  

Nonlinear	  term	  only	  

viscous	  term	  only	  



Extensions	  to	  passive	  scalars	  
If we include the concentration ρ of a passive scalar quantity (i.e., a quantity such as an 1 

inert dye or in atmospheric experiments chaff which is advected, transported by the wind without 2 
influencing the wind), we obtain the additional equation: 3 

∂ρ
∂t

= −v ⋅∇ρ+ κ∇2ρ+ fρ  4 

where κ  is the molecular diffusivity of the fluid.  5 
The passive scalar equations are also formally invariant under the following scale 6 

changing operations: 7 

x = λ1 ′x ; v = λγ v v′; t = λ1−γ v ′t ;

ρ = λγρ ′ρ ; f = λ1+2γ v ′f ; fρ = λ1+2γ v ′fρ;

v = λ1+ γ v ′v ; κ = λ1+ γρ ′κ
  8 

where γv, γρ are arbitrary.  This arbitrariness allows the possibility of multiple scaling (i.e., weak 9 
and intense turbulent regions which scale differently, and have different fractal dimensions), 10 
hence the solutions can in principle be multifractals. 11 

By repeating arguments similar to the above for ρ
2

 rather than v2 , one can check that the 12 
scalar variance flux:  13 

χ = −
1
2
∂ρ2

∂t   14 
 15 

2.3	  

Equa+on	  of	  passive	  scalar	  
advec+on	  (+	  Navier-‐Stokes	  
for	  v)	  

Scale	  invariance	  of	  passive	  
scalar	  advec+on	  equa+ons	  

New	  quadra+c	  invariant	  
(conserved	  by	  nonlinear	  
terms)	  



χ is analogous to ε  which will beis conserved by the non-linear terms v ⋅∇ρ .  Putting κ = 0  and 1 
recalling ∇ ⋅ v = 0 : 2 

χ = −
1
2
∂ρ2

∂t
= −ρv ⋅∇ρ = −

1
2
∇ ⋅ vρ2( )

 3 

hence: 4 

 V
∫χ dV  = −

1
2

ρ2v
S
∫ ⋅dS

 5 

this shows that there is no volume contribution to the passive scalar variance, it will be 6 
conserved by the nonlinear v ⋅∇ρ  term.  7 

Using the conservation of χ one obtains γρ = (1-γv)/2 and since from eq. 9, (from the 8 
conservation of ε), γv = 1/3 so that we find γρ = 1/3.  This yields the result analogous to the 9 
Kolmogorov law; the “Corrsin- Obukhov law of passive scalar advection” (Corrsin, 1951), 10 
(Obukhov, 1949) which in dimensional form is: 11 

Δρ = χ1/2ε−1/6ΔxHρ ; Hρ = γ ρ = 1 / 3
 12 

i.e. with the same exponent H as the Kolmogorov law.  Similarly, the Fourier space version is: 13 
Eρ k( ) = χε−1/3k−5 /3

 14 
 15 

Passive	  scalars:	  	  
converva8on	  of	  variance	  rate,	  variance	  flux	  

Corrsin-‐Obhukhov	  
law	  (real	  space)	  

Corrsin-‐Obhukhov	  
law	  (Fourier	  space)	  

Note:	  the	  dissipa+on	  
term	  	  
has	  been	  set	  to	  zero	  

κρ∇2ρ



Classical	  isotropic	  3D	  turbulence	  phenomenology:	  Kolmogorov	  
turbulence	  and	  energy	  cascades	  

vn = v r( ) − v r + ln( ) 2
 1 

The  〈〉  is the ensemble statistical average.  Likewise 2 
 3 

     τn ~ n / vn ,  4 
 5 
is the “eddy turnover time”, is the typical time scale of the transfer process.  Finally (again using 6 
dimensional analysis) the viscous time scale corresponding to the nth octave is: 7 

 
τn,dis =

n
2

ν  8 

Viscosity can be ignored if τn,dis >> τn  (i.e., the viscosity is too slow to affect the dynamics).  9 

Cascade locality: The last ingredient needed to justify cascade models is to show that the energy 1 
transfer is most efficient between neighbouring scales: that it is “local” in Fourier space.  2 
  3 
Consider a discrete hierarchy of eddies, broadly defined a fluid “coherent” structure.  4 
  5 
vn = an appropriate characteristic velocity difference 6 
τn = the time scale called the “eddy turnover time” which is the typical time necessary for the 7 
dynamics to pass energy fluxes from one scale to another 8 
ln, = the length scale (size of the eddy).   9 
 10 
The Navier Stokes equations are Galilean invariant, hence It is the shear that is important 11 
because it is the difference of velocity across an eddy which intervenes, not the "mean" velocity 12 
of an eddy.  13 

2.4	  	  

Typical	  velocity	  difference	  at	  
the	  nth	  octave	  

Viscous	  +me	  scale	  

“Eddy	  turn	  over”	  +me	  (life+me)	  

Locality:	  read	  
appendix	  2B	  



Quasi-‐steady	  energy	  flux	  

Denote by ∏n  the rate at which energy is transferred out of a low wavenumber octave 1 

kn / 2 ≤ k ≤ 2kn ) into a higher octave 2kn ≤ k ≤ 2 2kn ).  This is a Fourier-space energy 2 
flux.  It is given by the energy per unit mass in the octave (En) divided by the typical time scale 3 
of the transfer, the eddy turn-over time: 4 

∏n ≈
En

τn  5 

Now assume that the cascade is local so that the dominant contribution to En comes from the 6 

velocity gradient at the same scale, i.e. vn.  This impliesEn ~ vn
2
 (recall that due to 7 

incompressibility all energies are taken per unit mass) and that τvis,n >> τn  so that there is no 8 
energy dissipation in this wave number band.   9 
 10 
Assume that the energy injection rate ε  (e.g., by stirring) at large scale is balanced by viscous 11 
dissipation at small scale then it is possible that the system is stationary (statistically invariant 12 

under translations in time) then∏n ~ constant , i.e., there are no viscous losses and no sinks nor 13 
sources.  This is assumed to be a quasi-steady state: energy flows through the nth octave at a rate 14 
ε which is on average equal to the large scale injection rate and to the small scale dissipation (as 15 
we will see, such statistical stationarity is quite compatible with violent fluctuations): 16 

 

ε = ∏n ~
En

τn
~ vn

2

n
vn

⎛
⎝⎜

⎞
⎠⎟

~ vn
3

n
~ constant

 17 

(assuming that the injection rate is constant). ∏n is therefore a scale invariant quantity (it is 18 
independent of n).  This yields Kolmogorov's law (1941): 19 

 vn ~ ε
1/3n

1/3
 20 

Flux	  of	  energy	  through	  the	  nth	  octave	  

Quasi	  steady	  flux	  of	  
energy	  from	  large	  
structures	  to	  small	  



Since the fluctuation vn is a scaling power law function of size ln, we expect that the spectrum 1 
will also be power law (see section 2.4.5 for more details on Tauberian theorems that relate real 2 
space and Fourier space scaling).  For wavenumber p, we therefore seek the spectral exponent β : 3 
 4 

E(p) ~ p−β
 5 

corresponding to the real space exponent 1/3 in eq. 2.50.  Assuming β > 1we get the following 6 
expression for the total variance due to all the low wavenumbers in the band: 7 

 
vn
2 ≈ n

2

kn / 2

2kn∫ dp p2 E(p)
 8 

(since the variance in a spherical shell between p and p+dp is 4π p2dp, and we ignore the 9 
constant factor).  We thus obtain: 10 

 vn
2 ≈ n

2 kn
3−β ~ n

2−3+β       11 

(since   n ~ kn
−1

).  This implies 2 − 3+ β =
2
3

 or:  12 

β =
5
3  13 

The Kolmogorov-Obukhov  spectrum is thus derived: 14 
E(k) ~ ε2 /3kn

−5 /3
 15 

The	  Kolmogorov-‐Obukhov	  Spectrum	  

The	  Kolmogorov-‐Obukhov	  Spectrum	  



 1 

 2 

Energy	  flux	  injec+on	   Viscous	  dissipa+on	  

“iner+al	  
range”	  (scaling)	  

Equipar++on	  
range	  

Schema+c	  diagram	  of	  3-‐D	  energy	  cascade	  	  



The	  Special	  Case	  of	  2-‐D	  Turbulence	  

For a two dimension flow the vorticity ω must beis perpendicular to v (i.e.,  ω = ω z
z , 1 

ω z = ∂vy / ∂x − ∂vx / ∂x , ω x = ω y = 0 since vz = 0 , ∂ / ∂z = 0 ; consequently:. We therefore can 2 
no longer have any vortex stretching since:  3 

(ω ⋅∇)v ≡ 0  4 

i.e. there is no longer any vortex stretching and the incompressible vorticity equation reduces to 5 
In 2-D we thus obtain an advection-dissipation equation for the vorticity: 6 

Dω
Dt

= ν∇2ω  7 

when the dissipation is negligible, any power of the vorticity is conserved, not only the enstrophy 8 
which is its square.  We can define the enstrophy flux density:  9 

η = −
1
2
∂ω2

∂t   10 

2.5	  	  

The vorticity equation is obtained by taking the curl of the velocity equation: 1 
 2 

Dω
Dt

= ω ⋅∇( )v + ν∇2ω + b; b = 1
ρ2

∇ρ×∇p   3 Vor+city	  eq.	  

Baroclinicity	  vector	  Vortex	  stretching	  term	  

In	  2-‐D:	  

No	  Vortex	  stretching	  

No	  Vortex	  stretching	  

Dω
Dt

= ∂ω
∂t

+ v ⋅∇ω

Recall:	  

Enstrophy	  flux	  density	  



In	  3D,	  Vortex	  stretching	  implies	  the	  
direc+on	  of	  the	  cascade	  is	  from	  large	  to	  

small	  scales	  	  

Read	  sec+on	  
2.4.3	  

 1 
 2 

2.4.3	  

Vortex	  tubes	  (surfaces	  bounded	  by	  lines	  of	  vor+city)	  are	  material	  tubes	  (sec+on	  2.4.3)	  hence	  if	  the	  ends	  of	  the	  tube	  
move	   further	   apart	   as	   the	   flow	   evolves	   (a	   kind	   of	   “drunkard’s	   walk	   in	   a	   complex	   flow),	   then	   since	   the	   tubes	   are	  
incompressible,	  the	  cross-‐sec+on	  must	  tend	  to	  	  get	  smaller,	  hence	  the	  crea+on	  of	  small	  structures	  from	  large	  due	  to	  
vortex	  stretching.	  



Spectral	  Analysis	  in	  arbitrary	  dimensions	  	  1	  

We#generalize#the#1.D#results#to#higher#dimensions,#here#we#consider#space#
rather#than#time.##Consider#the#second#order#velocity#correlation#tensor:#
uij r( ) = vi ′r( )vj ′r + r( ) = vi ′r( )vj ′r − r( ) # #
the#symmetry#under# inversion# follows# from#translational# invariance#(this#can#be#a#
function# of# time# but#we#will# not# denote# this# explicitly).# #We#will# go# on# assuming#
statistical# homogeneity,# i.e.,# independence# of# translation# when# it# applies# to#
translation#in#time#and#space.###
#
Furthermore,# we# will# also# assume# that# the# turbulence# is# statistically# isotropic#
(independent# of# direction).# # Then# we# have#uij r( ) = uji r( ) #and#uij r( ) = uij r( ) #where
r = r .##We#can#define#u(r) ≡ uii (r) #the#trace#of#the#velocity#correlation#tensor#(using#
Einstein's#notation#convention#for#summing#over#a#repeated#index)#and#the#average#
energy#per#unit#mass#is#thus:#
e = 1

2
v 0( ) 2 = 1

2
u(0) # #

(by#spatial#homogeneity,#there#is#no#r#dependence).###

Sta+s+cal	  homogeneity:	  transla+onal	  invarance	  



Spectral	  Analysis	  in	  arbitrary	  dimensions	  2	  

Introducing+the+d.dimensional+Fourier+transform+and+its+inverse:+

u k( ) = ∫ dd k  e−ik⋅ru r( ); u r( ) = ∫ dd k  eik⋅r u k( ) + +
we+obtain:+

 u(0) = ∫ dd r  u r( ) + +
(setting+ k+ =+ 0).+ + We+ now+ wish+ to+ exploit+ the+ isotropy+ by+ performing+ the+ d.
dimensional+ Fourier+ space+ integral+ above+ over+ (d+ −1).dimensional+ “annuli”+ or+
“shells”.++We+obtain+
e =

0

∞

∫ dk  E(k) + +
where+e+is+the+total+energy+per+unit+mass+and+
+
+ E(k) ~ kd−1 u(k) +
+
+is+ the+ (isotropic)+ “energy+ spectrum”+ and+ where+ k = k +(in+ one+ dimension+ the+
integral+is+ ∫udk ,+in+two+dimensions+ ∫u2πkdk ,+in+three+dimensions+ ∫u4πk2dk ).+



Spectral	  Analysis	  in	  arbitrary	  dimensions	  3	  
!Consider! v k( ) ,!the!Fourier!transform!of! v r( ) !then!the!inverse!transform!gives:!

v k( ) = ∫ dr  e−ik⋅r v r( ); v r( ) = ∫ dk  eik⋅r v k( ) ! !

!
Taking!complex!conjugate!of!the!right!hand!equation!and!assuming!v(r)!is!real,!

where!we!obtain:! v k( ) = v∗ −k( ) .!!!
!
For!the!energy!tensor!we!obtain:!

 u r( ) = v ′r( ) ⋅v ′r + r( ) = ∫ dd kdd ′k  eik⋅rei(k+ ′k )⋅ ′r v k( ) ⋅ v ′k( ) !
! !
Now,! statistical! homogeneity!means! that! the! right! hand! side! is! independent! of! r.!!
This!implies!that!the!only!contribution!to!the!double!integral!is!from!k!=!Ek’,!hence:!
v k( ) ⋅ v ′k( ) = P k( )δ k + ′k( ) !!
!
This! defines! the! spectral! density!P(k)! and! shows! that! a! statistically! homogeneous!
field!can!be!represented!as!the!integral!over!statistically!independent!pairs!of!waves!
with!wavevectors!k!and!–k!,and!with!random!amplitudes!P.!
!
Using!this!result!we!obtain!a!dEdimensional!WienerEKhintchine!theorem:!

 
u r( ) = ∫ dd k  eik ⋅r v k( ) 2

! !
which!relates!the!autocorrelation!function!of!a!stationary!process!to!its!harmonic!
representation!via!a!Fourier!transform.!



Spectral	  Analysis	  in	  arbitrary	  dimensions	  4	  

Putting'r'='0'shows:'

 
u 0( ) = ∫ dd k  v k( ) 2

'  
and'using'isotropy'(and'ignoring'constant'factors'such'as4π ):'
u(0) =

0

∞

∫ dk  E k( ) =
0

∞

∫ dk  kd−1P k( ) '
' '
Hence'if'we'attribute'an'energy' 1

2
P k( ) 'to'each'wavenumber'k'then'the'total'energy'

in' Fourier' space' equals'
1
2 u(0) 'which' is' the' energy' per' unit' mass.' ' We' also' see'

immediately'that:'
' E k( ) = kd−1 1

2
v k( ) 2 '  

Hence'if'the'dBdimensional'spectral'density'P(k)'is:'

' P k( ) = v k( ) 2 ≈ k − s

' '
then:'
E k( ) = k−β; k = k ; β = s +1− d '



Spectral	  Analysis	  in	  arbitrary	  dimensions	  5	  
Concerning) the) enstrophy) spectrum,)we)now)repeat) the) above)arguments,) but) for)
∇2v )(recalling) that) in)Fourier) space)∇2 → −k2 )and)using:) the) identity) (assuming)

statistical)translational)invariance)) ω
2 = − v ⋅∇2v )we)obtain:)

)

 
ω 2 = v ⋅∇2v = ∫ dd k  k2 v k( ) 2

)
)  
and)integrating)as)usual)over)angles)in)Fourier)space:)
)
ω 2 =

0

∞

∫ dk  k2E(k) ))
)
hence:))
Eω (k) = k

2E(k) )


