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Section 2.2.2

Scaling

Q¥+QrVM=—Yz+VVﬁ+f | : ,
ot P, = Incompressible Navier-

- Stokes equations
V-v=0

where v is the velocity, 7 is the time, p is the pressure, p, is the (fluid) air density, v is the
kinematic viscosity, and f represents the body forces (per unit volume) due to stirring, gravity.
Eq. 3 expresses conservation of momentum, whereas eq. 4 expresses, conservation of mass in an
incompressible fluid: mathematically it can be considered simply as a constraint used to
eliminate p.

These equations are known to be formally invariant under isotropic “zooms” x = klg’ , as
long as one rescales the other variables as:

v=A"Y
t=A"Y
V=AY scaling
f — 7\.42Yv_1f,

% 1s an arbitrary scaling exponent (singularity; hence the possibility of “multiple scaling”
discussed below; we do not consider the pressure since as noted, it is easy to eliminate it with the
incompressibility condition.




Indeed, consider the energy flux €= —v* /9t we find:
x=MAx

e=A"""e The energy dissipation/energy flux €

If it is scale invariant, we obtain ¥, = 1/3, hence: for fluctuations in the velocity Av over distances

(lags) Ax, we obtain for the mean shear:
Ax =N Ax
Av=A"AV

If we eliminate A this is perhaps more familiar:

1/3
Av = ( Ax,) AV
Ax

or in dimensional form:

Av=eAx™; H =y, =1/3

The Kolmogorov law real space form

which was first derived by (Kolmogorov, 1941). A similar scaling argument in Fourier space
yields the famous K’ energy spectrum:

E(k) — 82/3k_5/3

The Kolmogorov law spectral form

This already implies nondifferentiability:
@: hmﬂzm—zm_)oo
ox A—0 Ay



2.2.3
Conservation of Turbulent Fluxes 1: Reynold’s number

The ratio of the nonlinear term to the dissipative (viscous) term in the Navier-Stokes equation
can be estimated using the “Reynolds” number:

Nonlinear terms  |[v-Vy| VL ,
Re ~ — — =1 Reynold’s number
Linear damping V‘V y‘ V

where V' is a “typical” velocity of the largest scale motions L (the “outer” scale). In the
atmosphere, Re is usually estimated by taking V' = 10 m/s or structures size 10* km (see ch. 8 for

more grecision, discussion). At standard temperature and pressure the viscosity of air is v =
10° m*/s hence Re = 10",



Conservation of Turbulent Fluxes 2: nonlinear terms

We now show that under certain conditions of mathematical regularity, the integral of the

—erergy rate density € of a fluid parcel is conserved by the non-linear terms of the Navier-Stokes
equation:

% =—(2-V)2—V(£]+VV22
Jt Py We shall see that this is a flux in
Fourier space
Multiplying both sides by v: /
2
g:_laL =—E'(Z'V)Z—(E'V)(£J+VE'V22
2 ot P,

Because of incompressibility (i.e., Vy=0 ), this can be written:

€ =—V-[£lv2 +£]z:|+vz-vzz
2 P,



Conservation of Turbulent Fluxes 3: dissipation

Integrating over a volume of space V, it yields (due to Gauss' divergence theorem that transforms
volume integrals of divergences to surface integrals):

ISdV =—JV‘ lv2+£ vdV= —¢ lv2+£ v-dS .
J 2 p, 2 p, Nonlinear term only

\4 N

where the right hand integral is over the surface only. The first term in the surface integral
represents the transfer of kinetic energy across the surface, the second is the work done by
pressure forces; there is no net source or sink of € inside the volume.

2
We now consider the dissipation term Wiy, Multiplying by v, ignoring the surface term
we obtain: B

JE dv :V\_/-JVZ\_/ dv .
) viscous term only

14

Now, using vector identities, we have:
v-V2y=—|Vxy = V-[(Vxv)xy]

The second term an the right hand side is a divergence, when integrated over a volume it can be
rewritten as a surface integral (Gauss’ theorem):

J'g v =—VJ|V><\_/|2dV—vCﬁ[(V><1_/)><y]'d_S The change of energy/
f v €— mass/time in a volume
depends only on the
Since the surface integral vanishes if S is a current surface @dSLY) org rigid boundary (v =0);  viscosity

it can be ignored if we take it to infinity. In these cases, the right hand side integrand is a

positive definite quantity, ¥ >0, and hence the viscosity is always dissipative (decreases the

total energy). Conversely, if V = 0, then € is “conserved” by the nonlinear terms, and even when

V . 0, the dissipation will only be important at small scales where the derivatives Vxy (i.e. the

vorticity) are important.



2.3

Extensions to passive scalars

If we include the concentration p of a passive scalar quantity (i.e.,, a quantity such as an
inert dye or in atmospheric experiments chaff which is advected, transported by the wind without
influencing the wind), we obtain the additional equation:

%z—y-Vp+KV2p+fp <

Equation of passive scalar
advection (+ Navier-Stokes
for v)

where K is the molecular diffusivity of the fluid.
The passive scalar equations are also formally invariant under the following scale
changing operations:

_ 1,7 — AV, - — )\ 1=70 47 . . .
x=Axs v=Atvy =AM Scale invariance of passive

2V A _ 3 1+2y, pr, _ 8142y, oo, . .
pP=ATPL  fEATTSL L= scalar advection equations
v=A = Ak

where %, Y, are arbitrary. This arbitrariness allows the possibility of multiple scaling (i.e., weak
and intense turbulent regions which scale differently, and have different fractal dimensions),
hence the solutions can in principle be multifractals.

. .. 2
By repeating arguments similar to the above for P rather than v? , one can check that the
scalar variance flux:

1 9p* New quadratic invariant
2 ot (conserved by nonlinear
terms)




Passive scalars:

convervation of variance rate, variance flux

y is analogous to € which will beis conserved by the non-linear terms ¥ vp . Putting X=0 and

recalling V=0,

1
X=—=—=—=—pr-Vp=—=V-(wp’
20 2 ( ) Note: the dissipation
term vazp

hence:
has been set to zero

lx dv = —%C‘fpzy’dS

this shows that there is no volume contribution to the passive scalar variance, it will be

conserved by the nonlinear ¥ vp term.

Using the conservation of ) one obtains y, = (1-y,)/2 and since from eq. 9, (from the
conservation of €), ¥, = 1/3 so that we find y, = 1/3. This yields the result analogous to the
Kolmogorov law; the “Corrsin- Obukhov law of passive scalar advection” (Corrsin, 1951),
(Obukhov, 1949) which in dimensional form is:

Ap = X1/28—1/6Apr; Hp =y, = 1/3 Corrsin-Obhukhov
law (real space)

1.e. with the same exponent H as the Kolmogorov law. Similarly, the Fourier space version is:

E,(k)=xe""k™" Corrsin-Obhukhov
law (Fourier space)
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turbulence and energy cascades

Cascade locality: The last ingredient needed to justify cascade models is to show that the energy )
transfer i1s most efficient between neighbouring scales: that it is “local” in Fourier space. Local Ity: read

appendix 2B

Consider a discrete hierarchy of eddies, broadly defined a fluid “coherent” structure.

v, = an appropriate characteristic velocity difference

T, = the time scale called the “eddy turnover time” which is the typical time necessary for the
dynamics to pass energy fluxes from one scale to another

l,, = the length scale (size of the eddy).

The Navier Stokes equations are Galilean invariant, hence It is the shear that is important
because it is the difference of velocity across an eddy which intervenes, not the "mean" velocity

of an eddy.
The subscript n refers to the number of octaves from the largest “outer scale”, thus Lo vefers to
[ Y 2 fn} _ o
all values of ¢ in the interval V2 : Typlcal VElOCIty difference at
vn=\/<\r(r)—z(r+l,,)2> the nth octave
The ¢ is the ensemble statistical average. Likewise
T~ 1V, “Eddy turn over” time (lifetime)

b

is the “eddy turnover time”, is the typical time scale of the transfer process. Finally (again using

dimensional analysis) the viscous time scale corresponding to the n~ octave is:

2
n

Toan = Viscous time scale

>>1T,

Viscosity can be ignored if T (i.e., the viscosity is too slow to affect the dynamics).



Quasi-steady energy flux

Denote by I

k,/ V2 <ks ‘/Ekn) into a higher octave \/Ekn <ks 2‘/51% ). This is a Fourier-space energy
flux. It is given by the energy per unit mass in the octave (E,) divided by the typical time scale
of the transfer, the eddy turn-over time:

En
L= Flux of energy through the nt" octave

n the rate at which energy is transferred out of a low wavenumber octave

Now assume that the cascade is local so that the dominant contribution to £, comes from the

2
velocity gradient at the same scale, ie. v,  This impliesEn Vs (recall that due to

>>7T

incompressibility all energies are taken per unit mass) and that Tois.n » so that there is no

energy dissipation in this wave number band.

Assume that the energy injection rate € (e.g., by stirring) at large scale is balanced by viscous
dissipation at small scale then it is possible that the system is stationary (statistically invariant

under translations in time) thean ~constant ;o there are no viscous losses and no sinks nor

sources. This is assumed to be a quasi-steady state: energy flows through the n"™ octave at a rate
€ which is on average equal to the large scale injection rate and to the small scale dissipation (as
we will see, such statistical stationarity is quite compatible with violent fluctuations):

. n~ﬂ~i~;—3~constant Quasi steady flux of
K (6] " energy from large
vn

structures to small

(assuming that the injection rate is constant). l_Inis therefore a scale invariant quantity (it is
independent of n). This yields Kolmogorov's law (1941):

1/3 p1/3
v, ~&°0,




The Kolmogorov-Obukhov Spectrum

Since the fluctuation v, is a scaling power law function of size /,, we expect that the spectrum
will also be power law (see section 2.4.5 for more details on Tauberian theorems that relate real

space and Fourier space scaling). For wavenumber p, we therefore seek the spectral exponent B ;
E(p)~p”
p)~p

corresponding to the real space exponent 1/3 in eq. 2.50. Assuming B> lwe get the following
expression for the total variance due to all the low wavenumbers in the band:

2 2 ﬁk” 2
v, zfnj dp p” E(p)
k, N2

(since the variance in a spherical shell between p and p+dp is 4 pzdp, and we ignore the
constant factor). We thus obtain:
V= k)P~ 2

- 2
(since €.~ knl). This implies 2—-3+p3 = 3 or:
5
P=3

The Kolmogorov-Obukhov spectrum is thus derived:

E(k) _ 82/3k_5/3
! The Kolmogorov-Obukhov Spectrum



Schematic diagram of 3-D energy cascade
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2.5

The Special Case of 2-D Turbulence

The vorticity equation is obtained by taking the curl of the velocity equation:

D 1 ..
ﬁ:(@-v)yvv@w; b=—5VpxVp &= Vorticity eq.
/ \ Recall:
Vortex stretching term Baroclinicity vector %:%—@+Z-V@
t

In 2-D:

For a two dimension flow the vorticity o must beis perpendicular to v (i.e, 0=0z
®,=0v,/dx—0dv, /ax, W, =0, :Osince
no longer have any vortex stretching since:

(@-V)y=0 No Vortex stretching

9

v, =0 , d/0dz= 0. consequently:. We therefore can

1.e. there 1s no longer any vortex stretching and the incompressible vorticity equation reduces to

In 2-D we thus obtain an advection-dissipation equation for the vorticity:

D@ _ V2
o e No Vortex stretching

when the dissipation is negligible, any power of the vorticity is conserved, not only the enstrophy
which is its square. We can define the enstrophy flux density:

1w’
2 ot

Enstrophy flux density




In 3D, Vortex stretching implies the
direction of the cascade is from large to
small scales

243

2D: No Vortex stretching,
vortices are vertically aligned

(limited vortex stretching is possible in
. “quasi-geostrophic” turbulence)
Read section ,
2.4.3 f
. 4
al
=
’;\vt 2 quadratic €= a_vz — amz
‘7| invariants: ot ot

E(k) k—5/3 Large scales,

upscale

“|Iregimes
1 quadratic invariant: £ =—

1 scaling regime E(k)=k™>" downscale

E(k) = k_3 Small scales,
down scale

Vortex tubes (surfaces bounded by lines of vorticity) are material tubes (section 2.4.3) hence if the ends of the tube
move further apart as the flow evolves (a kind of “drunkard’s walk in a complex flow), then since the tubes are

incompressible, the cross-section must tend to get smaller, hence the creation of small structures from large due to
vortex stretching.



Spectral Analysis in arbitrary dimensions 1

We generalize the 1-D results to higher dimensions, here we consider space
rather than time. Consider the second order velocity correlation tensor:

U, (K) — <Vi (r_’) v, (r_’ + K)> — <Vi (r_') v, (r_' — K)> Statistical homogeneity: translational invarance
the symmetry under inversion follows from translational invariance (this can be a
function of time but we will not denote this explicitly). We will go on assuming

statistical homogeneity, ie, independence of translation when it applies to
translation in time and space.

Furthermore, we will also assume that the turbulence is statistically isotropic

(independent of direction). Then we have u"f'(z): uﬁ(l) and MU(K) - uij(r) where

r=|r . We can define “(") = 4i(") the trace of the velocity correlation tensor (using

Einstein's notation convention for summing over a repeated index) and the average
energy per unit mass is thus:

e=%<\z(0)!2>=%u<0)

(by spatial homogeneity, there is no r dependence).



Spectral Analysis in arbitrary dimensions 2

Introducing the d-dimensional Fourier transform and its inverse:

J.ddk e ’k’u u([) = J.ddlg e”“it(lg)

we obtain:

a0)=] d'r u(r)

(setting k = 0).

k We now wish to exploit the isotropy by performing the d-
dimensional Fourier space integral above over (d —1)-dimensional

“annuli” or

“shells”. We obtain
e= j “dk E(k)
0

where e is the total energy per unit mass and

E(k) ~ k" (k)

= |k (in one dimension the

is the (isotropic) “energy spectrum” and where
Juami®dk

integral is J“dk ,in two dimensions fuandk ,in three dimensions



Spectral Analysis in arbitrary dimensions 3

Consider E(k), the Fourier transform of y(z) then the inverse transform gives:
v(k)= sz e v(r); v(r)= J.dk e (k)

Taking complex conjugate of the right hand equation and assuming v(r) is real,

where we obtain: (k)= (_IS).

For the energy tensor we obtain:

M(K): <\_/(”_’)E(7’_’+Z)> _ J.ddkddk_' eik-zei(k+k_’).r_’ <‘_~’(]£)

(&)

Now, statistical homogeneity means that the right hand side is independent of r.
This implies that the only contribution to the double integral is from k = -K’, hence:

(0(k)-2(k)) = P(k)3(k +K)

<t

This defines the spectral density P(k) and shows that a statistically homogeneous
field can be represented as the integral over statistically independent pairs of waves
with wavevectors k and -k ,and with random amplitudes P.

Using this result we obtain a d-dimensional Wiener-Khintchine theorem:

u(r)=Ja'i e ([5(k))

which relates the autocorrelation function of a stationary process to its harmonic
representation via a Fourier transform.




Spectral Analysis in arbitrary dimensions 4

Putting r = 0 shows:

u(0)=Ja'i (MO
and using isotropy (and ignoring constant factors such as47 ):

u(©)= [ dkE(k)= j:dk kP (k)

1
Hence if we attribute an energy EP(k) to each wavenumber k then the total energy

1
in Fourier space equals ;u(0) which is the energy per unit mass. We also see
immediately that:

E(R) =" (50 )
Hence if the d-dimensional spectral density P(k) is:
P(k)=(lo (k) ) =k
then:
E(k)=kP; k=

-




Spectral Analysis in arbitrary dimensions 5

Concerning the enstrophy spectrum, we now repeat the above arguments, but for
v’ . . . 2 2 N .
< ‘—;> (recalling that in Fourier space Vi—>-k" 4nd using: the identity (assuming

2 2
. . : : 0 )=—(v-V .
statistical translational invariance) < > <Y Y> we obtain:

(lof ) =(u-v*v)= Jarkw (MO
and integrating as usual over angles in Fourier space:
(lof)= | di*Ew)

hence:
E (k)= k’E(k)



