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Scaling	
  	
  	
  

∂v
∂t

+ (v ⋅∇)v = −
∇p
ρa

+ ν∇2v + f
  1 

∇ ⋅ v = 0   2 

where v is the velocity,  t is the time, p is the pressure, ρa is the (fluid) air density, ν is the 3 
kinematic viscosity, and f represents the body forces (per unit volume) due to stirring, gravity. 4 
Eq. 3 expresses conservation of momentum, whereas eq. 4 expresses, conservation of mass in an 5 
incompressible fluid: mathematically it can be considered simply as a constraint used to 6 
eliminate p. 7 

These equations are known to be formally invariant under isotropic “zooms” x = λ1x′ , as 8 
long as one rescales the other variables as: 9 

v = λγ v ′v
t = λ−γ v +1 ′t
ν = λγ v +1 ′ν
f = λ2γ v −1 ′f   10 

γv is an arbitrary scaling exponent (singularity; hence the possibility of “multiple scaling” 11 
discussed below; we do not consider the pressure since as noted, it is easy to eliminate it with the 12 
incompressibility condition.  13 

Sec+on	
  2.2.2	
  

Incompressible	
  Navier-­‐
Stokes	
  equa+ons	
  

scaling	
  



Indeed,  consider the energy flux ε = −∂v2 / ∂t  we find: 1 

x = λ1 ′x
ε = λ−1+3γ v ′ε  2 

If it is scale invariant, we obtain γv = 1/3, hence: for fluctuations in the velocity Δv over distances 3 
(lags) Δx, we obtain for the mean shear: 4 

Δx = λ1Δ ′x
Δv = λ1/3Δ ′v  5 

If we eliminate λ this is perhaps more familiar:  6 

Δv =
Δx
Δ ′x

⎛
⎝⎜

⎞
⎠⎟
1/3

Δ ′v
 7 

or in dimensional form: 8 

Δv ≈ ε1/3ΔxHv ; Hv = γ v = 1 / 3  9 

which was first derived by (Kolmogorov, 1941).  A similar scaling argument in Fourier space 10 
yields the famous    k-5/3 energy spectrum: 11 

E(k) = ε2/3k−5/3
 12 

 13 
 14 

This already implies nondifferentiability: 1 
∂v
∂x

= lim
Δx→0

Δv
Δx

≈ Δx−2 /3 →∞
  2 

The	
  Kolmogorov	
  law	
  spectral	
  form	
  

The	
  energy	
  dissipa+on/energy	
  flux	
  ε	



The	
  Kolmogorov	
  law	
  real	
  space	
  form	
  



Conserva8on	
  of	
  Turbulent	
  Fluxes	
  1:	
  Reynold’s	
  number	
  

The ratio of the nonlinear term to the dissipative (viscous) term in the Navier-Stokes equation 1 
can be estimated using  the “Reynolds” number: 2 

Re ~ Nonlinear terms
Linear damping

=
v ⋅∇v
ν ∇2v

~ V ⋅ L
ν

 3 

where V is a “typical” velocity of the largest scale motions L (the “outer” scale).  In the 4 
atmosphere, Re is usually estimated by taking V ≈ 10 m/s or structures size 104 km (see ch. 8 for 5 
more precision, discussion).  At standard temperature and pressure the viscosity of air is ν =    6 
10-5 m2/s  hence Re ≈ 1012.  7 

2.2.3	
  	
  

Reynold’s	
  number	
  



We now show that under certain conditions of mathematical regularity, the integral of the 1 
energy rate density ε of a fluid parcel is conserved by the non-linear terms of the Navier-Stokes 2 
equation: 3 

∂v
∂t

= −(v ⋅∇)v −∇ p
ρ f

⎛

⎝⎜
⎞

⎠⎟
+ ν∇2v  4 

Multiplying both sides by v: 5 

ε = − 1
2
∂v2

∂t
= −v ⋅ v ⋅∇( )v − v ⋅∇( ) p

ρ f

⎛

⎝⎜
⎞

⎠⎟
+ νv ⋅∇2v  6 

Because of incompressibility (i.e., ∇ ⋅ v = 0 ), this can be written: 7 

ε = −∇⋅ 1
2
v2 + p

ρ f

⎛

⎝⎜
⎞

⎠⎟
v

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ νv ⋅∇2v  8 

Conserva8on	
  of	
  Turbulent	
  Fluxes	
  2:	
  nonlinear	
  terms	
  

We	
  shall	
  see	
  that	
  this	
  is	
  a	
  flux	
  in	
  
Fourier	
  space	
  



Integrating over a volume of space V, it yields (due to Gauss' divergence theorem that transforms 1 
volume integrals of divergences to surface integrals):  2 

 V
∫ε dV  = − ∇ ⋅

1
2
v2 +

p
ρ f

⎛

⎝⎜
⎞

⎠⎟
v

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V

∫ dV =  − 1
2
v2 +

p
ρ f

⎛

⎝⎜
⎞

⎠⎟
v

S
∫ ⋅dS

 3 

where the right hand integral is over the surface only.  The first term in the surface integral 4 
represents the transfer of kinetic energy across the surface, the second is the work done by 5 
pressure forces; there is no net source or sink of ε  inside the volume. 6 

We now consider the dissipation term ν∇
2v .  Multiplying by v, ignoring the surface term 7 

we obtain: 8 

V
∫ε dV  = νv ⋅

V
∫∇2v dV

 9 

Now, using vector identities, we have: 10 
v ⋅∇2v = − ∇ × v 2 − ∇ ⋅ (∇ × v) × v[ ]  11 

The second term an the right hand side is a divergence, when integrated over a volume it can be 12 
rewritten as a surface integral (Gauss’ theorem): 13 

 V
∫ε dV  = −ν

V
∫ ∇ × v 2 dV − ν (∇ × v) × v[ ]

S
∫ ⋅dS

 14 

Since the surface integral vanishes if S is a current surface (dS ⊥ v)  or a rigid boundary (v = 0); 15 
it can be ignored if we take it to infinity.  In these cases, the right hand side integrand is a 16 
positive definite quantity, ν > 0 , and hence the viscosity is always dissipative (decreases the 17 
total energy).  Conversely, if ν = 0, then ε is “conserved” by the nonlinear terms, and even when 18 

ν . 0, the dissipation will only be important at small scales where the derivatives ∇ × v  (i.e. the 19 
vorticity) are important. 20 

Conserva8on	
  of	
  Turbulent	
  Fluxes	
  3:	
  dissipa8on	
  

The	
  change	
  of	
  energy/
mass/+me	
  in	
  a	
  volume	
  
depends	
  only	
  on	
  the	
  
viscosity	
  

Nonlinear	
  term	
  only	
  

viscous	
  term	
  only	
  



Extensions	
  to	
  passive	
  scalars	
  
If we include the concentration ρ of a passive scalar quantity (i.e., a quantity such as an 1 

inert dye or in atmospheric experiments chaff which is advected, transported by the wind without 2 
influencing the wind), we obtain the additional equation: 3 

∂ρ
∂t

= −v ⋅∇ρ+ κ∇2ρ+ fρ  4 

where κ  is the molecular diffusivity of the fluid.  5 
The passive scalar equations are also formally invariant under the following scale 6 

changing operations: 7 

x = λ1 ′x ; v = λγ v v′; t = λ1−γ v ′t ;

ρ = λγρ ′ρ ; f = λ1+2γ v ′f ; fρ = λ1+2γ v ′fρ;

v = λ1+ γ v ′v ; κ = λ1+ γρ ′κ
  8 

where γv, γρ are arbitrary.  This arbitrariness allows the possibility of multiple scaling (i.e., weak 9 
and intense turbulent regions which scale differently, and have different fractal dimensions), 10 
hence the solutions can in principle be multifractals. 11 

By repeating arguments similar to the above for ρ
2

 rather than v2 , one can check that the 12 
scalar variance flux:  13 

χ = −
1
2
∂ρ2

∂t   14 
 15 

2.3	
  

Equa+on	
  of	
  passive	
  scalar	
  
advec+on	
  (+	
  Navier-­‐Stokes	
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  invariance	
  of	
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scalar	
  advec+on	
  equa+ons	
  

New	
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terms)	
  



χ is analogous to ε  which will beis conserved by the non-linear terms v ⋅∇ρ .  Putting κ = 0  and 1 
recalling ∇ ⋅ v = 0 : 2 

χ = −
1
2
∂ρ2

∂t
= −ρv ⋅∇ρ = −

1
2
∇ ⋅ vρ2( )

 3 

hence: 4 

 V
∫χ dV  = −

1
2

ρ2v
S
∫ ⋅dS

 5 

this shows that there is no volume contribution to the passive scalar variance, it will be 6 
conserved by the nonlinear v ⋅∇ρ  term.  7 

Using the conservation of χ one obtains γρ = (1-γv)/2 and since from eq. 9, (from the 8 
conservation of ε), γv = 1/3 so that we find γρ = 1/3.  This yields the result analogous to the 9 
Kolmogorov law; the “Corrsin- Obukhov law of passive scalar advection” (Corrsin, 1951), 10 
(Obukhov, 1949) which in dimensional form is: 11 

Δρ = χ1/2ε−1/6ΔxHρ ; Hρ = γ ρ = 1 / 3
 12 

i.e. with the same exponent H as the Kolmogorov law.  Similarly, the Fourier space version is: 13 
Eρ k( ) = χε−1/3k−5 /3

 14 
 15 

Passive	
  scalars:	
  	
  
converva8on	
  of	
  variance	
  rate,	
  variance	
  flux	
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law	
  (real	
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Corrsin-­‐Obhukhov	
  
law	
  (Fourier	
  space)	
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term	
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Classical	
  isotropic	
  3D	
  turbulence	
  phenomenology:	
  Kolmogorov	
  
turbulence	
  and	
  energy	
  cascades	
  

vn = v r( ) − v r + ln( ) 2
 1 

The  〈〉  is the ensemble statistical average.  Likewise 2 
 3 

     τn ~ n / vn ,  4 
 5 
is the “eddy turnover time”, is the typical time scale of the transfer process.  Finally (again using 6 
dimensional analysis) the viscous time scale corresponding to the nth octave is: 7 

 
τn,dis =

n
2

ν  8 

Viscosity can be ignored if τn,dis >> τn  (i.e., the viscosity is too slow to affect the dynamics).  9 

Cascade locality: The last ingredient needed to justify cascade models is to show that the energy 1 
transfer is most efficient between neighbouring scales: that it is “local” in Fourier space.  2 
  3 
Consider a discrete hierarchy of eddies, broadly defined a fluid “coherent” structure.  4 
  5 
vn = an appropriate characteristic velocity difference 6 
τn = the time scale called the “eddy turnover time” which is the typical time necessary for the 7 
dynamics to pass energy fluxes from one scale to another 8 
ln, = the length scale (size of the eddy).   9 
 10 
The Navier Stokes equations are Galilean invariant, hence It is the shear that is important 11 
because it is the difference of velocity across an eddy which intervenes, not the "mean" velocity 12 
of an eddy.  13 

2.4	
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  octave	
  

Viscous	
  +me	
  scale	
  

“Eddy	
  turn	
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Quasi-­‐steady	
  energy	
  flux	
  

Denote by ∏n  the rate at which energy is transferred out of a low wavenumber octave 1 

kn / 2 ≤ k ≤ 2kn ) into a higher octave 2kn ≤ k ≤ 2 2kn ).  This is a Fourier-space energy 2 
flux.  It is given by the energy per unit mass in the octave (En) divided by the typical time scale 3 
of the transfer, the eddy turn-over time: 4 

∏n ≈
En

τn  5 

Now assume that the cascade is local so that the dominant contribution to En comes from the 6 

velocity gradient at the same scale, i.e. vn.  This impliesEn ~ vn
2
 (recall that due to 7 

incompressibility all energies are taken per unit mass) and that τvis,n >> τn  so that there is no 8 
energy dissipation in this wave number band.   9 
 10 
Assume that the energy injection rate ε  (e.g., by stirring) at large scale is balanced by viscous 11 
dissipation at small scale then it is possible that the system is stationary (statistically invariant 12 

under translations in time) then∏n ~ constant , i.e., there are no viscous losses and no sinks nor 13 
sources.  This is assumed to be a quasi-steady state: energy flows through the nth octave at a rate 14 
ε which is on average equal to the large scale injection rate and to the small scale dissipation (as 15 
we will see, such statistical stationarity is quite compatible with violent fluctuations): 16 

 

ε = ∏n ~
En

τn
~ vn

2

n
vn

⎛
⎝⎜

⎞
⎠⎟

~ vn
3

n
~ constant

 17 

(assuming that the injection rate is constant). ∏n is therefore a scale invariant quantity (it is 18 
independent of n).  This yields Kolmogorov's law (1941): 19 

 vn ~ ε
1/3n

1/3
 20 

Flux	
  of	
  energy	
  through	
  the	
  nth	
  octave	
  

Quasi	
  steady	
  flux	
  of	
  
energy	
  from	
  large	
  
structures	
  to	
  small	
  



Since the fluctuation vn is a scaling power law function of size ln, we expect that the spectrum 1 
will also be power law (see section 2.4.5 for more details on Tauberian theorems that relate real 2 
space and Fourier space scaling).  For wavenumber p, we therefore seek the spectral exponent β : 3 
 4 

E(p) ~ p−β
 5 

corresponding to the real space exponent 1/3 in eq. 2.50.  Assuming β > 1we get the following 6 
expression for the total variance due to all the low wavenumbers in the band: 7 

 
vn
2 ≈ n

2

kn / 2

2kn∫ dp p2 E(p)
 8 

(since the variance in a spherical shell between p and p+dp is 4π p2dp, and we ignore the 9 
constant factor).  We thus obtain: 10 

 vn
2 ≈ n

2 kn
3−β ~ n

2−3+β       11 

(since   n ~ kn
−1

).  This implies 2 − 3+ β =
2
3

 or:  12 

β =
5
3  13 

The Kolmogorov-Obukhov  spectrum is thus derived: 14 
E(k) ~ ε2 /3kn

−5 /3
 15 

The	
  Kolmogorov-­‐Obukhov	
  Spectrum	
  

The	
  Kolmogorov-­‐Obukhov	
  Spectrum	
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The	
  Special	
  Case	
  of	
  2-­‐D	
  Turbulence	
  

For a two dimension flow the vorticity ω must beis perpendicular to v (i.e.,  ω = ω z
z , 1 

ω z = ∂vy / ∂x − ∂vx / ∂x , ω x = ω y = 0 since vz = 0 , ∂ / ∂z = 0 ; consequently:. We therefore can 2 
no longer have any vortex stretching since:  3 

(ω ⋅∇)v ≡ 0  4 

i.e. there is no longer any vortex stretching and the incompressible vorticity equation reduces to 5 
In 2-D we thus obtain an advection-dissipation equation for the vorticity: 6 

Dω
Dt

= ν∇2ω  7 

when the dissipation is negligible, any power of the vorticity is conserved, not only the enstrophy 8 
which is its square.  We can define the enstrophy flux density:  9 

η = −
1
2
∂ω2

∂t   10 

2.5	
  	
  

The vorticity equation is obtained by taking the curl of the velocity equation: 1 
 2 

Dω
Dt

= ω ⋅∇( )v + ν∇2ω + b; b = 1
ρ2

∇ρ×∇p   3 Vor+city	
  eq.	
  

Baroclinicity	
  vector	
  Vortex	
  stretching	
  term	
  

In	
  2-­‐D:	
  

No	
  Vortex	
  stretching	
  

No	
  Vortex	
  stretching	
  

Dω
Dt

= ∂ω
∂t

+ v ⋅∇ω

Recall:	
  

Enstrophy	
  flux	
  density	
  



In	
  3D,	
  Vortex	
  stretching	
  implies	
  the	
  
direc+on	
  of	
  the	
  cascade	
  is	
  from	
  large	
  to	
  

small	
  scales	
  	
  

Read	
  sec+on	
  
2.4.3	
  

 1 
 2 

2.4.3	
  

Vortex	
  tubes	
  (surfaces	
  bounded	
  by	
  lines	
  of	
  vor+city)	
  are	
  material	
  tubes	
  (sec+on	
  2.4.3)	
  hence	
  if	
  the	
  ends	
  of	
  the	
  tube	
  
move	
   further	
   apart	
   as	
   the	
   flow	
   evolves	
   (a	
   kind	
   of	
   “drunkard’s	
   walk	
   in	
   a	
   complex	
   flow),	
   then	
   since	
   the	
   tubes	
   are	
  
incompressible,	
  the	
  cross-­‐sec+on	
  must	
  tend	
  to	
  	
  get	
  smaller,	
  hence	
  the	
  crea+on	
  of	
  small	
  structures	
  from	
  large	
  due	
  to	
  
vortex	
  stretching.	
  



Spectral	
  Analysis	
  in	
  arbitrary	
  dimensions	
  	
  1	
  

We#generalize#the#1.D#results#to#higher#dimensions,#here#we#consider#space#
rather#than#time.##Consider#the#second#order#velocity#correlation#tensor:#
uij r( ) = vi ′r( )vj ′r + r( ) = vi ′r( )vj ′r − r( ) # #
the#symmetry#under# inversion# follows# from#translational# invariance#(this#can#be#a#
function# of# time# but#we#will# not# denote# this# explicitly).# #We#will# go# on# assuming#
statistical# homogeneity,# i.e.,# independence# of# translation# when# it# applies# to#
translation#in#time#and#space.###
#
Furthermore,# we# will# also# assume# that# the# turbulence# is# statistically# isotropic#
(independent# of# direction).# # Then# we# have#uij r( ) = uji r( ) #and#uij r( ) = uij r( ) #where
r = r .##We#can#define#u(r) ≡ uii (r) #the#trace#of#the#velocity#correlation#tensor#(using#
Einstein's#notation#convention#for#summing#over#a#repeated#index)#and#the#average#
energy#per#unit#mass#is#thus:#
e = 1

2
v 0( ) 2 = 1

2
u(0) # #

(by#spatial#homogeneity,#there#is#no#r#dependence).###

Sta+s+cal	
  homogeneity:	
  transla+onal	
  invarance	
  



Spectral	
  Analysis	
  in	
  arbitrary	
  dimensions	
  2	
  

Introducing+the+d.dimensional+Fourier+transform+and+its+inverse:+

u k( ) = ∫ dd k  e−ik⋅ru r( ); u r( ) = ∫ dd k  eik⋅r u k( ) + +
we+obtain:+

 u(0) = ∫ dd r  u r( ) + +
(setting+ k+ =+ 0).+ + We+ now+ wish+ to+ exploit+ the+ isotropy+ by+ performing+ the+ d.
dimensional+ Fourier+ space+ integral+ above+ over+ (d+ −1).dimensional+ “annuli”+ or+
“shells”.++We+obtain+
e =

0

∞

∫ dk  E(k) + +
where+e+is+the+total+energy+per+unit+mass+and+
+
+ E(k) ~ kd−1 u(k) +
+
+is+ the+ (isotropic)+ “energy+ spectrum”+ and+ where+ k = k +(in+ one+ dimension+ the+
integral+is+ ∫udk ,+in+two+dimensions+ ∫u2πkdk ,+in+three+dimensions+ ∫u4πk2dk ).+



Spectral	
  Analysis	
  in	
  arbitrary	
  dimensions	
  3	
  
!Consider! v k( ) ,!the!Fourier!transform!of! v r( ) !then!the!inverse!transform!gives:!

v k( ) = ∫ dr  e−ik⋅r v r( ); v r( ) = ∫ dk  eik⋅r v k( ) ! !

!
Taking!complex!conjugate!of!the!right!hand!equation!and!assuming!v(r)!is!real,!

where!we!obtain:! v k( ) = v∗ −k( ) .!!!
!
For!the!energy!tensor!we!obtain:!

 u r( ) = v ′r( ) ⋅v ′r + r( ) = ∫ dd kdd ′k  eik⋅rei(k+ ′k )⋅ ′r v k( ) ⋅ v ′k( ) !
! !
Now,! statistical! homogeneity!means! that! the! right! hand! side! is! independent! of! r.!!
This!implies!that!the!only!contribution!to!the!double!integral!is!from!k!=!Ek’,!hence:!
v k( ) ⋅ v ′k( ) = P k( )δ k + ′k( ) !!
!
This! defines! the! spectral! density!P(k)! and! shows! that! a! statistically! homogeneous!
field!can!be!represented!as!the!integral!over!statistically!independent!pairs!of!waves!
with!wavevectors!k!and!–k!,and!with!random!amplitudes!P.!
!
Using!this!result!we!obtain!a!dEdimensional!WienerEKhintchine!theorem:!

 
u r( ) = ∫ dd k  eik ⋅r v k( ) 2

! !
which!relates!the!autocorrelation!function!of!a!stationary!process!to!its!harmonic!
representation!via!a!Fourier!transform.!



Spectral	
  Analysis	
  in	
  arbitrary	
  dimensions	
  4	
  

Putting'r'='0'shows:'

 
u 0( ) = ∫ dd k  v k( ) 2

'  
and'using'isotropy'(and'ignoring'constant'factors'such'as4π ):'
u(0) =

0

∞

∫ dk  E k( ) =
0

∞

∫ dk  kd−1P k( ) '
' '
Hence'if'we'attribute'an'energy' 1

2
P k( ) 'to'each'wavenumber'k'then'the'total'energy'

in' Fourier' space' equals'
1
2 u(0) 'which' is' the' energy' per' unit' mass.' ' We' also' see'

immediately'that:'
' E k( ) = kd−1 1

2
v k( ) 2 '  

Hence'if'the'dBdimensional'spectral'density'P(k)'is:'

' P k( ) = v k( ) 2 ≈ k − s

' '
then:'
E k( ) = k−β; k = k ; β = s +1− d '



Spectral	
  Analysis	
  in	
  arbitrary	
  dimensions	
  5	
  
Concerning) the) enstrophy) spectrum,)we)now)repeat) the) above)arguments,) but) for)
∇2v )(recalling) that) in)Fourier) space)∇2 → −k2 )and)using:) the) identity) (assuming)

statistical)translational)invariance)) ω
2 = − v ⋅∇2v )we)obtain:)

)

 
ω 2 = v ⋅∇2v = ∫ dd k  k2 v k( ) 2

)
)  
and)integrating)as)usual)over)angles)in)Fourier)space:)
)
ω 2 =

0

∞

∫ dk  k2E(k) ))
)
hence:))
Eω (k) = k

2E(k) )


