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Recap 3D cascades



Schematic diagram of 3-D energy cascade
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2.5

The Special Case of 2-D Turbulence

The vorticity equation is obtained by taking the curl of the velocity equation:

%=(@-V)2+W2@+Zz; l_)=p—12Vp><Vp &= Vorticity eq.
/ \ Recall:
Vortex stretching term Baroclinicity vector %:aa—?w.v@
In 2-D:
For a two dimension flow the vorticity @ must beis perpendicular to v (i.e., @< ®.Z
®, = v, /dx—dv, /dx [0 =0, = 0 ince ¥: = 0, d/0dz=0. consequently:. We therefore can

no longer have any vortex stretching since:
(@-V)y=0 No Vortex stretching

1.e. there is no longer any vortex stretching and the incompressible vorticity equation reduces to
In 2-D we thus obtain an advection-dissipation equation for the vorticity:

Dt = No Vortex stretching

when the dissipation is negligible, any power of the vorticity is conserved, not only the enstrophy
which is its square. We can define the enstrophy flux density:

1 ow>

— Enstrophy flux density
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In 3D, Vortex stretching implies the
direction of the cascade is from large to
small scales
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2 . L

vortices are vertically aligned

(limited vortex stretching is possible in
“quasi-geostrophic” turbulence)

Read section
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Vortex tubes (surfaces bounded by lines of vorticity) are material tubes (section 2.4.3) hence if the ends of the tube
move further apart as the flow evolves (a kind of “drunkard’s walk in a complex flow), then since the tubes are

incompressible, the cross-section must tend to get smaller, hence the creation of small structures from large due to
vortex stretching.






Two-Dimensional Enstrophy Cascades
1

Returning to the ideal case of two dimensional turbulence we have seen that both energy
and enstrophy are conserved by the nonlinear terms, hence both will be cascaded. We have:

() = enstrophy = J dp 17'*; o(P)= J. dp PZE't(‘P) enstrophy

Spectrum of vorticity Spectrum of velocity
th
where the enstrophy €. The enstrophy in the n octave is therefore:

Q, _[fk dp p’E(p) = _[ LA p’p? ”\k,f ~k, E(k,)

From the spectrum we can estimate the lifetime/ ”eddy turn over-time” of a structure size /, =
1/k, as:

-1/2

o~ ([CaprEw)| ~ (k)

In analogy with the energy cascade, we can also define:

@ = £
oo

n

as the Fourier-space enstrophy flux (which is constant for a quasi-steady process) through the n™
octave.



Two-Dimensional Enstrophy Cascades
2

Finally we obtain the enstrophy flux through the n" octave in Fourier space:
Q K E(k
ngg) =—n~ ol n)—1/2
T, (kf1 E(kn)) Enstrophy flux

Q
If we assume that this is constant in a steady state and independent of », then M~ HEI ) and we
obtain the spectrum in the constant enstrophy flux regime:

E(k) - T]2/3k—3

Kraichnan law Fourier space

Using either dimensional analysis or the Tauberian theorems (section 2.4.5), we can obtain the
corresponding real space result:

1/3 .
Av =1"Ax Kraichnan law real space

These formulae (sometimes called the real and in Fourier space “Kraichnan” laws;



Two-Dimensional Enstrophy Cascades  FRead:252

If both € and 1 are cascaded, which direction?

LogE (k) E, (k)= kKE(k)

if the small scale were dominated by an energy
cascade, then

E, (k)= Kk*k™"

\ and this would yield a small scale (large k)

divergence of enstrophy since:

Q=(0")= dp E,(p)

-3
k This implies that the enstrophy is cascades to small
scales and the energy to large scales (otherwise
the energy flux would vanish in the small scale
limit).
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Injection of enstrophy and energy at the same wavenumber k.
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Quick explanation for low
frequency spectrum

Aircraft do not fly on flat trajectories: they fly on fractals and they are sloping .

In the vertical the spectrum is k24, this becomes dominant at large distances
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NASA’s ER-2 aircraft during missions near Antarctica
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2.15

24 aircraft legs =1000
km long, from Lovejoy
et al 2009



14500 aircraft flights: 5-5.5km altitude, 2009,

US (TAMDAR data)
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Fractal sets

Set: Black / white, single fractal dimension
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A fractal Koch curve ([Koch,
1904]), reproduced from
[ Welander, 1955] to illustrate the

mixing of a two dimensional
fluid.
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A fractal Peano curve, reproduced from
[Steinhaus, 1960] showing how a line
(dimension 1) can literally fill the plane
(dimension 2), illustrating how streams
can fill a surface.



Early notions of dimension
(Greeks)

In the 19t C, It was believed that the
dimension was the number of independent
coordinates needed to specify the position of a
point.

Mapping the unit
square onto the
unit interval
(Cantor,
discontinuous)

L1 Topological Dimensions

L1 Early ldeas of Dimeusion

Before set theory (<1870), ideas of dimension were vague. For example it was widely
thought that the dimension of the set to which a point belongs is equal to the number of
parameters needed to specify its position. For example “a configuration is said to be n-
dimensional if the least number of real parameters needed to describe its points in some
unspecified way is n”. The basic ideas of dimension had hardly evolved since Euclid's
definition: o
Euclid's definition of Dimension (circa 300 B.C.)

1) A point is that which has no part.

2) A line is a breadthless length.

3) The extremities of lines are points.

4) A surface is that which has length and breadth only.

5) The extremities of surfaces are lines.
The idea of dimension as the number of parameters was shown to be inadequate by two
developments:

112 Problems wilh the Early Dofnfiess

1) In 1872, Cantor found a way to map a unit square {0,1]® [0,1] onto a unit interval using
a 1:1 mapping.

—
—_

Figure .1

To define the mapping, write it as (X,y) — t and expand X,y coordinates in binary, ie.,
X = 0.ngN2N4Ns..., and y = 0.n1N3nsn7..., where the nj are all zeroes and ones. The point
(x,y) is mapped to the point in the unit interval with single coordinate t with
t = 0.nynan3nga...

2
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Continuous
mapping a line
onto the unit
square (Peano,
... but not 1:1)

With rounded corners for pedagogy only:

N 0
AT _Q>
IR | <A
= [« ook
i&t
O 03
s

=
PASARS
G

L L
),

T

PO
§x|

RO,
PR
o
s
=
gt
P

IQNE)

ST I <T?
iy

555

L

P

P

ags
PEE) (o\‘,
z‘??
U

o

Although this mapping is clearly 1:1, it is far from continuous (neighbouring points on the
line are not neighbouring on the square). This mapping clearly showed that a square
cannot be considered “two dimensional” simply because two coordinates are usually
used—one is sufficient! However it was still hoped that the parameter definition of
dimension could be useable if such non-continuous transformations were ruled out.

2) However, even this restriction was not enough as Peano (1890) showed by performing
a continuous mapping of a line to a square:

Ll

Figure 1.2— The Peano curve: shown at left is the generator and its third iteration at right.

By the construction, as the number of steps increases, the line eventually goes through each
of the points of the square (this is not hard to show by considering a base 3 expansion of
the coordinates of the point). After n iterations the length of the line is 3N, ie., it diverges
as n -0, This mapping is obviously continuous, but it is not a 1:1 mapping (i.e., not
invertible—the points of contact shown in figure 1.3 are inevitable):
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multiple points

Figure 1.3—Multiple contact points on Peano curve.



Modern definition
of topological
dimension
(invariant under
Continuous and
1:1 mappings)

Measure based
dimensions, intuitive

The upshot of Cantor’s and Peano’s mappings was that the dimension of a set is not

invariant under either (separately) a 1:1 discontinuous or a non 1:1 continuous
transformation.

113 The Crisis and the Modern Definition of Topological Dimension

These results lead to the following question (Hurwitz): “Is it possible to establish a
correspondence between Euclidean n-space (ordinary space of n variables) and Euclidean
m-space combining features of both Cantor and Peano constructions, i.e., a
correspondence which is both 1:1 and continuous?”

“...If the above was possible then Euclidean dimension has no topological sense
whatsoever! Hence the class of topological transformations would be too wide to be of any
real geometric use...”

The issue was settled by Lebesgue's theorem, and the topological dimension
(defined below) replaced Euclidean dimension as a similar but more precise concept.

Lebesgue's Theorem (proved by Brower [1911]) settled the question.
The topological dimension (defined below) is invariant under 1:1 and continuous

transformations.

Modern Definition of Topological Dimension (Menger's definition):
@) (} or @ (i.e., the empty set) has dimension —1.

(ii) the dimension of a space is the least integer, n, for which every point has an
arbitrarily small neighbourhood whose boundaries have dimension less than n.

Examples:
1. a point—only @ surrounding:

maximum boundary dimension =fi=-1 =n=0.
2. aline—@ or points surrounding, fi=—1o0r0 =n=1.
3. aplane—@, points, line surrounding, fA=-1,0o0r1 =n=2.

Summary: The concept of dimension which resulted from the attempt to make earlier
definitions precise made no reference to the size of the set/system.

1.2 Measure Based Fractal Dimensions : The Intuitive “Similarity
Dimension®

1.2.1 The Dimension of Cantor's Perfect Sel {1883)

An entirely different class of dimension concepts is necessary to deal with the size of an
object. These notions of dimension all revolve around the intuitive idea that an object of
size L and of dimension D has content n{L) (equal to length, area, volume) where

n(L) = LD.




Mathematically
rigourous
definitions of the
size of a set:
coverings

Circle centred at
each point on the
set

1.3 Coverings: To Measure the Size of a Set

We now seek to put the idea n(L) o LD on a rigorous basis by defining objective methods
of determining the “size” or “content” of a set.

13.1 Canlor-Minkowski Coverings (1901)

Consider a set, S, embedded in RD, D=1,2,3,... (the usual line, plane, volume, etc.).
Define the usual distance function,

dix,y) = ;(Xi— )
I=
and the 5-sized “ball” Bg(Xy) is a D-dimensional ball—Bg(Xe) ={Yy | d(Xq,Y) < d}.
These balls are now centered at every point of S, defining a smoothed set:

S(8) = Ba(Xa)-

Notice that
lim S(8) =S.
50

To see how to measure the dimension of a set, consider sets embedded in three dimensional
space (D=3). Then the volume of Bs(Xe) = 8D. In this example we will use spheres as
balls and cover a serie of sets of varying dimensions.
(i) Consider first S =cube; Bj is a sphere.

For small enough 8, the volume of S(3) ~ volume of S,
(ii) Next, S =square.

For small enough 5, the volume of S(8) ~ 23-Area of S,
(iii) finally, consider S = line.

For small enough 8, the volume of S(3) ~ n-8%Length of S.

Figure 1.9—Illustration of Cantor-Minkowski covering of a square.



Cantor-
Minkowski

coverings

o coverings

Hausdorff
measures,
relative to w at
resolution o

Hausdorff measures,
relative to w

Hence, in general, defining the Cantor-Minkowski dimension D(S) as the dimension of S
and C(S)=D-D(S) as the “codimension” of S (this will crop up frequently below), we
have

finite C = C(S)
oo C < C(S)

lim

{vo!ume of S(8)
550

0 C > C(S)
8¢ } -

So by varying C for a given S and D (dimension of the balls), C(S) can be determined as
the value that yields a finite non-zero limit and the D(S)=D - C(S). S(8) is the Cantor-
Minkowski covering set, D(S) is the Cantor-Minkowski dimension (in general it will be
the same as the box-counting dimension defined below).

13.2 5Coverings

The Cantor-Minkowski covering is not very “efficient” in the sense that for a finite §, each
point on the set is covered by infinitely many balls, so we introduce a different, more
general covering called the 8-covering with the following definition: a -covering of a set
A is a countable (or finite) collection of sets Bj, of diameter at most J, that cover A, i.e.,

Ac Cj Bi.
i=0

Writing diam(B;) = 8j, we require 8j< 8. Note the diameter need not be defined by a
metric, it is some convenient measure of size (such as the square root of the area): this will
be useful in generalized scale invariance (section II).

14 Hausdorff Measures and Dimensions

1.4.1 Definilion

The Hausdorff measure (Hausdorff [1919] , also called Hausdorff-Besicovitch measure)
of A relative to w at resolution d is defined as:

Hw 5(A) = inf {;w(&)} .

where the j are diameters of the 8-covering of A. Note that inf{} requires that we use the
8-covering which minimizes the sum and provides a unique definition of the measure. The
only restriction upon W is that it must be a monotonically increasing positive function of 3.
In particular we will be almost exclusively interested in power laws, e.g., w(t)~tD;
futhermore since we will take 8 — 0, only the behaviour of W near the origin (t — 0) will
be important.

Definition: Hausdorff measure of A relative to w:

Hw(A) = Sl:no Hw,5(A).



Hausdorff
measures,
dimensions D

Properties of
Hausdorff

measures

Infinite jump of
Hausdorff
measures

Definition: Hausdorff measure of A dimension D
is obtained by taking w(t) ~t D in the above and is denoted Kp(A).

1.4.2 Properties of the Hausdoril Measures

(1) 0<pw,5(A) <oo (since w(t)>0),
(i) pw,5(A) increases or stays constant as § decreases since the restriction 8 <& becomes

more and more stringent as § — 0,
(iil) with increasing D, Kp(A) has an infinite jump from infinity to zero for any set A with

at most one finite non-zero intermediate value.

Definition: Hausdorff dimension D(A) of set A

is the value of D at which this jump occurs:
D(A) = sup {D: Kp(A) = oo} = inf{D: Hp(A) =0}.
Why Hausdorff measures have an oo jump:

Consider a 8-covering of set A: from the fact that & /6 < 1, Vi, it follows that if D' > D:

H(A)

04 — — — — — — L = D
0 D(A)

Figure 1.10—TIllustration of the divergence rule for Hausdorff measures, generalizing the divergence
.z “the length of a surface is infinite, its volume is zero...”. The transition at D= D(A), from infinity to
770, defines the Hausdorff dimension of the set A.



Demonstration
of the Infinite
jump

Subdimensions,
law of iterated
logarithm

0
2(3 < 25 2XP w0 Y
i i i “i
§<5 5<8 &< di<d
Next taking infima we obtain:
Hp g(A) < 8D-D Hps(A); D'>D,
hence as §— 0 if up(A)<oo, it follows Hp(A)=0; i.e., if pp(A) starts off at o for small

. enough D, then as soon as D is increased to a value where Kp(A) is finite or zero, then all

further values equal 0. Similarly the argument can be inverted starting with large enough
D' such that ppy.(A) = 0 and decreasing until a finite value is obtained.

Remark: Sometimes sets with an infinite number of points have Hp(A)=0 or « without
any non-zero finite value. In these cases, we can introduce sub-dimensions, A1, Ao,
Ag,... to measure the size of the set:

A A
w(t) = tDllog(t)|™ (log|log(t)|)"2---
Example: the trail of a particle undergoing Brownian motion in a space of dimension > 2
will have D(A) = 2, but requires
w(t) = t2logllog(t)! ,

for a finite non-zero measure, i.e., D=2, A4 =0, Az =1 (this is the “law of the iterated
logarithm™),

Figure .11—A 2-D random walk (Brownian motion),



Scale
invariance,
scaling

15 More Properties of Hausdorff Measures

15.1 Relation Between Hausdor!f and Lebesgue Measares

For standard Euclidean sets the Hausdorff measure reduces to Lebesgue measure (the usual

integral).

Example: a planar set. Take the square norm

||x||=sup|xj|  (which is the same as max | Xj| or Lo, norm).
He s o I wesbe ]
Uy )5 UNEe p ity T AnS O %{Tz S
The “balls” are squarés in R2. Also take szt)=t . We will'argue that pp(A) =Lebesgue

measure of A=[a d2x. Now =t

Hp 5(A) = inf{g 5,2} ,

with D =2, i.e., squares. However, the inf{} requires that we use disjoint (non-
overlapping) squares,

N
o 5(A) = 2.8

with 8j < & over disjoint squares. In the limit as 8 — 0, the sum approaches the Lebesgue
measure and Hz,s(A) =H,(A) which is finite and positive if the set has a finite area, hence
Ho(A) = o d2x_and DAY =2.

152 Scale Invariance and Scaling

The Hausdorff measure provides a simple example of scale invariance/scaling. By
construction it satisfies:

HD(K_1A) =AD Hp(A) ,

where A-1Arepresents a reduction of set A by a factor of A (see figure 1.12).



_ . §.D
Proof: kpj-15(A 1A)=inf {8;28' i } .
However, clearly 8;=2A~13; (same as the 3 's used to cover A), hence:

uD,}»—15(7~“1A) = inf {6;28‘a48i)0}

. D
= AD-inf {8%861 } = A0 pp 5(A)

= pup-1A)= 8nmo Hp x-15(A~1A) = A-D up(A).
._)

Therefore the measure:
(i) APpp(A-1A) is scale invariant (independent of A).
(ii) uD(k“1A) is scaling (power law dependence).
lote; This is a simple case where the scale changing operator is Ty, = A-11, where 1 is the
jentity matrix (see section II for generalized scale invariance and more general scale

hanges). Hence the Hausdorff measures defined above are scale invariant under isotropic
ilatations; they will be generalized to anisotropic “balls”, hence to anisotropic Hausdorff

aeasures below.

A-1

Figure .12—The set A under the action of the scale changing operator Ty=A""1.



I53 Further Properties of Hausdorf Dimensions R

The Hausdorff dimension (denoted with subscript H only when confusion with other
dimensions may result) Dy satisfies the following properties (which might be expected to
hold for any reasonable definition of dimension):

(i) Open_sets: If A cRD is open, then D(A)=D since A contains a ball of positive
D-dimensional volume.

(ii) Smooth sets: If A is a smooth (i.e., continuously differentiable) m-dimensional
submanifold (i.e., an m-dimensional surface) of RM, then D(A)=m. In particular,
smooth curves have dimension 1 and smooth surfaces have dimension 2 (this
follows from the relationship between Hausdorff and Lebesgue measures).

(iii) Monotonicity: If Ac E then D(E) 2 D(A). This follows immediately from the fact that
Hp is a measure hence Hp(E) 2 up(A).

(iv) Countable stability: If A1, Ao, ... is a (countable) sequence of sets then
o0
o(ZA) -sup (o}

(i.e.,the Hausdorff dimension of a set is the maximum of its non-trivial subsets).

(v) Countable sets: If A is countable (e.g., the set of rationals in [0,1]) then D(A) =0 since
we take Aj as single points and then use countable stability. See Falconer [1990]
Chapter 2 for more details.

(vi) Hausdorff dimensions and fractals: although he disowned it later as being too
restrictive, Mandelbrot [1977] originally defined a fractal set as a set for which
Dy > Dtop. The basic problem was to give a definition which ruled out “standard
sets” such as lines, planes, etc., while including all the complex “nonstandard”
fractal sets. The reason Dy >Dtop is inadequate is that it rules out certain
“sbvious” fractals such as Brownian motion (which when embedded in a plane has
DH = Dtop =2, but which is distinguished from the set of points on the plane by the
fact that A2 =1). A more useful way to define a fractal is probably one which relies
on some aspect of scale invariance, i.e., invariance under zooms, although no
formal definition based on this idea exists. Our point of view is that such a goal is
in any case not too important: we will be much less interested in the detailed (and
often complicated) properties of fractals sets, than we will be with the more
fundamental idea of scale invariance.



