Feb. 12,2014 .




Multifractals and turbulence:
Calendar 2014:

Jan. 15: Introduction our multifractal world part |
Jan. 22: Introduction our multifractal world part Il
Jan. 29: Turbulence and spectra

Feb. 5: Fractal sets

Feb. 12: Fractal sets, multifractals part |

Feb. 14: Data analysis, wavelets

Feb. 19: Multifractals: part Il

No classes the week of Feb. 24

Study break the week of March 3

March 12: Generalized Scale Invariance

March 19: Multifractal simulations

March 26: Causality, Fractional Integration, waves
April 2: Project presentations |

April 9: Project presentions Il

April 16: : Project presentations Il (if needed).

April 23: Deadline to hand in project reports.



Projects

Augstin Bussy:
Space-time scaling analysis of global precipitation from 1900 to present

Hossein Azizi & Gabriel Kocher
Spatio-temporal scaling of interface dynamics: applications to amorphous recrystallization
and combustion synthesis

Martin Carrier-Vallieres
Fractal based imaging features for the early prediction of lung metastases in soft-tissue
sarcoma cancer

Raphael Hébert:
GSl and Spectral Analysis of Atmospheric Wave Simulations with General Advection
Velocity

Lenin del rio Amador
Haar wavelet analysis of a two-dimensional field defined on a fractal support. Application
to global temperature measurements.

Thomas Van Himbeeck
Scaling properties of cloud radiances from 10 m to 100 km







18 Box Counting Dimension and Fractal Dimension

1.6.1 Box Counfing Dimension as an ApproximaSon o Asusdor{f imeasion

To understand the behaviour of Hausdorff measures approximate the Hausdorff measure
by using disjoint boxes of size & for the covering and take w(t) ~t D and assume that using
disjoint boxes produces a (near) optimum covering, i.e., ignore the infimum. Then:

>
. ~ D ~ .§D
HD,a(A)sz[zy)} Hpa(A) ~ 2y 87 = N(®) o
8;<d
where N(8) is the total number of boxes required to cover set (for a set embedded in a
three-dimensional space, use cubes; two-dimensional space, use squares, efc.). This
covering can be thought of as defining the set A measured at resolution 8. Using the

D dimensionsal definition of Hausdorff dimension D(A) of A :
Hausdorff measure of Mpay(A) = Jim 1p(a) 5(A) = constant, Relation of box and
A, resolution & we obtain Hausdorff
N(3)-530(A) 5 constant —= [N(S) ~ §—-D(A) dimensions
and so
. —Iog(N(S))}
=1 AR
DAY= 3% { 10g(8)

upper dimension

log N

lower dimension

log &

Figure 1.13—The upper and lower limits of a function.



Different definitions equivalent to Box
dimensions

See Falconer 1990 & @
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Fractal Geometry

Fractal Geometry (Mandelbrot, 1977, 1983) provides the simplest nontrivial example of
scale invariance, and is useful for characterizing fractal sets. Unfortunately in geophysics we are

usually much more interested in fields (with values at each point) and rarely interested in
geometrical sets. However, over a wide range of scales fractal dimensions can still be useful in

“counting the occurrences of a given phenomenon”—as long as this question can properly be
posed. If this is the case and the phenomenon is scaling, then the number of occurrences (N4(/)
at resolution scale / in space and/or time of a phenomenon occurring on a set A) follows a power
law:

Dprbeing the (unique) fractal dimension, generally not an integer, and L the (fixed) largest scale
(here and below the sign ~ means equality within slowly varying and constant factors).

3.A.1



Fractal Codimensions:
Geometric

The notion of fractal codimension Cr can be defined both statistically and geometrically.
While the latter is much more popular, we will demonstrate that the former is much more useful
and more general since it applies not only to deterministic but also to stochastic processes.

1) Definition 1: Geometric definition of a fractal codimension:

Let ACE (the embedding space) with dim(E)=D apd dim(A)=D;(A)  Then the
codimension Cr(A) is defined as:
C.(A)=D-D.(A)
Example, a line (D(A)=1) in E= three dimensional space dim(E)=D=3, hence: C;(A)=3-1=2
This definition corresponds merely to an extension of the (integer) codimension definition for
vector sub-spaces, i.e., E1 and E; being in direct sum (i.e., E,NE, =0 ):
E=E ®E, = codim(E )=dim(E,)

e.g. E,=line, E,= plane, E= 3-D space

3.A.2



Fractal Codimensions:
Probabilistic

2) Definition 2: Probabilistic definition of a fractal codimension:

In fact the codimension Cr can be considered to be more fundamental than the notion of
fractal dimension Dy and should be introduced directly. Consider the (scaling) behaviour the

probability (“Pr”) that a ball B, (of size/ = L /L) intersects the set A4 is:
Pr(B, N A)~ )\ "W

where B, = ball of size and /= L /A and Cr is thus directly defined as an exponent measure of
the fraction of the space occupied by the fractal set 4 (size L) in an embedding space E which

can even be an infinite dimensional space.

< >

E= embedding space




Geometric versus probabilistic

3) Relating the two definitions

Since the probability of the event (5.0 Al_i_s defined as: _— number of balls B, needed to cover A
N(B,nA) ~ APW
N(B,nE) _A"®

<\ Number of balls B, needed to cover E

refers to for example the number of balls B, needed to cover the set 4 and

Pr(B, NA) ~

where N(Bk M A)

N ( B, N E) is the corresponding number for the entire space. It is easy to check that when

Cr(A) <D =dim(E) <e° 0 4o definitions are equivalent:
C,(A) £ D < oo, {definition 1 = definition 2} V D, =0



Latent dimension paradox

Dimension of A for given codimension D, (A) =D-C, (A)

Rather obviously the statistical definition does not imply any limitation on C. However, the

C,(A)>D

equivalence between the two definitions does not hold any longer as soon as since:

for C,(A)> D, {both definition 1 and definition 2} = D,(A)<0

This is the so-called “latent” dimension ‘“paradox” corresponding to the fact that a
deterministic geometric definition is no longer possible: indeed there is no possible definition of

a negative Hausdorff dimension! This is not surprising since the definition 2 overcomes many
limitations of the Hausdorff dimension which is defined for compact sets (hence bounded sets):
the codimension measures the relative sparseness of a phenomenon (the relative frequency of its
occurence), whereas the dimension measures it absolute sparseness (the absolute frequency of its
occurence). Obviously, we don't need to know the latter in order to be able to determine the
former. However, it turns out historically that the (fractal) dimension was introduced first.

Paradox solved with “sampling dimension”



The Intersection theorem

PI'(E1 M El) = Pr(El)Pr(Ez) €&———  ThesetsE,, E, are assumed to
be statistically independent

k—C(ElmEZ)

—_ k_C(El)k_C(EZ)

&——— Probabilities In terms of
codimensions

C(E,NE,)=C(E)+C(E,)

Addition of codimensions (“intersection theorem”)

See next slide for example



Meteorological measuring network

Fractal set:
each point
1S a station

Density

9962 stations (WMO)

o(L)=n(L)L? =L C=d-D, d=2

NUMBER OF STATIONS

10

103+

102+

1 1 1
102 10° 104
DISTANCE (km)

3+

The fractal dimension
of the network=1.75



Sampling dimensions

Probability
Space

Physical
Space

Sampling Dimension

D
Ny~ * log N,
D =
Independent s log A
Physical Realizations
Space

Effective dimension of space with N_ samples A =d+D

lllustration showing how in random processes the effective dimension of space can be augmented by considering
many independent realizations N.. As, N, — < the entire (infinite dimensional) probability space is explored. When
the process is observed on a low dimensional cut of dimension d (such as the d = 2 dimensional sketch shown on a
single sample (picture) N, = 1, D, = 0, as long as d >c, we may introduce the (positive) dimension D =d - ¢, which is
then the geometrical dimension of the set with singularities. However, structures with D<0 will be too sparse to be
observed (they will almost surely not be present on a given realization/picture). In order to observe them we must
increase the number of samples N, or equivalently the sampling dimension D, to reach them.






Monofractal sets

l

(singular) multifractal
fields....



Multifractality and Functional Box
Counting

NT(L) ~ L_D(T)

A

o))

-Monofractal: D(T) <2 , constant
-Multifractal: D(T)<2, decreasing

D

L

Box counting low threshold
(large D)

Box counting high threshold |
(low D)




Functional box counting on French
topography: 1 -1000km

Slope =2 '
(required for

classical NN Multifractal:
geostatistics - slopes vary with N (L)=LD(®
regularity of {hreshold
Lebesgue = .
measures) Systematic
resolution
. . N dependence
100 10" 102 103 km
N(L) = number of covering boxel§ for exceedance sets at various
altitudes. Lovejoy and Schertzer 1990

The dimensions d increase from 0.84 (3600m) to 1.92 (at 100m).

Implications for geostatistics:

If we now consider the areas A, exceeding a given threshold then we find that they systematically decrease as the
resolution becomes finer (decreasing L): A;=LIN,= L") ; with C(T) = d - D(T). We see that contrary to standard
assumptions (including those of classical geostatistics, that unless C(T) = 0, the areas depend on the subjective resolution L;
the reference lines indicate that for the topography, all the regions defined by the thresholds have C(T) = d-D(T) >0 so that
they have systematic resolution dependencies.




Functional Box counting on 3D radar
rain scans

Classical geostatistics

Increasing Z

Vertical and |

horizontal =

Log,, N(L)A

a
a
o
2
3 o
L
0

0

horizontal

km LoglOL 100km lkm | 10km
~ 71 —D(T
Np(L) =~ 7P

reflectivity thresholds increasing (top to bottom) by factors of 2.5

(dat from Montreal).
Science: Lovejoy, Schertzer and Tsonis 1987



Cascades and
Multifractals



9 Aircraft temperature transect
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Degrading the resolution
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Flux versus singularities | #=» #=g *-
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Homogeneous

/’arent eddy

n
n

2|2

212]°]°
2121219
212]°]°
2121°1°

Cascades

iy

Daughter eddies

Grand-daughter eddies

d

P)

[SERMIBERIN



Beta model

An initial attempt to handle intermittency reduces it
to the simple notion of “on/off” intermittency, i.e. a
cascade with the simple alternative alive/dead of the
offspring.

This leads to a confinement of the turbulence to a tiny support; a very small subregion of the flow. The right hand
side of the figure shows the result of such a stochastic cascade obtained by randomly multiplying the energy flux of
a “mother” eddy to obtain that of the “daughter” eddies either by 0 (dead sub-eddy) or by a positive value A

(corresponding to an active sub-eddy, with fixed probability =~ 2,°
In this model, we divide the spatial scales by A, (here A, = 2) and then flip coins to determine the on or
off state; more precisely:

Pr(ue = xg) =\, /n N

Each step: e _
_ _ _ — c g PN Daughter eddies %
PI'(H,S—())—l 7\‘0 z . i
i T Grand-daughter eddies E =
After n steps: ¢€,= HMS j pzf DM‘
]:

(“Pr” indicates “probability”). The nonzero value is taken as ue =1; so that the mean{ue)=1 ;
this implies a scale by scale conservation of the flux €.

=N, Pr=AA"“=A"; D=d-c

alive

n n
After n steps: 7\4 = 7\40 Pr(alive)Z(MC) =A™ Relation to dimension: N



Beta model

In this example, the
probability that an
eddy will remain alive
is A, ¢ =0.87 (using the
scale ratio at each
step A, = 4 here and
the codimension C =
0.2).




Alpha model

To see how the o model works, consider constructing it on the unit
interval. At first, the interval is uniform so that the initial energy flux
density €, = 1. As in the 3 model, the cascade proceeds by dividing the
unit interval successively into A, subintervals (A, is an integer = 2 in the
figure) and multiplying the flux density by independent identically
distributed random factors pe (the notation “W” indicating
“multiplicative increment”; it is analogous to the use of the “A” to
denote an additive increment). Therefore after n (discrete) cascade
steps, the smallest scale is A, ™", the value of the energy flux density at a
point 0<x<1 is the product:

n
e, = Jue,
j=1

In order for the flux to be conserved from scale to scale, we constrain the weights
LLe so that <ue>=1 implying <g > = 1.




Alpha model

The oo modetisatwo state {binomiat) process with ie =either X, or A;* where 7,50
corresponds to a boost (Le>1) and . to a decrease (ue<1) . As in the B model, the
corresponding probabilities can be written A, and 1- A, respectively where ¢>0 is a
parameter (it corresponds to the maximum codimension of the process. Formally:

Pr(ue =2} ) =2,
Pr(ue =2} )=1-2;°

Although the o model apparently involves three parameters (v,, v, ¢), due to the
conservation constraint:

(ue) = Ao Ay +(1-2 )Al- =1

only two can be freely chosen.

We can see that the 3 model is recovered in the limit ’y+ > C
which is the sameas Y_ —> —©°




Cascades and Multifractals

Simulations: multiplicative introduction of small scale details

(low resolution to high)
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Alpha model

Y, =0.2,¢c=0.3(C, =0.087) v.=1.1,c=1.2(C, =0.82)

, 025
. 020
: 0.10
; 0.05
15
1.0
05 1] LI |
3 i
05 | ] . ol
118
03
4t 6
3 3
5 |
1 - % : [ 'R L

From top to bottom every second cascade step is shown (a factor of A,2) is shown, 10 steps
in all, the total range of scales is 21° = 1024). Notice the changing vertical scales



universal multifractal
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