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Recap alpha model



Alpha model

The oo model is a two state (binomial) process with pe = either A ¥* or A,* where y,>0
corresponds to a boost (ue>1) and . to a decrease (ue<1) . As in the B model, the
corresponding probabilities can be written A, and 1- A, respectively where ¢>0 is a
parameter (it corresponds to the maximum codimension of the process. Formally:

Pr(ue =2} )=2;°
Pr(ue =2} )=1-2;°

Although the o model apparently involves three parameters (v,, v, ¢), due to the
conservation constraint:

(ue) = Ao Ay +(1-2 )Al- =1

only two can be freely chosen.

We can see that the B model is recovered in the limit 'Y+ > C
which is the same as Y. —>—°



Cascades and Multifractals

Simulations: multiplicative introduction of small scale details
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Alpha model

Y, =0.2,¢c=0.3(C, =0.087) v.=1.1,c=1.2(C, =0.82)
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From top to bottom every second cascade step is shown (a factor of A,2) is shown, 10 steps
in all, the total range of scales is 21° = 1024). Notice the changing vertical scales



universal multifractal
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Multiplicative
Cascades: O
model
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End of recap




p model: microcanonical
conservation

Canonical conservation (ensemble only): <u8> =1 Example: ocmodel

“Microcanonical” conservation = at each cascade step, each realization.

To understand this, take the example of the 1-D o model with A, = 2, it can be
transformed into the microcanonical “p” model by requiring at each step that the
two random multipliers e, LE,, needed to yield a daughter from a parent eddy have
exactly an average of 1 so that ue, =2-ue,. In other words, at each step there is
exactly one v, and one 7y satisfying (with A;=2). The only choice in the p model is
thus whether v, is on the right or left hand side of each interval.

Microcanoncial 1 A

conservationind — E e, =
. . l
dimensions 0 i=l




Microcanonical versus Canonical
conservation

Due to the microcanonical constraint there are subtle correlations between multipliers Le.

However, it turns out that the most important difference between the ot and p
models is in the largest events that they can generate.

Whereas we have pointed out that in the oo model, any vy,20 is possible, in the p

model, the requirement that the multipliers are 20 (so that y_is real), implies (in
1-D) an upper limit y,<1.

More generally, the microcanonical constraint is:

]
7 D He, =1
0 i=l

Since ue=0, the most extreme microcanonical model is that in which all the multipliers are
zero except for a single one, whose value is thus 7\.

This implies that in d dimensions, v,= d is the most extreme microcanonical model possible.



General cascade statistics

Characterize the statistics of e by K(q): <H€q> = xf(q)

An important and trivial consequence of the independence of the cascade steps
(and of the corresponding weights LLg), is that K(q) is scale invariant, i.e. independent

of the number n of steps:
n

o) =TT ) =TT o) =) =25

j=!

with respect to the overall scale ratio A since the cascade started:

A=Al

We can now write the general expression for the statistical properties after a total

scale range A:
g\ _  K(q)
(g]) =1

This is the basic formula for cascade statistics. As indicated above, this specification of the
statistics of pe, and (also of &) via their statistical moments is equivalent to their
specification by their probabilities.




Characterizing the statistics of LLe:
K(a)

We have seen that in order to respect the scale by scale conservation of the mean (its
independence of n), we require the canonical conservation <},L8> =1, this ensures that

fe,)=1

The overall characterization of the statistical properties is conveniently made with the help
of the “moment scaling exponent” K(g) which can be defined by the statistics of the
distribution of random weights LLe:

K(gq)= Log,, <u8q> = L0g<u8q> /| Logh,

Introducing the (random) cascade “generator” I', the logarithm of the multiplier:

I'=Log, (ue)

K(qg) is is the (Laplace, base A,) second characteristic function (“cumulant generating

function”) of I
K(q)= log,, <eqr>



Properties of the Moment scaling
exponent K(qg)

1) In order to see the general shape of the K(g) function, we may first note that
conservation from one scale to another requires K(1) = 0. gx> =1= }\,0

1) In addition, because any positive number raised to the zero power is one, we have <1>
=1, hence K(0) = 0.

2)

3) Finally, a basic property of second characteristic functions is that K(q) must be convex,
i.e. K"’(g)>0; this can be shown directly by doubly differentiating K(g) = log<e? >/logA\.

We therefore conclude that the typical K(q) looks something like the next slide which
shows the K(g) for the oo model and the universal multifractal models in the fourth and
fifth columns of the earlier example. The models are tangent to each other at g =1
because the derivatives at g = 1 were deliberately chosen to be equal to each other.
This value: C=K'(1) tangent at the mean

“the codimension of the mean”; it is a basic characterization of the variability near the mean

We can already use this idea to give a “local” (in g space) definition of the “degree of

multifractality” o
y o= K”(l)/K'(l) Curvature near the mean



Comparison of the K(q) for

examples
K(g)
- universal
- multifractal
03 mo_del (=1.8
' ¢, =0.037) the oo model
(bluec=0.2, v,
: =0.11 (2" row
0.2_‘ from top)
0.1
B Model with c = C,
1 2 3 4 1
C,=K(1)



Properties of oo model

We can make some explicit calculations for the a model. For example,
we have K_(q):
ola) (g1 )=kt

Hence: K, (q)= log[?ugy“c + A0 (1_7\,86)}/10g7\~o

) VAT AT (1=
Koc(Q): }\UZ'Y_'_—C _l_}quO(l(_}\uc)O )
0 0 0

Hence: C =K, (1)=y,Al™ +V—7”(Y)_(1_MC)

Also, we may note that for the oo model, there are low and high g
asymptotes whose slopes are:

lim K (q) =7,

q—>too




The B model limit

Considering now the special case when vy, = ¢, , we obtain the results for the B model:

The B model with corresponding C, can be said to provide a “monofractal” (on/off)
approximation to the mean (¢ = 1) behaviour of the cascade, but obviously this approximation is

. L o lim K (¢q) = —C,
only valid for g=1, otherwise it is may be misleading. Note that ¢-0

so that in the [
model, C 1s also the codimension of the nonzero regions, of the “support”.




The convexity of K(qg)

It turns out that an important property of K(g) is that it is convex; K’’>0, we have already
appealed to this property in this chapter, and it is exploited systematically in ch. 5. In this
appendix, we derive this convexity property. Consider:

<e§> =K@ = js{p(ex)dex

where ? (€,) is the probability density of €), . Then

Mg D o)

dgq dq’

K(g)lnd=1n(g])

Differentiating , and using the above we obtain:

g, LK@ __1 +((e) (e (1oge, ) )~ (et toge, )

2
dq <£§>
To determine the sign of the term in parentheses, we can apply the Schwartz inequality:

(7 as)([ *ax) =] s
withf =e” [p(gx)]m , g=el" [p(gx)]m loge, and dx = del, we obtain:
<e§><e§ (log ek)2> > <e§ log 8x>2

from which it follows that

logA

9’K(q)

an >0

and since A > 1, we have K’’(¢)>0, i.e., K(q) is convex (this corresponds to a basic result in
probability theory, that second characteristic functions are always convex).




The Dual Codimension Function
C(q)

Functions that will be useful in later analysis are the codimension and
dimension functions C(q), D(q):

K
cq)=22; pgy=d-cg)
q-1 K(a)
By the graphical construction (at A

right) it is clear that C(qg) is the slope
of the chord between the points and

(g, K(g)), and by the convefity of K(q), slope = C(a) = IS(_q_)_
Clg) must be an increasing function K(Q) (a-1)
of g: C'(g) =2 0 for all g, hence the
dimension function D’(g) £ 0. Note
that using |I'Hopital's rule at g =1 we
see that:

C(1)=K(1) =, - >

= (



Autocorrelations and spectra (1)

Due to the Wiener-Khintchin theorem, it suffices to determine the autocorrelation
function R(Ax) of the cascade, the spectrum is then obtained as its Fourier

transform. We have (in 1-D):
E(k)= [ R(Ax)e" dAx; R(Ax)

<8(x—Ax)8(x)>
From the Tauberian theorem if R(Ax) = Ax 9, then E(k) = kB with B =1+8, hence we
need only determine 0 from the cascade. For the discrete cascade, we can follow the

argument from (Yaglom, 1966). Consider a cascade in 1-D developed over n steps,
for a total scale ratio A,". Consider next a lag Ax,, such that:

AU < Ax < A"

so that logAx, = -mlogA,. The gt" order autocorrelation is thus:

(e1(x—Ax, )el(x)) = <ﬁﬁ(“8f“‘°’f )q>

i=1 j=1

where the index i refers to the multipliers at the point x- Ax,, and the j to those at the point x.



Autocorrelations and spectra (2)

The lag Ax,, is the typical size of the mt" level structures, so that if m>n, the two points
will likely share all the multipliers and

<83 (x—Ax,, )e! (x)> = <82‘1 (x)> = \K(4) smallost coscade

n
scale

If we consider now the case m<n then, typically we will find that the multipliers at
the points x, x - Ax,, will be shared up to level m, but will be different for the levels
>m. This implies:

m (n=m) Ax| th
<8z (x - Ax )Si (x)> = <},L82q> (<u€q >2 ) = K?K(zq)_z(n_m)K(Q) s;aél]lr;g:fcrcasigde

scale

Using A" = Ax,and Aj=A, we obtain: <gg (x— Ax)gz (x)> ~ Ay (KCa)2K(a))y 2K(q)



Autocorrelations and spectra (3)

We have dropped the subscripts “m” on the Ax, and indicated the resolution of e
directly by the total scale range A rather than the number of steps n. Finally, the
usual autocorrelation is obtained by taking g = 1; using the scale by scale
conservation condition K(1) = 0 we obtain the particularly simple result:

<ex (x—Ax)e, (x)> ~ AP 12 A>T
<8k (x—Ax)e, (x)> ~AK Ar <!

The normalized autocorrelation function R, (Ax) with the property R, (0) =1
can be obtained by normalizing by the value at Ax = 0 to obtain:

R, (Ax)=(AAx) " 12 Ar>A"

R (Ax)=1; Ax<A”
Hence, the spectrum: N
E(k)= [ R, (Ax)e"™ dAx =M Pk P B=1-K(2)

Since K(1) = 0, K’(1)>0 and K’’>0, we have K(2)>0 we see that 3<1.



Ex: Spectrum of temperature flux

Temperature °C
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This is the spectrum (thin line) of the fluxes from the aircraft transect shown in
at right with its average over logarithmically spaced bins (thick line) along with a
reference line with slope -0.89 (K(2) = 0.11, the value for C,=K’(1) =0.06, o =
K”(1)/K'(1) = 1.8).




Universality: How many
parameters for turbulence?

Answer| Date References Explanation Parameters

1 1941 | Kolmogorov Ay, = gl 13 H=1/3
A
(Homogeneous turbulence)

Basin of attraction

2 1962 | Kolmogorov-Obukhov, < q> _ 3K H,u
(lognormal model) &=

_H o
K(q)—z(q q)

2 1964 | Novikov-Stewart, K(g)=C,(g—1) H,C, iroct
Mandelbrot, Frischetal,  ( | rac .U.r ................
model

oo 1974 | (Mandelbrot, 1974) K(q) Any K(q) convex

with K(0)=K(1)=0




Routes to universality:

1) Densification of scales

Discrete in scale
(ex. 3, oo models)

- Continuous in

scale




Routes to universality:
2) “Mixing” of independent discrete
cascades

81 82 1/b 83
N N
_ Hi N independent cascades,
ay renormalized by a,, b,

T
For the generators g=¢ Normalized, centred sums



Universality in cascades:
a “multiplicative central limit theorem”

The problem is that the cascade requires a scale by scale conservation
principle, otherwise there are no well defined small scale cascade limits, and it
turns out that this normalization is in contradiction with the normalization
required for central limit convergence (specifically the former requires <ue>=1
whereas the latter requires <AI'> = 0 where AI' = logle, and due to the
convexity of the logarithm function, we have necessarily < AI' > = <logue><0
for any probability distribution of Lle which is constrained such that <ue>=1




Universality:
case 1, Gaussian generators

If we assume that the KE{for a single cascade step for each of the interacting processes ¢,
are analytic at g = 0, then we can make a Taylor expansion about the origin:

Single cascade step, ratio A, <gf> — <u€"> = \fl@) K (q)= Ag

where the A; are the expansion coefficients (the sum starts at i = 1 since K(b) = 0). In order
to obtain an exactly log-normal cascade we may consider e which is the result of nonlinear
(renormalized, multiplicative) interaction of N (generally non- lognormal) statistically
independent discrete cascades with a total range of scale A:

)

i=1 aN

Analytic K(q) special case

2 3
N
KN(q):logl <SZ>:b_q<A1_LogaaN)+A2N(bi) +A3N£biJ +...

N N N

here, i indexes the N independent cascade processes which interact (are multiplied
together) and a,, b, are recentring and renormalizing constants which must be chosen
so that the limit of many interacting processes () is well defined. In the case of analytic
K(q) (which turns out to be exceptional!), we can choose to recentre (a,) and

renormalize (b,) by:
N bN _ N1/2; a, = ol

, Independent of single
— _ 2
K. (q) =lmK, (q) = Ay cascade statistics K,(q)

N—oo

thus obtaining:



Gaussian generators (2)

i.e. the higher order terms disappear, thus is a pure quadratic function
independent of N, it is the moment scaling function of a pure lognormal

cascade: , ,
A,qg“logh A
Once the central limit theorem convergence has been achieved ( ), one then
considers the small scale limit; here we must normalize the pure log-normal
process so that the small scale cascade limit is well behaved, this is easily

performed by noting that an unnormalized € may be normalized by so that so
that we obtain:

Normalization €= K(Q) — K(Q) o qK(l)

K(q)=C(q"-q)

where we have used the notation C, for the constant A, since K’(1) = C,



Universality, general case:
Levy generators (1)

Indeed, more generally we must allow for the possibility of nonanalytic single
cascade step K,(q) with the following small g expansion:

K (q9)=A,q"+Aq+Aq +0(q3) K(q) nonanalytic at origin

if the new nonanalytic term has a<2, then, repeating the above universality
argument, with the choice:

we obtain:
K.(g)=A,4% 0<a<?2

for o # 1. When o = 1, the nonanalytic term must be taken as glogg, see below.
This K(q) corresponds to a random generator I" = loge that follows an “extremely
asymmetric” Lévy distribution, sufficient for cascade processes.



Levy Generators (2)

The final normalization step needed for small scale convergence (analogous to
the log-normal derivation: K(g)->K(qg)-gK(1)) leads to:

K'(1)=A4,(0-1)=C,
K”(1)=Aa(o—1)=0K’(1)

C o
Hence: K(Q):a_ll(q _Q); O0<ox<?2

(for o= 1, using I’'H6pital’s rule for the limit o->1, we have C,glogg).

Once again, the constant has been written this way so that K’(1) = C,. We may
also check that the local (near the mean) curvature characterization:
o =K"(1)/K'(1)

Note that when 0<2, and g<0, then ; this is a consequence of the extreme Lévy tail
on the negative (but not positive) fluctuations of loge. The possibility (even

likelihood) of: <8;{>%°°

for g<0 means that extreme caution should be used when analysing negative
moments of empirical data.




K(qg) for universal multifractals

K(q)/C, =(q°‘—q)/(0c—1)

K(q)/Cq versus q
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Universal K(g)/C, as a function of g, for different a values from 0 to 2
by increments of Aow = 0.2.




