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Box 5.1 Flux dynamics and statistical mechanics

Up until now, we have followed a “constructivist” approach. We have constructed specific cascade models and studied
their properties. It is also possible to follow a more abstract “flux dynamics” approach (Schertzer and Lovejoy, 1992)
because it parallels classical (or quantum) statistical mechanics, but the quantity of interest is the flux of energy
whereas in thermodynamics/statistical mechanics the corresponding quantity is just the energy E. It turns out that the
analogy is not only formal, since it corresponds to mappings from cascade models to Hamiltonian systems.

Analogy with thermodynamics. The correspondences between flux dynamics and thermodynamics with
Boltzmann’s constant = 1, Z(f3) the Massieu potential, F(3) the Helmholtz free energy. The implications are that
just as one can discuss thermodynamic processes without reference to any specific microscopic model of matter,
one can similarly discuss multifractal processes without reference to specific models such as cascades.

Flux dynamics Thermodynamics
probability space phase space
1
Y -E
c(y) =S(E)
K(a) = max (ay — c(v)) 3(B) = max (S(E) — BE)
K
Clg) = % FB) = —Z(B)/PB

In order to establish the analogy, recall that in thermodynamics (taking Boltzmann’s constant =1) we have:

Z(T)=exp(#m)= exp(_TE)> €«——— Partition function

Y en()
F=free energy

E
= |dEexp( S(E) —= 5.42
J exP( ( )‘-L)\ S= entropy 342



Box 5.1 (cont.)

where Z(T) is the partition function, S(E) = log(p(E)) is the entropy and p(E) is the probability density of states with
energy E. In the sum over i we sum over all states, whereas in the sum over j it is only over states with different
energy (p; is the degeneracy associated with the state of energy E): the integral form is obtained when the density
of states goes to a continuous limit.

In flux dynamics the analogous equations are:

2\(q) = €99 = (¢]) eqﬂ E Aip(y,) = Jd\()\‘"’ﬁc':y:l (5.43)
i}

A summary of the analogies is shown in the table. Such analogies have been discussed in the literature on
multifractals, with notably different points of view. For example, our treatment differs somewhat from that of Tél
(1988); we rather follow Schuster (1988).

Using the trace moments introduced earlier, we can make parallels with the grand canonical ensemble. The
grand canonical ensemble Z.(T) is obtained by summing not only over all energy states with a fixed number of
particles, but also over the number of particles, each weighted by e™

Z Zp’ /(T-N) _ Tr{ E',"'[T—ijl} (5.44)

where the trace indicates the sum over all states with energy E; and N particles. In flux dynamics, the sum over
energy states is replaced by sums over probability spaces (ensemble averaging, therefore “superaveraging”) and the
sum over various numbers of particles is replaced by integrals over various observing sets:

Z\(q) = Tra, € (5.45)
Hence, formally, we have:
e N =1,d""r (5.46)

where 1, is the indicator function for the set A,.



Simulating isotropic continuous in
scale multifractals




Continuous in scale multifractal
modeling

scale ratio A, = 2, A =2% o = 1.8,

C,=0.1.

) ) . . ] . . Same as at left but with an
A discrete in scale simulation of a The corresponding continuous in additional fractional integration

universal multifractal with basic scale simulation. of order H = 1/3 (a scale

invariant smoothing); to
simulate a turbulent passive
scalar density; notice that the
structures are smoothed.



Levy variables

To explain continuous in scale cascade processes in a rather elementary manner, let us first
introduce the “unit” (and extremal) Lévy random variable 9, whose probabilities are implicitly
defined by the following characteristic function:

o

q

<eq7a > _ e(a—l); g=0

<e%>:oo; g<0;, a<?2

Unit extremal Levy variables

Note that:

a) for oo = 2 we have the familiar Gaussian case and the g >0 formula is valid for all g:

b) for oo = 1 we have <e‘”"‘ > =78 (g >0, otherwise = o).

An extremal Lévy random variable 4 with amplitude >0 and Lévy index o therefore satisfies:

A=ay,

<qu> —eol: g>0 Extremal Levy variables

<qu>:00; 4<0 0<2 amplitude A

(with corresponding exception for oo = 1).




Second characteristic functions

Consider the problem of determining the probability density p.(C) of the sum C of two
independent random variables A,B, with probability densities p,(A), ps(B):

|C=A+B |

Direct method: pc(C)=[[ p.(A)p,(B)S(C~(A+B))dAdB

Or: Pe(C)= [ p(A)p,(C—A)A i.e. convolution

Solution with characteristic functions

Multiply both sides by g and the exponentiate the result and average:

(e¥)=(e"e) = () (")

Now, define the first characteristic function y: vi(9)=(e") w.(q)=(e") w.(q)=(c")

vel(a)=v.(9)v,(q)

Finally defined the second characteristic function K as the log: K(q) = logw(c])

: ’ nd
Thus: K —K +K Hence for independent r.v.’s, 2
c(9)=K,(9)+K,(q) characteristic functions add

If needed, p(C) can be found by inverse Laplace transform of Vo (g)=e




Characteristic functions for extremal
Levy variables

o=2 is Gaussian case and this is valid for all g

llf(x(q)=<€qy°‘>:€£1; g=0
o (q)=(em™ )= o

For unit Levy variable First characteristic functions

q<0; a<2 € (If o>2, the densities are not positive)

Hence
K,(g)=log(e)=-1 - g0
. . o — . . .
For unit Levy variable Second characteristic functions
K,(q)= log<e‘”°‘> = oo, g<0; a<?2

Due to the additivity of second characteristic functions for any independent, identically

distributed random variables, this implies that for the sum of two statistically independent Lévy
variables 4, B we have:

C=A+B = with A=ay, and B=by,
. K.(q =KA q +KB q ” “q”
Hence c(a)=K,(q)+K;(q) KA(q)=10g<eqya>:2111
¢ ra\ e and
. . _aaqa baqa_(a +b )q - bocqoc
SUbSUtUUng KC(q)_a—1+a—l_ o—1 KB(q):1°g<ebY >=E

This shows that C=cy, ;| ¢* =a” +b”

i.e. the sum of two extremal Levy’s is an extremal Levy

“Stability under addition”

(Sum of Levy variables= Levy variable of same type)




Probabilities of Levy variables

General Levy variables <|la|q>_)°o; 0> |
Power law tails for both large
positive and negative values
p(l)=AL"" 1, >>1
e

. — Generally different
P(la) ~A_ —la) ; I, <<—=1 weights of the “tails”

A, = 0: “extremal” or maximally skewed

/ +
LY “ 1o
Extremal Levy variables p(n)zeXP _(7_/) ; y—”j >>0;, —+—=1 _
. o o o « Power law tails for large
(with A,=0) :
negative values only
p(r.)=(=7.)" " v.<<0; O<a<2
Reason for extremals:
(er)=(nm)=(emet)= [ e, (v,)av, (60)= A [ e (y, )y, + A, [ (v, ar,

1

Only if A, =0 will the moments of €, converge for g>0



Continuous in scale cascade processes

With the help a suitably normalized convolution kernel g,(r), it then possible to colour this white
<gq> _ <eqFx > — pK(@)logh
»

noise to obtain a generator I = loge, such that

We now show how to obtain a generator with the appropriate properties (including a
mean codimension Ci) by convolving a Levy noise §,(r) with a kernel g, (r):
_ Vo _ la !
L=Grg 1. =€ Jgk(f a )Y“(’:)dz Puti.i.d. Levy r.v/s on a grid, then
take small scale limit

We now review, step by step the different properties that the kernel g,(r) and its domain of
integration must satisfy in order to obtain the announced result, in particular that the multifractal
€,

€, = e

<8;{> — ) K) |

will be indeed be multiscaling:



Levy sub generators vy, (r)

(@=2)
Y

Gaussian (o =2)

Levy (o0 =1.6)

A comparison of the Gaussian (o0 =2, top)
and Levy (a0 =1.6, bottom) subgenerators 7,
showing that whereas the former is both
positive — negative symmetric with low
amplitude excursions, the latter is
asymmetric with huge (algebraic) excursions
for negative values.




How to obtain log divergent generator
second characteristic function

This is the first property to be respected:
K (q,4) = Log(< e™* >= Log(HK(q) Criterion for choosing g
A
i.e. g,(r) must be chosen so as to yield a logarithmic divergence of the second characteristic
function of the generator I',.

Since 7,(r) is statistically homogeneous, the statistics of I" are independent of 7 so that one can
take » = 0 and apply the additivity of the second characteristic function:

., Recall:
_~ 4 @, @ _ * 1d ,
Ko@) =Crg lali lalo= [l (o) ' F)= 7, = [ o2 Jra ()
where the o-1 in the denominator comes from the definition of the unit Levy variables,
In order to obtain the desired Log(A) divergence for K. it suffices to choose g, to be an
isotropic power law with the appropriate power law from the larger scale L to the resolution L/A:
g?\. (E) = N;l/(x 1L/k$‘r|£L |K|_d/(x smdio\ a f s|-dio\* /1d-1 ’
. Check: | (1) a'r= [ (1) @l dlr|= 2, logh
Le|ri<L/A L/

where 1, is the indicator function of the subset B i.e. Ig(r) =1 if L€ B =0 otherwise. This

) . Note: take g(r)=g(-r)
implies:

Cl o ar—1
r ——q"Ng Qg log A d
<8/ql>:<€q A>:eal : Qd: d ’

where €2, is the integral over all the angles in the d dimensional space (e.g. Q; =2, Q,=2mw, Q3=
4 etc.).



Normalization

We see that if we choose:

N,=Q,
then we obtain the desired nonlinear part of the multiscaling behaviour: Recall:
C Clap
_ 1 K.(q9). _ 1 o =L 4"N;'Q,log A ,
<8§{’u>—ﬂ, 9. K“(q)_a—lq <8Z>:<eqn>:ea_lq o= [ e

where K, 1s the unnormalized exponent scaling function corresponding to the fact that € given by
is unnormalized (hence we temporarily add the subscript “u”). A normalized €, , can now be
easily obtained using:

2

u

g;t ) 8/1,14 >

N}

P

so that:

Cl

(e1,)= A" K(9)=K,(g)-aK, (1)=—

(4"~ 4)

as required (we temporarily add the subscript “n” to distinguish it from the unnormalized
process).




Fractional Brownian and fractional
Lévy noises

We have seen that the typical observables such as the wind have fluctuations (Av) whose
statistics are related to the fluxes by a lag Ax raised to a power, the prototypical example being

. 1/3 .
the Kolmogorov law: Ay = (prH with ¢ = ¢ , H =1/3. If we take the qth moments of this
equation, we obtain:

S, (Ax) e Ax9; S (Ax)= (MW"} E(q)=qH - K(q)

More precisely, these are written as convolutions of noises with power laws which are
extensions of integration/differentiation to fractional orders; “fractional integrals™:

e ,) ,J/oc I"_, ’ ’
Power law convolution v(r)=7, *|r] = %d[’r_; H=H+d/«x

r-r fBm = Fractional Brownian Motion (0:=2)
fLm=Fractional Levy Motion (0<0<2)

where v, 1s again a Lévy noise made of uncorrelated Lévy random variables (here they need not
be extremal) and A’ is the order of fractional integration (as usual, the Gaussian case is

recovered with o0 =2).

“Fractionally Integrated Flux”, FIF model:

vi(r)=g ™" =]

£,(r)d’r

|,,_ ,,»|d—H FIF= Fractionally Integrated Flux model

we already saw that the flux itself can be modelled in the same (power convolution/fractional
integration) framework



Fractional derivatives, integrals

The power law convolution is easier to understand if we consider it in Fourier space. Since the
Fourier transform (“F.T.”) of a singularity is another singularity (the Tauberian theorem):

O S

We can use the basic property that a convolution is Fourier transformed into a multiplication, to
obtain simply:

v(k) o< v, (k)&

where:

FT.. FT. _

v(r)ev(k)s v, (r)ev,(k)

~(D-H)

We thus see that the convolution with power law ] is the equivalent to a power
-H

law filter & . However, such filters are themselves generalizations of differentiation (H<0) or

integration (H>0). To see this, recall the Fourier transform of the Laplacian: (sza)g_ |]£|2 Y.,

-H 2 -H/2
so (ignoring constant factors) that |l£| corresponds to real space ( ) , 1.e. for H>0 it
corresponds to a negative order differentiation (i.e. integration) of order H.




fBm, fLm, FIF examples

The upper left simulation shows fBm , with H = 0.7, lower left fLm with H# = 0.7, oo =1.8, and
the right the Multifractal FIF with # = 0.7, oo =1.8, C,= 0.12 (close to observations for topography).
Note the occasional “spikes” in the FLm which are absent in the fBm; these are due to the extreme
power law tails (In this fLm positive extremal Levy variables were used, hence there are no
corresponding “holes™) .



€

FIF simulations 1-D mem
L. Y l‘l"

(bottom to top), C, = 0.1, each offset for clarity, 10

each with the same random seed. /;WMWW
- 200 400 600 800 1000
€ _—
— . . € — .
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Theoretical Comparison of fBM, fLm,
FIF

Model Field Increments Codimensions
of level sets
Monofractal fBm v(r) =y, * |f =94 Av Ly, |Ar|” C=H
H=H+ Ha; <|AV|G) o |Q|E(G) D=d-C
Hy, =d/2
2 =d/ &(q) = gH
Monofractal fLm V() =y, * L[|‘(d"” Av Ly, |Ar]” C=H
H = H + Hg; (IAV) o |ArE@ D=d-C
HQ — d/Cl
gH, g<a
8= o g>a
Multifractal FIF M oc G May, % || @), Av = @, |Ar|" c(y) = max (qy _ K(q))
. g
¢ =¢" {|av]®) o |ar"? D(y) = d —c(y)
(D) = @ * g ="

- &(gq) = gH — K(q)
H':d ',' — —':]
a /a ==



All: C;,=0.2

Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the parameters o and / (C,=0.1 1in all cases). From left to
right, H=0.2, 0.5 and 0.8. From top to bottom, oo =1.1, 1.5 and 1.8. As H increases, the fields become smoother and as o decreases, one
notices more and more prominent “holes” (i.e. low smooth regions). The realistic values for topography (0=1.79, C,=0.12, H=0.7)
correspond to the two lower right hand simulations. All the simulations have the same random seed.



FIF on a sphere

A simulation of an (isotropic) multifractal topography on a sphere using the spherical harmonic method
discussed in the appendix (both sides of a single simulation are shown, using false colours). The
simulation parameters are close to the measured values: o =1.8, C,= 0.1, H = 0.7. The absence of

mountain “chains” and other typical geomorphological features are presumably due to the absence of
anisotropy.



Generalized Scale Invariance




Homogeneous

CASCADES
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Stratified CASCADES
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Anisotropic cascades, elliptical
dimensions

&F B

In the figure, A, = 4 and A, _2 / Parent eddy \4
respectively so that H, = log2/log4
= 1/2). Indeed, the reduction of @ AdLAd KA LA n hd L
the areas at each iteration is by i A EAd A Kby A dAd A
. C
the factor: o ! Daughter eddies !
A o b g TR TR TATATR TA o[ [ T T4 A [e AJa
—L =A A=A D,=1+H, O [ a[s[afa]a s Ao [o[AA]4 [o]4]4 NOEL s A
A, L e e e e e T TR
afaafa]afa{als]ala{a[s]a[+]a]s ala{afa]a] {#[a] [+]4]s
I Grand daughters |
v Loot
_Log8 3 D=2 _129.
Logd 2 Log4

A schematic of an anisotropic cascade; compare with its isotropic counterpart. The exponent governing
the decrease in area (equivalently the increase in number) of the subeddies with each iteration is D,, =
log8/log4=3/2. On the right hand side we illustrate the inhomogeneous (intermittent) anisotropic cascade
in which A,¢ = 2 of the 8 subeddies on average are killed off so the corresponding elliptical (anisotropic)
dimension of the active regions of D=D,, - C = log6/log2 = 1.29...

JusULIBIY|



Anisotropic “Sierpinski carpet”

An example of a deterministic B model an anisotropic “Sierpinski carpet”
obtained by dividing the horizontal by factors of 5 and the vertical by factors

of 3 at each iteration and removing the 3 middle rectangles (keeping the 12
outer ones);



Turbulence laws

(for horizontal velocity fluctuations, Av)

Kolmogorov: dynamically driven AV(A]‘) ~ 81/3 |Ar|1/3

Isotropic 3D energy cascades

Bolgiano-Obukhov: buoyancy Energy flux

driven isotropic 3D AV(A") ~ ¢1/5 |Ar|3/5

Buoyancy variance flux cascades

Buoyancy variance flux
Isotropic 2D enstrophy — arl/3
cascades AV (Ax ) -~ n A-x
* Enstrophy flux

Isotropic 3D pseudo- AV( r) =~ n;/3®(§)‘g‘l

potential enstrophy

cascades (Charney 1971) + ——
Pseudo-potential Enstrophy flux Trivial anisotropy

Anisotropic Quasi- AV(AX) ~ 81/3Ax1/3; AV(AZ) z{VAZ

linear Gravity waves

Brunt-Vaisaila frequency >

Anisotropic BO/K:

Unified scaling AV(AX) ~ 81/3Ax1/3; AV(AZ) ~ ¢1/5AZ3/5

model

|sotropic
exponents

Del=3

.

™ anisotropic
D, =713

D,, = 23/9




The Standard (2D/3D) Model

Large scale 2D

“Weather”

Size notion:

(Av,Ay)|= (A + A"

Mean large structures - flat (thickness
independent of scale)

Small scale 3D
“Turbulence”

Size notion:

(Av,Ap,Az) = (A% + Ay +AZ)

Mean structures - spherical (only smalll ones are
physically possible due to finite thickness)



Vertical cascades:
lidar backscatter

From 10 airborne lidar cross-sections near Vancouver B.C.

Horizontal cascade Vertical cascade
Loglo M M =(513) /{81, )
0.8}
061 c,=0.076 )
0.4} _
0.2
‘ 1 T

20000km




Vertical cascades:

Thermodynamic fields

Log. M
2510

2
1.5

logO

M =(p3)/ (@)’
M z}LK(Q)




The physical scale
function and
differential scaling

>

Usual distance
(=vector norm)

Scale symmetry H?\._Gl_" ‘ = 7L_1||K||

Scale function
(scale notion)

Vertical sections
Isotropic function H =1

“canonical” scale function: Anisotropic physical b Bolo
Ar Y [ AV 12 scale function H =5/9 . 1an0
||(Ax,Az)||:ls[(l—) (%) ] i

Kolmogaro

Sphero-scale



_ Anlsotroplc Scalin

=23/9=2 55 c.f. empirical: 2.57

g, gt

The 23/9D mOdel Bolgiano-Obukhov
Av(Ax)=e"Ax'"; Av(Az ) = ¢1/5Az3/5 H,=(1/3)/(3/5)=5/9
koimogorov . Volume=LxLxLHz=L De! D.=2+H,=23/9
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