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The Obukhov and Bolgiano
buoyancy subrange 3D isotropic
turbulence

Gas constant

Let us start with the thermodynamic energy equation for an ideal gas: v
_ p “€— Specific heat at

Dlog9 Q Potential —> 0=T7T| — constant volume

0 K t t

Y _Kypr, & emperature Py

Dt T cT

v

<€— Reference pressure

e.g. (Lesieur, 1987) where 0 is the potential temperature, K is the molecular heat diffusivity and

T the absolute temperature and P/ D1 =0/0t+v-V g the advective derivative, € is the rate of
heat input per unit mass and c, is the specific heat at constant volume. We will assume a quasi-

steady state where heat sources Q create fluctuations/structures at large scales which are
transferred by the nonlinear terms to smaller scales where they are eventually smoothed out by
the dissipation term. As in our discussion of the energy flux cascade, we argue that at scales
much larger than the dissipation scales that the right hand side of the above equation 1s = 0 so
that log 6 is an advected scalar:

£ Dlog0

Dt

0



Boussinesq approximation (1)

Let us now introduce the Boussinesq approximation.
Consider small fluctuations 0" with respect to a time averaged state 0o: and express the

potential temperature in terms of these:

0(r.1)=6,(r)+6(r.r)

Note that for this decomposition to be useful, there must exist a scale separation between
“fast” and “slow” processes. The full Boussinesq approximation for the potential

temperature fluctuations yields: Jp ,
DO’ ' Recall: 5 =—v-Vp+xVp+Jf,
—+y-V60::1<V29'+g ot
Dt C,

do
: : e L : v-VO, =w—=
We can now consider a vertically stratified fluid in which 0o(r) =00(z) hence dz
where w = v,. If w is small enough, then we have:
’ ) De, calar
ﬁ ~ sze’ + g Hence, neglecting sources and dissipation: ——— = 0 zdvlection
Dt C Dt equation
% 89/2

Hence the following flux is conserved Yo =

k2



Boussinesq approximation (2)

Again, assuming that the small scale dissipation just balances the forcing, we have an
equation of scalar advection, only this time directly for the fluctuation 0. Note that in this
model since the stratification is accounted for in the 6y(z) function, the fluctuation 0’ is
considered isotropic even when the overall fluid is strongly stratified; this is an example of
“locally isotropic turbulence” (Kolmogorov, 1941). It has a new term due to the buoyancy force,
as does the velocity equation:

Dy _ —in'— g—2+2QXy+VvV3y
Dt p, 0,
~

where Kk is a unit vertical vector and p’ is the pressure fluctuation analogous to ©’:

All Buoyancy effects

p(r1)=polr)+p (E’t), and py(z) is the corresponding mean density function. The direct
effects of gravity are thus confined to the single term Af in the equation for the vertical
component:

el
Af =g—; | f=glogH
e0

where the fluctuations Af are thus responsible for the buoyancy effects.




First way of accounting for buoyancy

(the classical isotropic “buoyancy subrange”)

First consider the original classical approach based on potential temperature variance flux:
B 8912
ot

Xo

which is taken as a fundamental cascade quantity along with €. In order to obtain the scaling
laws for the velocity field in a fluid dominated by buoyancy forces (i.e. in a hypothetical

isotropic “buoyancy subrange” where the energy flux € can be neglected) we then argue that only
Xe (with units Kz/s) and the coupling constant g/0, (with units mz/K/s) between the fluctuation 0’

and the velocity field are dimensionally relevant. Dimensional analysis on Xe and 2/0, then
yields the unique scaling “Bolgiano-Obukhov” (BO) law:

2/5
AV g zXl/5 i g?a/S
" e

0

corresponding to a e spectrum (neglecting intermittency; i.e. using 3 = 1+2H, section 2.5).
In the context of the Boussinesq approximation, this isotropic law applies to the fluctuations in

the velocity about a totally stratified anisotropic mean state 0y(z).



The isotropic BO law and BO length
scale

Staying within this classical framework for isotropic fluctuations, we may now inquire as
to over what scale range this new BO law should apply given that it is in competition with the
usual energy flux dominated regime. In other words, what happens when we apply a full
dimensional analysis to €, %, and g/6,? The answer is that there is a unique “Bolgiano-

Obukhov” length scale Lp:
«—  Orderoflm

5/4
€

Lo = X;M (g/eo)s/z

According to this classical theory, we see that as the effect of gravity is reduced (& = 0),

Lyo = so that the stratification disappears and we recover the usual isotropic 3D
Kolmogorov law (i.e. dominated by €). Therefore, we interpret the scale Lo

Isotropic Kolmogorov turbulence: L<L,,

Isotropic BO turbulence for scales L>L ..




Second way of accounting for buoyancy:

The Anisotropic scaling theory: the 23/9D Kolmogorov-
Bolgiano-Obukhov model

A second way to approach buoyancy driven turbulence is to make a more physically
based argument (which essentially avoids the Boussinesq and other approximations), noting that
the v and O fields are only coupled by the Af buoyancy force term (f = glogf) so f is the
fundamental physical and dimensional quantity rather than 0.

Dlogb « 0 _
=V T+~ Hence, neglecting sources and dissipation: Df /Dt =0 Scalar advection
Dt T c,T equation

f obeys a passive scalar advection equation and therefore the corresponding buoyancy force
variance flux:

B aLZ 89/2

Hence the following flux is conserved 0= o Compare with: Xg = ?

is conserved by the nonlinear terms. In this case, the only quantities available for dimensional

analysis are € (units mz/s3) and @ (units mz/ss), not €, X, and g/6,. In this approach, there is no
separation between a stratified “background” state and a possibly isotropic fluctuation field so
that there 1s no rationale for assuming that the ¢ cascade is associated with any isotropic regime.




Stratified scaling turbulence

The two basic turbulent fluxes €, ¢ can co-exist and cascade over a single wide range
regime with the former dominating in the horizontal, the latter in the vertical:

Av(Ax)=¢,Ax™; 0, =¢€"; H,=1/3

Av(Az)=0,Az"; ¢,=¢" H =3/5

where Ax is a horizontal and Az a vertical lag (for the moment we ignore the other
horizontal coordinate y). Again, the fluxes €, ¢ dimensionally define a unique length

scale L:

S\, ¢

The above laws can be expressed as:

With “canonical” scale function:

s Ax Ay
Av(Ax) = Av(Ax,0)=0,I" | == | =€ Ax"
Check: v(Ax) = Av(Ax,0)=0 [ls j e

Av(Az) = Av(0,A2)=0, |(0,A2)

H)

Av(Ax,Az)=0, [ Ax,A2)

st (3]-(5)" |

H.=H,/H,=(1/3)/(3/5)=5/9

H), H-H/H. » _H,/H. 1/5 A _3/5
=0, AT =0 Az




The empirical status of the 23/9D
mode]

il < 12600 m
B H = 0.766 £ 0.002

# H = 0.748 £ 0,002
e

<6310 m
H=0.713 2 0.002

104

» <388 m S
== H = 0.596 = 0.008 .~ VY
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<251 g
" H=0.609 £ 0.011

-24

10m 100 m 1km 10 km
Mean absolute vertical gradients of horizontal wind (first order structure functions) for layers of thickness increasing
logarithmically, with (black) regression lines added. The (coloured) reference lines have slopes H,=1/3 (Kolmogorov), H,=3/5
(Bolgiano-Obukhov), H =1 (gravity waves). The regression H, estimates are given next to the lines. The data for each level

are offset by one order of magnitude for clarity, units m/s.



Local, trivial and scaling anisotropy

Local Isotropy:
The isotropic BO law assumes “local isotropy”= isotropy of fluctuations around a totally stratified “background” state

H 1/2
e 80)| = o) + (plavac)
Local isotropy assumes a scale break and features two different scaling regimes.

Trivial anisotropy
1/2

(A A0)] = (ane)” + (Bl(Ax. A2 )
Ellipses with constant eccentricity

(Nondimensional scale

Scaling anisotropy functions)

11427

Ellipses with eccentricity changing with scale



Local, trivial and scaling anisotropy

local

X25

Upper left, local isotropy with broken symmetry, (the

upper right contours are the same but with a factor 25

blow-up showing small scale “local” isotropy). The
bottom left contours show trivial anisotropy with a = 1.7,
b =1, the bottom right contours showing scaling
anisotropy with H, =5/9 with /, = 1. The range displayed
is -5<Ax<5, -5<Az<5 (except for the 25x blow-up, upper
right, the range is 25 times smaller).

Trivial —
(constant eccentricity)

—_— T
\__ /
————— I
— e

Scaling, H,=5/9




Generalized Scale Invariance




The scale changing operator T, which
transforms the scale of vectors by scale ratio A

Q%\
% x:y ",

T, is the rule relating the statistical properties at one scale to another and involves only
the scale ratio. This implies that T, has certain properties. In particular, if and only if

M, = A, then: Bk — TKBI — Tklkz B1 = Tk1 sz = Tk2 BM

itis also commutative 1, = TMTM = Txlsz

-G
This implies that T, is a one parameter multiplicative group with parameter A: Tk =A

/Y

One parameter Lie group, G= generator



The Elements of GSI

T, 1s a generalized contraction on a vector space E, it is a one-parameter (semi-) group
for the positive real scale ratio A ( A >1 for a semi-group), i.e.:

VA A €R :T, T, =T,,
and admits a generalized scale denoted [[r|| (double lines to distinguish it from the usual

), which in addition to being nonnegative, satisfies the following three

Euclidean metric |r
properties:

i) Nondegeneracy: IH|=0&=r=0

ii) Linearity with the contraction parameter 1/A.:
VxeEVheR T b=|L, 4|=2"lkl

iii) Strictly decreasing balls: the balls defined by this scale
Bf — {Z‘ ||E||S " Anisotropic Hausdorff measures

must be strictly decreasing with the contraction: ~ VLeR",VA>1:B,, =T,(B,)C B,

and therefore: VLeR',VA'2A21:B,, CB,,

_ The usual Euclidean norm |r| of a metric space is the scale associated with the isotropic
Isotrgplc contraction 7, r=r/A. Properties i, ii are rather identical to those of a norm, whereas the last
special one is weaker than the triangle inequality, which is required for a norm. As for norms, unicity of
Case generalized scale is not expected for a given T,.



The effect of T,=AC

(Linear GSI, matrix G)

If G is an nxn matrix and r is an n-dimensional vector and (the usual case) that
G is diagonalizable with transformation matrix 2:

G =Q7'GQ

so that G’ is diagonal (with eigenvalues A, with i = 1..., n), then we obtain:

[ a0 (oj . True for all
Lo To show ALl :( At 0 } diagonal

b
0 A matrices




Example of anisotropic “Blow
down”

NVAG

1, = AC NVAG

A generalized blow-down with increasing

of the acronym “NVAG”. If G =/, we would

have obtained a standard reduction, with

all the copies uniformly reduced

converging to the centre of the reduction.

Here the parameters are G:[ 13 -1.3 J
03 0.7

and each successive reduction is by 28%.



Scale functions in linear GSI
(position independent)

— Scale isolines in
Isotropic red
(self similar) Self-affine
-G L 0)
T), T /l “=lo 1 )
Stratification lgota.tlon
. ominant
dominant (real
i (complex
eigenvalues) :
eigenvalues)

1.35 0.25\ _(1.35 —0.45)
~ 1025 065) ~l085 0.65)



Some properties of linear GSI

First, it is convenient to decompose G into “pseudo-quaternions” (or equivalently, Pauli matrices):

d—c f-e

G=dl+el+fJ+cK = > G=[f+e dH}

1:[1 0} 12[0—1} J:[o 1}’ K:{—IO}
0 1 1 0 10 0 1
These matrices satisfy the following anticommutation relations:

{I,J}=0, {ILK}=0, {J,K}=0 (Important for Lie algebra)

Where:

Equation for the eigenvalues A |G—A1|=[ dme—h fe ]:o (d-A)Y =+ fP - =d°
f+e d+c—-A

hence A =d+a; A =d-a Eigenvectors: (G—Al)r=0

are real or complex, for clarity we have used the notation A, = A, A, = A,.

Or, in terms of the trace and determinant:

detG = d* — & TG = 2d a’ =(Tr(G)/2)" = Det(G)=c"+ f* —¢
. : _ 6 et] A0
The condition of decrease of the balls for G is merely: Check: T =A°=Q ( _ e JQ

Tr(G)>0and det(G)>0 < d >0and d> >a° | To be always decreasing, need d>0, d|> a|




Defining the balls by an implicit equation

From the above, we can see that if we define a unit scale (the vectors such that |-l = 1), this
defines the borders of a unit ball B, and using the scale changing operator, this defines the other
(nonunit) scales and balls. In general, the unit ball B, will be defined by an implicit equation:

B ={r: fi(r)<1};
OB, ={r: f(r)=1} Unit ball and “frontier”

where 0B| is the "frontier" of the unit ball, and /i is a function of position () (the use of open
balls has the advantage that they generate a topology of the space. Comparing, we see that

f@ =]
A technical consideration in constructing a viable GSI system is that the corresponding

balls B), must be decreasing (B, < B> 4 >4.): this is necessary to insure that the vectors T
are unique. Let us consider this question in more detail by introducing the function f to define
B). From eqs. 3, 7 we can define B) from the function fj defined as:

Vr: f (r)=£(17'r),

B, ={r: f,(r)<1} The other balls
OB, ={r: f,(r)=1}

: : : =T
Alternatively, in terms of the scale function, we have: S (E) H » KH . In order to ensure
that the frontiers of the balls do not cross and that the scale is thus uniquely defined, consider the

balls defined by A and A+dA,; it is easy to see that since a crossing point satisfies U 1OA=0 e
must have:
9,

a—7t>0 <—— No crossing (uniqueness of scale)

for all ». This positivity (rather than negativity) requirement is necessary to ensure that T
corresponds to a scale reduction rather than enlargement.



The condition that the balls do not cross
(unigueness of scale)

Make the transformation of variables:

9 oud 0

u=1logh I SR
s N ohou © ou

The implicit equations for two neighbouring balls is thus:

If a vector r exists that satisfies both

£,(r)=1 f.(r)=1

Then the balls cross at that point. afu >0 Hence-
Therefore, the balls will not cross if for all r, u: al/t
eu af;t _ af;t _ af?u afk

But: oL o Hence: 8—k>0

eu

u

>0



Quadratic Balls (1)

Box 7.1 The example of quadratic balls

While the nonlinear transformations described in Section 7.1.4 are the most convenient for numerical simulations,
further insight into the operation of A~ © with nondiagonal G can be obtained by considering the effect of the scale-
changing operator on the shapes of the balls in a particularly simple family: those defined by quadratic forms.
Consider the unit ball defined by f;:

fi(r) = Ar=1 (7.40)

in two dimensions where A, is a 2 x 2 matrix and r = (x,y) is a positive vector on the frontier of the unit ball, and A, is
a symmetric 2 x 2 matrix describing the unit ball (A; must be symmetric so that the eigenvalues are positive, so the
balls are closed). The lack of a subscript on the position vectors will henceforth be taken to mean vectors on the unit
ball unless otherwise specified. =
: = /il T,
Defining A;_implicitly from the equation £, (r) = r’A;r, we have: Recall: /A()=4(7"r)
afk >0

A= (TT)TA T =49 A8 No crossing: =" (7.41)

The no-crossing conditions (Eqns. (7.5), (7.12)) now reduce to:

r'sym(A,G)r > 0 (uniqueness of scales differentiate eq. 7.41 w.r.t. A) (7.42)

where sym indicates the symmetric part (i.e. symA; G = ((A,G)” + (A, G))/2). The above condition is satisfied as long as
the eigenvalues of sym(A; G) are > 0 and in fact for sym (A, G), i.e. Eq. 7.14, with the help of the mapping A° (Schertzer
and Lovejoy, 1985). In the case where a sphero-scale exists, then A, can be taken as the identity, and we require only
the positivity of the eigenvalues of symG. In two dimensions, this is equivalent to Trace G > 0, det(symG) > 0. Pecknold
et al. (1997) show how to extend this result to the case of quartic (and more general polynomial) balls which have
various qualitative differences with quadratics, notably that they can be closed and nonconvex (e.g. Fig. 7.4).

To obtain an explicit expression for 2. "¢ = e ¢'"* we can use the series expansion of the exponential function
with pseudo-quaternions (Eqn. (7.20)) combined with the following identities:




Quadratic Balls (2)

Box 7.1 (cont) Exponential of a matrix
(G-d1)" =a’1 €= use (7.43)
where n is an integer and a® = ¢ + f? - €. Using this and writing u = log’ we therefore obtain:

3

smh(aU)l P 26 = k-d}\‘—(G—dl) _ e—(G—dl)u _ l—u(G—dl)+%(G—d1)2 _

T, =1 ¢ = A"9%6 9 = )} ~9|1cosh(au) — ((G — d1) -

When a® < 0 the above formula holds, but with |a| replacing a and ordinary trigonometric functions rather than
hyperbolic functions. Examples of both balls and trajectories (the locus of points r, = T;r,, obtained by A varying
with r, fixed) are shown in Fig. 7.3,

We can now consider the effect of T, on quadratic balls, recalling the two basic cases depending on whether the
eigenvalues of G are real or complex (a® > 0, a® < 0 respectively) corresponding to domination by stratification or by
rotation. To see this explicitly, decompose the matrix T;_as follows:

T;. = R, SasRo, (7.45)

where Ry is a rotatiorrio?;%t(r)i%( which rotates by an angle 0, and S,z is a “stretch” matrix:

=[50 o). su=[f g stretch 740

If we apply this to a circular unit ball B,, we obtain:

By. = Ti.B1 = Ra,Sa8B1 (7.47)
circle

Creates an ellipse
Creates a rotated ellipse



Quadratic Balls (3)

where we have used the fact that Ry;B; = B, (a circle is invariant under rotation). Since S,zB, is an ellipse with axes
A, B, we have therefore have the simple interpretation that B;_is an ellipse with axes A, B rotated by angle 0,. In order
to understand the effect of T; on B, it therefore suffices to determine how A, B, 0, vary with scale ratio A. A first step
is to write:

1 ~ o o
Re,SAgRB,:-[(A+ B)cosO, + (A —B)cosd_ (A — B)sind., + (A B)snne_]

2| (A+B)sin®, + (A—B)sinB_ (A + B)cos, — (A — B)cos0._ \ (7.48)
where 6. = 0, + 0, and 6_ = 6, — 0,. Equating this element by element to our expre¥sion for A G (Eqn. (7.43))

we obtain: "
-4 T, = A = LG = [lcosh(au)— (G-d) 2 (a“)}
L= (AB)* a
Recalling that we can always choose d = 1, we see that this is equivalent to:
area
AT = (7.50)
T

With this we also find:

e __ (B_ 1A, Gl sinh?(au); e=5_
VE+T (|A B a? T ETA (7.51)

where ¢ is the “ellipticity”. For the angle 6,, we find:

1 f 1 e
0 =—tan '[=] — —tan™! (_ ) 7.
2 2tan (c) 2tan atanh(au) (7.52)
Eqns. (7.47) and (7.48) tell us how an initial circle at & = 1 (u = 0) changes its ellipticity € and orientation 6, with
scale A.

We now consider the two qualitatively different cases, a’> > 0 and a* < 0.



Quadratic Balls (4)

Box 7.1 (cont.)

Stratification dominance, a’ >0
In this case, as u — oo (L — o0), = B/A — oc;as u — —oc (A — 0), A/B — og, i.e. we have extreme stratification.
Considering the rotation, we have:

1 f 1 e
0 — o (1) ~Ltan 1 (5); w— oc |
) 2tan (c) 2tan a) u— +oo (7.53)

i.e. a total rotation of tan~'(e/a) (Note that at u = 0 the major and minor axes are exchanged, hence there appears
to be an extra n/2). The total rotation is thus bounded.

Rotation dominance, a° < 0

In Egns. (7.51), (7.52), we replace the hyperbolic trigonometric functions by the usual trigonometric functions and
use |a| to represent the modulus of a. From the equation for 6,, we now find that there are an infinite number of
rotations as u — oo (the logarithm “wavelength” = 2x/|a|) and the ellipticity oscillates, with maximum ratio:

2 2
BY —2(&) [1+4/1-12) - (7.54)
AJ o a| e?

From this, we can conclude that if the unit ball is sufficiently elliptical, there will be no circular balls at any scale.

Rotation dominant
Stratification dominant (complex
(real eigenvalues) eigenvalues)
1.35 0.25\ _(1.35 —0.45)
~l025 0.65) 085 0.65)




GSI morphologies (1): Rotational invariants

Clearly parameters which simply rotate structures or which give them isotropic dilations do not

change the morphologies so that of the four parameters c,d,e,f therefore only two need to be

considered. For example, we are interested in characteristics of G which are independent of

absolute orientation. Therefore, consider the primed coordinate system rotated by angle 6:

G'=R'GR
R=1cos0+ Isin0O

where R is the rotation matrix. Clearly, the / and I/ components of G commute with R so that
they are unaffected by the rotation; hence d, e are rotationally invariant. In addition, both the
trace (=2d) and determinant (=d2-a?) are rotational invariants (alternatively, and equivalently, the
eigenvalues d+a are invariant) so that we have d, e, a as rotational invariants. We therefore may

_ [z 2
conclude that since a2+e2 = 2+¢2 that the latter is also invariant; let us define © = V¢ T I

Trace and determinant Rotational invariants:

Any matrices A,B,C:  Tr(ABC)=Tr(CAB) hence TrG’=Tr(R"'GR)=Tr(RR"'G)=Tr(G)

Also det(ABC) = det(A)det(B)det(C) hence det(G’)=det(R'GR) =det(R™")det(G)det(R) = det(R™'R)det(G) = det(G)




GSI morphologies (2): Interpretation in term of
eigenvectors

cta
The eigenvalues of G are d+a and the (unnormalized) eigenvectors are: ( ,lj
+e

Difference in angle (AB) between the eigenvectors is given by: COS(AG) = COS(9+ — 9_) =—
(rotationally invariant). When e<r and as e approaches r, the eigenvalues are real and the 7

eigenvectors become more and more parallel; for e>r, they become complex.

Average angle: O

5 -/ -/
cos(2(9):cos(6+ +60_)= =
Jo+ 7 Nat+e
¢, f thus determine the absolute orientation of the balls but not the shapes. This means

that we can consider only the case r = f, ¢ = 0 without loss of generality. This means we
need only consider the following matrix:

GZ( d r—e)
r+e d

A further restriction on the parameter space is a consequence of the fact that
interchanging the x and y axes (i.e. a reflection of structures about the bisectrix, the line
x = y) is equivalent to changing the sign of e (this follows since e->-e implies G->G’ (the
transpose). Therefore one need only consider e>0.




GSI morphologies (3): nonuniqueness of G

Finally, overall “blowups” don’t change the morphologies of structures. For example, if
we normalize G by (half) its trace:
G'=G/d

’

satisfying the scale equation for G’:

then a scale function | r

e =2 el
N . S = A ] Proof:
is obtained from the original scale function (satisfying ) by: ,
Il = Il o o=
(‘ (}\,d)_G,K djl/d :((kd)_]HZ”d)l/d
so that in 2D we can always take Trace G =2 (i.e. d = 1).
ool =2 e

Therefore, if we are only interested in exploring the various morphologies in 2D
linear GSI, it suffices to consider d =1, r=f, c=0, i.e. to only consider the matrix:

r+e 1




Roundish unit ball

k =0: we vary r (denoted i) .
from -0.3, -0.15, ...0.45 left to |°*

right and e (denoted j ) from
-0.5, -0.25, ..0.75 top to
bottom. On the right we show

the contours of the .

corresponding scale functions.
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e left to right is:
-0.5, -0.25, ...0.75.
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