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Probabili+es	  and	  codimensions	  	  

Revisi+ng	  the	  β	  Model	  	  

Recall the β model has one parameter c>0 and that two states specifally the statistics of the 1 
multipliers µε: 2 

Pr(µε = λ0
c ) = λ0

−c             (alive)

Pr(µε = 0) = 1− λ0
−c           (dead)

 3 

where λ0 is the single step (integer) scale ratio.  Recall  that the magnitude of the boost µε = λ0
c
 4 

>1 is chosen so that at each cascade step the ensemble averaged ε  is conserved:  5 
µε = 1 ⇔  nε = 0ε  6 

Indeed at each step in the cascade the fraction of the alive eddies decreases by the factor β = λ0
−c

 7 
(hence the name “β model”) and conversely their energy flux density is increased by the factor 8 
1/β  to assure (average) conservation.  9 



n	  steps	  β	  model	  
After n steps, the effect of the single-step dichotomy of “dead” or “alive” is amplified by the 1 
total (n step) scale ratio λ =λ0

n:  2 

Pr εn = λ0
n( )c = λc( ) = λ0

n( )−c = λ−c         (alive)

Pr(εn = 0) = 1− λ0
n( )c  =1- λ−c        (dead)

 3 
hence either the density diverges εn with an (algebraic) order of singularity c, but with an 4 
(algebraically) decreasing probability, or is “calmed” down to zero. 5 
After n steps the average number of alive eddies in the β - model  is:  6 

Nn = λd Pr ελ = λc( ) = λd−c

 7 

This is the number of λ-1 sized boxes” needed to cover the alive regions, hence their 8 
corresponding (box counting, fractal) dimension D is:  9 

D = d − c  10 
(d is the dimension of the embedding space) so that the statiical codimension c is indeed equal to 11 
the geometric codimension (as long as D≥0).  This is the dimension of the “support” of 12 
turbulence, corresponding to the fact that 13 

Number	  as	  func+on	  of	  scale	  



ε0	   ε1	  

Revisi+ng	  the	  α	  Model	  	  

“boost”	  

“decrease”	  



Revisi+ng	  the	  α	  Model	  	  

The α model which more realistically allows eddies to be either “more active” or “less active” 1 
according to the following binomial process: 2 

Pr(µε = λ0
γ + ) = λ0

−c             (>1  ⇒  INCREASE)
Pr(µε = λ0

γ − ) = 1− λ0
−c       (<1  ⇒  DECREASE)  3 

where γ+, γ- correspond to boosts and decreases respectively, the β model being the special case 4 

where γ − = −∞  and γ + = c  (due to conservation <µε> = 1, there are only two free parameters): 5 
λ0

γ + −c + λ0
γ − 1− λ0

−c( ) = 1  6 

Taking −γ > −∞ , the pure orders of singularity −γ and +γ  lead to the appearance of 7 
mixed orders of singularity, of different orders −γ (γ ≤ γ ≤ +γ ) .  These are built up step by step 8 
through a complex succession of −γ  and +γ , values.  9 

Conserva+on	  constraint	  



α	  Model	  aGer	  2	  steps	  

Pr(µε = λ0
2( )γ + ) = λ0

2( )−c                         (one large)

Pr(µε = λ0
2( ) γ + + γ −( )/2

) = 2 λ0
2( )−c /2

− 2 λ0
2( )−c      (intermediate)

Pr(µε = λ0
2( )γ − ) = 1− 2 λ0

2( )−c /2
+ λ0

2( )−c                  (large decrease)   1 

What is the behaviour as the number of cascade steps, n → ∞? Consider two steps of the 1 
process, the various probabilities and random factors are: 2 

Pr(µε = λ0
2γ + ) = λ0

−2c                         (two boosts)
Pr(µε = λ0

γ + + γ − ) = 2λ0
−c (1− λ0

−c )     (one boost and one decrease)
Pr(µε = λ0

2γ − ) = (1− λ0
−c )2                  (two decreases)  3 

Rewri+ng:	  

Two	  steps:	  an	  
equivalent	  3	  
state	  model	  
with	  λ	  =	  λ0

2	  



Iterating this procedure, after n = n+ + n-
 steps we find: 1 

γ n+ ,n−
=
n+γ + + n−γ −

n+ + n−
 ,        n+ = 1,...,n

Pr µε = λ0
n( )γ n+ ,n−( ) = n

n+

⎛

⎝
⎜

⎞

⎠
⎟ λ0

n( )−cn+ /n
1− λ0

n( )−c /n( )n−
  2 

where 

n
n+

⎛

⎝
⎜

⎞

⎠
⎟

 is the number of combinations of n objects taken n+  at a time.  This implies that 3 
we may write: 4 

Pr ε
λ0
n ≥ λ0

n( )γ i( ) = pi, j
j
∑ λ0

n( )−ci , j
 5 

The pij’s are the “submultiplicities” (the prefactors in the above), cij are the corresponding 6 

exponents (“subcodimensions”) and λ0
n

 is the total ratio of scales from the outer scale to the 7 
smallest scale.  Notice that the requirement that µε = 1  implies that some of the iγλ  are >1.  8 

α	  Model	  aGer	  n	  steps	  
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Values	  and	  singulari+es	  

A	  schema+c	  illustra+on	  of	  a	  mul+fractal	  field	  analyzed	  over	  a	  scale	  ra+o	  λ,	  with	  two	  scaling	  
thresholds	  	  	  	  	  	  	  	  and	  	  	  	  	  	  	  	  	  .	  ,	  corresponding	  to	  two	  orders	  of	  singularity	  :	  	  	  	  	  	  	  	  	  	  	  .	  	  2γ > 1γ1γλ 2γλ

γ = logελ
logλ

Pr ελ > λγ( ) ≈ λ−c γ( )



Removing the sale dependency 
of the flux: γ	  
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Example	  with	  
aircraG	  data:	  

No+ce	  that	  	  the	  
range	  of	  γ’s	  is	  
nearly	  constant	  

γ = logελ
logλ



The	  Codimension	  Mul+fractal	  
Formalism	  	  

Codimension	  of	  Singulari+es	  c(γ)	  and	  its	  rela+on	  to	  K(q)	  	  

We now derive the basic connection between c(γ) and the moment scaling exponent K(q). To 1 
relate the two; write the expression for the moments in terms of the probability density of the 2 
singularities: 3 

 
p γ( )  = dPr

dγ
   c' γ( ) logλ( )λ−c γ( )  λ−c γ( )

 4 
(where we have absorbed the c’(γ)logλ factor into the “  ” symbol since it is slowly varying, 5 
subexponential). This yields: 6 

ελ
q = dPr ελ( )ελq∫ ≈ dγλ−c γ( )λqγ∫  7 

where we have used λε = γλ  (this is just a change of variables λε  for γ , λ  is a fixed parameter). 8 
Hence: 9 

ελ
q = λK q( ) = eK q( ) log λ ≈

−∞

∞

∫ dγeξf γ( ); ξ = logλ; f γ( ) = qγ − c γ( );    λ>>1
 10 

Pr ελ > λγ( ) = p ελ( )dελ
λγ

∞

∫

Pr ′γ > γ( ) = p ′γ( )d ′γ
γ

∞

∫

Rela+on	  probability	  density	  
and	  distribu+on:	  



Legendre	  transform	  

We see that our problem is to obtain an asymptotic expansion of an integral with integrand of the form 1 
exp(ξ f(γ)) where ξ = logλ is a large parameter and f(γ) = qγ - c(γ).  These expansions can be conveniently 2 
preformed using the mathematical technique of “steepest descents” e.g. (Bleistein and Handelsman, 1986) 3 
which shows the integral is dominated by the singularity γ which yields the maximum value of the exponent) so 4 
that as long as ξ = logλ >>1 : 5 

 6 

eξf γ( ) dγ ≈
−∞

∞

∫ e
ξmax

γ
f γ( )( )

 7 

 8 
so that: 9 
 10 
 11 

ελ
q = eξK q( ) ≈ e

ξmax
γ

qγ−c γ( )( )
; ξ = logλ  12 

 13 
hence: 14 

K q( )=max
γ

qγ − c γ( )( )
 15 

This relation between K(q) and c(γ) is called a “Legendre transform” (Parisi and Frisch, 1985).  16 
 17 

Legendre	  transform	  



Inverse	  Legendre	  transform:	  c(γ)	  

We can also invert the relation to obtain c(γ) from K(q); just as the inverse Laplace transform used to 1 
obtain K(q) from c(γ) is another Laplace transform so the inverse Legendre transform is just another Legendre 2 
transform.  To show this, consider the twice iterated Legendre transform F(q) of K(q):   3 

F(q) = maxγ {qγ − (maxq '{q 'γ − K(q ')})} = maxγ ;q '{γ (q − q ') + K(q ')}   4 

Taking ∂F/∂γ = 0 ⇒ q = q' so that we see that F(q) = K(q).  This shows that a Legendre transform is equal to its 5 
inverse, hence we conclude:  6 

 
c γ( ) = max

q
qγ − K q( )( )

 7 

The γ which for a given q maximizes qγ - c(γ) is γq and is the solution of c’(γq) = q.  Similarly, the value 8 

of q which for given γ maximizes qγ- K(q) is qγ so that: 9 

qγ = ′c γ( )
γ q = ′K q( )

 10 

This is a one-to-one correspondence between moments and orders of singularities.  11 

Legendre	  transform	  



Graphical	  Legendre	  transform	  

c(γ)	  versus	  	  showing	  the	  tangent	  line	  c’(γ	  q)	  =	  q	  with	  the	  corresponding	  
chord	  .	  	  Note	  that	  the	  equa+on	  is	  the	  same	  as	  γq	  =	  K’(q).	  	  
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K(q)	  versus	  q	  showing	  the	  tangent	  line	  K’(qg)	  =	  γ	  	  with	  the	  corresponding	  chord	  .	  	  
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Graphical	  Legendre	  transform	  

c γ( ) = max
q

qγ − K q( )( )



�c �
max( ) = qmax

q� q > �c �
max( )

K q( ) = q�
max

� c �
max( )

c �( )

c �( )

�
max

�

Note that if γ  is bounded by γmax (for example in microcanonical cascades, γ≤d or for the 1 
α model; γ ≤ γ+) there is a qmax = c’(γmax) such that for q>qmax, K(q) = qγmax -c(γmax), i.e. K(q) 2 
becomes linear in q. 3 

Leendre	  transform	  bounded	  
singulari+es	  



Proper+es	  of	  codimension	  func+ons	  	  

c(γ) is the statistical scaling exponent characterizing how its probability changes 
with scale.   
 
1)  The first obvious property is that due to its very definition c(γ) is an 

increasing function of γ: c’(γ)>0.   

2)  Another fundamental property which follows directly from the Legendre 
relation with K(q), is that c(γ) must be convex: c’’(γ)>0. 	  



The	  special	  
proper+es	  of	  the	  
singularity	  of	  the	  

mean,	  C1	  
γ

c(  )

C1

rare
events

extreme
events

γ

C1

Many properties of the codimension function can be illustrated graphically.   
For example, consider the mean, q =1.   
 

1)  First, applying K’(q) = γ we find K’(1) = γ1 where  is the singularity giving the dominant contribution to the 
mean (the q = 1 moment).  We have already defined C1 = K’(1), so that this implies C1 = γ1; the Legendre 
relation thus justifies the name “codimension of the mean” for C1.  

2)   Also at q = 1 we have K(1) = 0 (due to the scale by scale conservation of the flux) so that C1 = c(C1) (this is a 
fixed point relation). C1 is thus simultaneously the codimension of the mean of the process and the order of 
singularity giving the dominant contribution to the mean.  

3)  Finally, applying c’(γ) = q we obtain c’(C1) = 1 so that the curve c(γ) is also tangent to the line x = y (the 
bisectrix). If the process is observed on a space of dimension d, it must satisfy d≥ C1, otherwise, following the 
above, the mean will be so sparse that the process will (almost surely) be zero everywhere; it will be 
“degenerate”.  We will see that when C1>d that the ensemble mean of the spatial averages (the dressed mean) 
cannot converge.   
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Mul+fractality	  near	  γ	  =C1	  
Finally, since c(γ) is convex with fixed point C1, it is possible 1 
to define the degree of multifractality (α)  by the (local) rate 2 
of change of slope at C1, (the singularity corresponding to the 3 
mean) its radius of curvature Rc(C1) is: 4 

Rc C1( ) = 1+ ′c C1( )( )3/2
′′c C1( )  5 

Using the general relation c’(C1)=1 we obtain 6 
Rc C1( ) = 23/2 / ′′c C1( )  hence we can locally (near the mean γ 7 
= C1) define a curvature parameter α from either of the 8 
equivalent relations: 9 

α =
23/2Rc C1( )

C1
=

1
C1 ′′c C1( )  10 

These local (q = 1, γ = C1) definitions of α are 11 
equivalent to the definition via moments α = K’’(1)/K’(1).  12 

A	  schema+c	  illustra+on	  showing	  how	  the	  c(γ)	  curve	  can	  be	  locally	  characterized	  
near	  the	  mean	  singularity	  C1.	  	  

q = ′c γ( )⇒ ′′c γ( ) = dq
dγ

γ = ′K q( )⇒ ′′K q( ) = dγ
dq

′′K q( ) = dq
dγ

⎛
⎝⎜

⎞
⎠⎟

−1

= 1
′′c γ( )

′′K 1( ) = C1α = 1
′′c C1( )

Demonstra+on	  



The	  sampling	  dimension,	  sampling	  singularity	  
and	  second-‐order	  mul+fractal	  phase	  transi+ons	  

Ds =
logNs

logλ

γ s =
logελ,s
logλ

Sampling	  dimension	  	  

Sampling	  singularity	  	  

In order to relate γs and Ds, consider a collection of satellite images (d = 2). Our question 1 
is thus: what is the rarest event with the most extreme γs that we may expect to see on a single 2 
picture?  On a large enough collection of pictures?   The answer to, these questions is 3 

straightforward: there are a total of  λ
d+Ds pixels in the sample; hence the rarest event has a 4 

probability ≈ λ
-(d+Ds)

.  However the probability of finding γs is simply λ
-c(γs)

 so that we obtain 5 
the following implicit equation for γs: 6 

c γ s( ) = d + Ds = Δ s  7 

Δs = d+Ds is the corresponding (overall) effective dimension of our sample.  More extreme 8 
singularities would have codimensions greater than this effective dimension c > Δs and are 9 
almost surely not present in our sample. 10 

“effec+ve	  dimension”	  of	  a	  
sample	  of	  Ns	  samples,	  each	  
scale	  ra+o	  λ	


largest	  singularity	  γs,	  largest	  
value	  ελ,s	  

A

N s
Ds

Independent 
Realizations

Physical 
space

Physical
space

Probability
Space

λ~



s

c γ s( ) = d + Ds

Equa+on	  for	  γs:	  



Example	  of	  Ds,	  γs	  es+mate	  

We can use the aircraft data shown above to estimate the largest singularity that we should expect 
over a transect 213 points long. 	


The largest normalized flux value is ≈ ελ,s = 26.5 	

Hence:	


 γs = logε/logλ =  log(26.5)/log(213) = 0.364	

 	


Using the estimated multifractal parameters α = 1.8, C1= 0.06 (these are mean C1, α values for that the 
solution of c(γs) = Δs =1.364 is γs = 0.396 which is very close to the observed maximum.   
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AircraG:	  280m	  resolu+on,	  200	  mb	  (≈12	  km)	  

Largest	  value	  

24 flight legs 400 points (1120 km) long, with d =1 
section:	

Ds = log24/log4000 = 0.364	

Δs = D+Ds =1.364	  
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K q( ) = q�
max

� c �
max( )

c �( )

c �( )

�
max

�

Second	  order	  phase	  transi+on	  

Let us now calculate the moment exponent Ks(q) for a process with Ns realizations.  To 1 
do this, we calculate the Legendre transform of c(γ) but with the restriction γ≤γs; this is the same 2 
type of restriction  as discussed earlier (take γmax = γs): 3 

Ks (q) = γ s (q − qs ) + K(qs ) ,     q ≥ qs  4 

Ks (q) = K(q) ,     q ≤ qs  5 

hence at q = qs there is a jump/discontinuity  in the second derivative of K:  6 
Δ ′′Ks = − ′′K (qs )  7 

due to the existence of formal analogies between multifractal processes and classical 8 
thermodynamics, this is termed a “second order multifractal phase transition” 9 

The	  effect	  of	  finite	  sample	  size:	  

Here,	  γmax	  =	  γs	  



Direct	  empirical	  es+ma+on	  of	  c(γ):	  the	  probability	  
distribu+on	  mul+ple	  scaling	  (PDMS)	  technique	  	  

We saw how to empirically verify the cascade structure and characterize the statistics using the 1 
moments, and how to determine their scaling exponent, K(q).  In this chapter, we saw how – via 2 
a Legendre transform of K(q)  - this information can be used to estimate c(γ).  However, it is of 3 
interest to be able to estimate c(γ) directly; to do this, we start from the fundamental defining 4 
equation, take logs of both sides and rewrite it as follows: 5 

Log(Prλ (ελ > λγ ) = −c(γ )Log(λ) + o(1 / Log(λ))O(γ )  6 

� 

o(1/Log(λ))O(γ )  corresponds to the logarithm of the slowly varying factors that are hidden in 7 
the “≈” sign and the subscript “λ” on the probability has been added to underline the resolution 8 
dependence of the cumulative histograms. For each order of singularity γ, this equation expresses 9 
the linearity of log probability with the log of the resolution.  The singularity itself must be 10 
estimated from the fluxes by: 11 

γ =
log ελ( )
logλ  12 



Comments	  

We now see that things are a little less straightforward than when estimating K(q).   1 
 2 
First, the term “

� 

o(1/Log(λ))O(γ ) may not be so negligible, in particular for moderate λ’s, so 3 

that using the simple approximation c γ( ) ≈ − logPrλ / logλ  may not be sufficiently accurate.   4 
 5 
Second, we assumed that ελ is normalized such that <ελ> =1; if it is not, it is can be normalized 6 
by dividing by the ensemble mean: ελ->ελ/<ελ>.  However from small samples, there may be 7 
factors of the order 2 in uncertainty over this so that even the estimate of γ may involve some 8 
uncertainty.  9 
 10 
In comparison, if one wants to estimate K(q), one needn’t worry about either of these issues 11 

since (even for the un-normalized ελ) the linear relation log ελ
q = K q( ) logλ  is exact (at least 12 

in the framework of the pure multiplicative cascades): K(q) is simply the slope of the log ελ
q

 13 
versus logλ graph (and if the normalization is accurate, the outer scale itself can be estimated 14 
from the points where the lines cross).  The relative simplicity of the moment method explains 15 
why in practice it is the most commonly used.  c(γ) can then be estimated from K(q) by 16 
Legendre transform (either numerically or using a universal multifractal parametrization). 17 



PDMS	  
examples	  
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c(γ) estimated from the PDMS method c(γ) ≈ -logPr/logλ  described in the text are shown for 
resolution degraded by factors of 2 from 280 m to ≈36 km (longest to shortest curves).  For 
reference, lines of slope 3 (top row) and 5 (bottom row) are given corresponding to power law 
probability distributions with the given exponents. 	  

c(γ) ≈ -logPr/logλ 	  

z	   p	  

vlong	   vtrans	  

AircraG	  at	  200mb:	  24 flight legs, each 4000 points long, 280 m 
resolution (i.e. 1120 km), dynamic variables	  

Probability	  
Distribu+on	  Mul+ple	  
Scaling	  technique	  



Thermodyanmic	  variab	  les	  

The reference lines all have slopes of 5	  	  
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Codimensions	  of	  Universal	  
mul+fractals,	  cascades	  	  
When discussing the moment characterization of the cascades, we have already noted that 1 

the two parameters C1, α are of fundamental significance.  C1 characterizes the order and 2 
codimension of the mean singularities of the corresponding conservative flux, it is the local trend 3 
of the normalized K(q) near the mean; K(q) = C1 (q-1) is the best monofractal “β model 4 
approximation near the mean” (q ≈ 1). Finally, α = K’’(1)/K’(1) characterizes the curvature near 5 
the mean.  The curvature parameter α  can also be defined directly from the probability exponent 6 
c(γ) by using the local radius of curvature Rc(C1) of c(γ) at the point γ = C1, i.e. the corresponding 7 
singularity.  Finally, for the observed field f, there is a third exponent H which characterizes the 8 
deviation from conservation of the mean fluctuation Δf ≈ <ε>ΔxH ≈ ΔxH since <ε> =constant, it is 9 
a “fluctuation” exponent. 10 

K q( ) = C1

α −1
qα − q( );     α ≠ 1

K q( ) = C1qLog q( ); α = 1     

Valid for 0≤α≤2; however, K diverges for all q <0 except in the special (“log-normal”) case α = 2 . 
To obtain the corresponding c(γ), one can simply take the Legendre transformation to obtain	   Add: 
to obtain the α=1 case, just take limit as α->1. 

c γ( ) = C1
γ

C1 ′α
+ 1
α

⎛
⎝⎜

⎞
⎠⎟

′α

;     α ≠1; 1 / ′α +1/α =1

c γ( ) = C1e
γ
C1

−1
⎛
⎝⎜

⎞
⎠⎟ ; α = 1

Universal	  mul+fractal	  K(q)	  

Universal	  mul+fractal	  c(γ)	  



Universal	  c(γ)	  

Note that since α’ changes sign at α =1, for α<1, there is a maximum order of singularity 
γmax = C1/(1-α) so that the cascade singularities are “bounded”, whereas for α>1, there is on the 
contrary a minimum order γmin = -C1/(α-1) below which the prefactors dominate (c(γ) = 0 for 
γ<γmin) but the singularities are unbounded. 
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α<1,	  α>1	  cases:	  bounded,	  unbounded	  
singulari+es	  

α=1/2,	  C1=1	  

α=3/2,	  C1=1	  

−C1
α −1

−C1
α −1

α=1/2	  

Asymptote	  
(α=1/2)	  

Minimum	  γ	  
with	  c>0	  
(α=3/2)	  
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c	  (	  γ)	


c γ( ) = C1
γ

C1 ′α
+ 1
α

⎛
⎝⎜

⎞
⎠⎟

′α

; γ > −C1
α −1

c γ( ) = 0; γ ≤ −C1
α −1

c γ( ) = C1
γ

C1 ′α
+ 1
α

⎛
⎝⎜

⎞
⎠⎟

′α

; γ < −C1
α −1

c γ( ) = ∞; γ ≥ −C1
α −1

2 ≥ α >1; ′α > 2

0 ≤ α <1; ′α < 0

′α = α
α −1

c γ( ) ≈ − logελ
logλ

γ = logελ
logλ

Frequent	  low	  values	  
“Levy	  holes”	  

Maximum	  possible	  
singularity	  



Other	  mul+fractal	  models:	  Log-‐
Poisson	  

By taking a different limit of the α model, one obtains “Log-Poisson” cascades which 1 
have the following form:  2 

γ + = c 1− λ0
−γ−( )  3 

K q( ) = qγ + − c + 1− γ +

c
⎛
⎝⎜

⎞
⎠⎟
q

c
 4 

c γ( ) = c 1− γ + − γ
cγ −

1− log γ + − γ
cγ −

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
; γ ≤ γ +

c γ( ) = ∞; γ > γ +  5 

 6 
where λ0>1 is the cascade ratio for a single step, c>0, γ+>0 and the relation between γ+ and γ- (top 7 
line) is from the conservation requirement of the α model.  Clearly, γ+ is the highest order 8 
singularity and c is the corresponding codimension so that the log-Poisson cascade has 9 
instrinsically a maximum singularity that it can produce.  10 



Examples	  

C1	  =	  0.1	  

α	  =0.3	  

α	  =0.5	  

α	  =0.7	  

α	  =1.9	  
α	  =1.7	  



This shows 11 independent realizations of α = 0.2, C1 = 0.1 indicating the huge 
realization to realization variability : the bottom realization is not an outlier!	    no to so 
impressive .... with the only exception of a big spike ! 

α	  =0.2,	  C1	  =	  0.1	  
D
ifferent	  realiza+ons	  



Ten independent realizations of α = 1.9, C1 = 0.1, again notice the large realization 
to realization variability.	  	  

α	  =1.9,	  C1	  =	  0.1	  
D
ifferent	  realiza+ons	  



!

T h i s s h o w s i s o t r o p i c 
realizations in two dimensions with 
α  = 0.4, 1.2, 2, (top to bottom) and 
C1 = 0.05, 0.15 (left to right).  The 
random seed is the same so as to 
make clear the change in structures 
as the parameters are changed.  The 
low α simulations are dominated by 
frequent very low values; the “Lévy 
holes” .   The vertical scales are not 
the same.  misleading, we need to 
find something else.. 

 It’s too late to change the 
name… and if so, to what? 

α	  =0.4	  

C1	  =	  0.05	  

α	  =1.2	  

α	  =2.0	  

C1	  =	  0.15	  


