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Cascades, extremes and
divergence of moments




Divergence of
Statistical Moments
and extremes

Dressed and bare moments

An example of an o model cascade. The left
hand side shows the step by step construction of a
(“bare”) multifractal cascade starting with an initially
uniform unit flux density. The right hand side shows the
result of spatial averaging (to the same scale as the left
image) of the cascade developed over the full range (a
factor A = 2 here, bottom centre): the “dressed” cascade
discussed in the text. The vertical axis represents the
density of energy e flux to smaller scales which is
conserved by the non-linear terms in the dynamical
equations governing fluid turbulence. At each step the
horizontal scale is divided by two, and independent
random factors are chosen either <1 or >1.

“Bare” statistics — properties of

cascade completed over range A:

(e)=2""; Pr(e, >A7) =AW
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Definition of dressed flux
A'l ¢ Cascade €

developped over the

scale ratio A
€A

- B}L=A

7\"1 < >

In order to define the dressed flux, start by defining the A resolution flux I, (A) over the set 4:
IT, (A) = jSAdDz
A

Cascade ¢ developped
over range A, integrated
over the set A

<€

We can now define the “partially dressed” flux density Er.Aw@ as:

Cascade ¢ developped
e — M <€ over range A, averaged
A vol(Bk) over the scale ratioA

where vol(B,) = A” is the D-dimensional volume of a ball (interval, square, cube etc.) of size

L/\ and the “(fully) dressed flux density” as: Cascade € developped
€)= IME, ,, < over infinite range,
, Ao Th
averaged over the scale
ratioA

The terms “bare” and “dressed” are borrowed from renormalization jargon and are justified

because the “bare” quantities neglect the small scale interactions (<L/A), whereas the “dressed”
quantities take them into account.



Factorization property of the cascade

€, =81, (SA/k)
€

bare cascade
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The hidden factor

Factorization shows that:
Exa) = Er&en)

With the “hidden” factor given by:
€. = lime, =TI, (Bl)

A—oo

ie. T isa fully developed, fully integrated cascade and from the factorization:
€)= &1L, (Bl)

and taking qth moments:

<8;{(d)> = <3§{ > <H<X, (B,) >

q
is always finite, the finiteness of <87~(d)> depends on

(g1} =150

Since for any ¢, finite A,

n.(s)



Divergence of High Order
Statistical Moments

Our goal is to determine the statistics of the fully integrated, fully developped cascade: <1_L° (B )q>

We are interested in the statistics of the dressed and partially dressed density:

€ =11, (B, )/ vol(B . :

MA(d) A( ”) vo ( x) we will consider the mean of the qth power of the flux on the set 4
(dimension D) of the cascade constructed down to the scale L/A :

(H%(A)>=<UAC1DX qu> < gt order dressed moment over set A

when ¢ is an integer Zy

<UAdDX87‘T>: <J.A '”J.A dPx; - dPx, Sl(xl)"‘e?»(xq)>

The complexity of this multiple integral suggests the introduction of “trace moments”
which are obtained by integrating over the subset of the integral obtained by taking
X1 =Xy =X3=...3

— D .
Ir, (&,)" = _[Adq x(¢f) < q*" order resolution A trace moments

where A is the set A at resolution A (i.e., obtained by a disjoint covering of A with balls B,,
€, 1s the usual (bare) flux density at resolution A).



Properties of Trace moments

AP
| Ay
A at resolution A
(= cover of A with disjoint balls B,)
Usual moments: <(HX(A))Q> =<(Z(Hx (Bx))j >
/ - '
I, (A) = ngle Hk('A) o (B}L)Z\kD?
Trace moments:  Tr, (g,)! = IAd"Dx<£§{> Try&; =2<(Hx(3x))q>

decreasing function of ¢, (a Jensen inequaiity we (I (8,)) (;(Hl(B l)))

>
Using the fact that for any positive x; (ZX? lis a i
have: <Y

g>1
g=1
g<l




Properties of Trace moments

Taking ensemble averages we obtain:
(MTA%(A))= Try €, 9 (q>1)

<Trp €)1 (q<1)

The use of trace moments rather than the usual moments has a number of advantages.
First, it is defined for all ¢ (whereas the usual moments can only be expanded as multiple
integrals for positive integer ¢). Second, trace moments are Hausdorff measures since we can

use the scaling of (€3 1) to obtain a Hausdorff measure over a higher dimensional space (for

convenience we have left out the inf, efc.). We anticipate that in the limit A — oo they will either
diverge to > or converge to 0; in fact, they will have two transitions!



Degenerate cascades

Tr, (8,)" = IAqu X <£§{> ~ 2<8§{>7ng = EKK((])?L_(]D From previous

Ay Ay

Now use box counting in the sum ; there will be terms, each of value (g 9y —9P

TrA7L qu =D .KK(Q) AT = xK(q)—(q—l)D _ k(q—])(C(q)_D) ;ake
—> o0

Where we have used the dual codimension function C(g) = K(g)/(g-1).

The case C(¢q)>D for g<1:

Due to the monotonicity of C(g) this is equivalent to C;>D. In this case,

lim Tra, 2950 = (Hooq(A)):O <——— The case: C(q)>D for g<1 (i.e. C,>D)
i Recall: <(HK(A))q> <Trel; g<l1

for all g<1, hence the process is degenerate on the space. This implies that when C;>D, then the
mean of the bare process is too sparse to be observed in the space D; in fact, the above shows

(1..(4)

that if C;>D it is impossible to normalize the process so that the dressed mean is finite.



Nondegenerate cascades

The case: C(qg)<D for g>1 (i.e. C,<D)

Take

Try, 829 = AP 2K@. 3~ =3K@~@-DD —y@-DC@-D) | ¢

In this case, the trace moments diverge for g<1, but this does not affect the convergence
of the dressed moments (the trace moments are upper bounds here). On the other hand, for g>1,
we find:

i > > :
lim Tra, 295 00 = ([Tu(A) > < a>1, C(q)>D recall
Ao (qu (A))z Trp€) 9 (q>1)
for all C(q)>D. Using the implicit definition of gp:|C(qp) = D, |we thus obtain:

<(Hm(A))q> = 4>(qp <€ The case: C(q)<D for g>1

i.e., in this case, divergence of the trace moments implies divergence of the corresponding
dressed moments.



Multifractal Butterfly effect

Full cascade _—> gk(d) = 87\.800(}1)
averaged at scale A1 f \ small scales:

large scales integration over a fully
(scale range 1) developped cascade:

The hidden moments diverge: e =11.(B)

O(1); < . .
<Ei (h)> ~ ( ) 9<49p qp is the solution to K(q,)=D(q—1)
’ 00! q > q, the implicit equation

Divergence due to small scales: the

Discontinuity in first
multifractal butterfly effect Y

derivative = first order

- multifractal phase
Divergence of dressed moments: / transition
K K(q); <
<8;{(d)> =259 \here: K,(q)= {m.q 1 >qD
’ 1=4p Long range dependencies

place this outside the

Probability distributions framework of Extreme Value
Theory

(€l )=, q2q, < |PrE, ,, >s)~5 ", s>>1

Mandelbrot 1974, S+L 1987

Proof (RHS->RHS): Prle;>e)=e"  hence  ple,) =Lt ~ge

de,

and (&f)= J‘P(Ex)gﬁd% = J.Siqb_lgidex =&"™  Which diverges at large £, when g>q,




The dressed codimension function c4(Y)

To calculate the corresponding dressed codimension c,(y), we can use the Legendre transform of
Kg) to obtain:

For all y>y,, the
c,(N=cn), T<V, c,(v)= max(qy -K, (q)) €« maxisatq=q,
N =a (=) +cp)  ¥>7p !

where yp = K’(¢gp) is the critical singularity corresponding to the critical gp. This transition from
convex “bare” behaviour to linear “dressed” behaviour represents a discontinuity in the second

derivative of c(Y); hence a “second order multifractal phase transition” for ¢ (for K, see below).

A K,(q)
d
K(q) f -
| Yo=K (QD)
[
|
. |
Linear c4(y) and power law &, D(q.-1) |
D
e )-an gl
logA
c,(V)=gpY+log, A;  log, A=—q,Y,—c(Yp)s Y>7Vp
Pr(é‘; > 8/1) ~ ALY = Aefqn((logsz)/logl)logfl =Ag; g, > A"
o




Multifractal phase transitions:
Effect of finite sampling on codimensions Cy (Y)

c(y) A

Large sample: D+D82

Sampling dimension 1
D = log N,
* logh

Discontinuity in c”’(Y)
at Y="7p

Small sample: D_|_DS ————————
1
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Schematic diagram of c(y), cq(y) indicating two sampling dimensions Dg;, Dg, and their

corresponding Vst <o <7¥s2 <Yas2; the critical tangent (slope ¢p) contains the point (D, D).



First order Multifractal phase transitions:
Effect of finite sampling on K(q) K,(q)=max(qy—c,(y))

Y<YVs

Critical sampling

Yo Y < singularity
Soo 2 K(q) DD Yo =K'(qp)

K § KO
For q,, =¢'(Y,,)>ap

~__| K.(q)

For q,, =C(V,1)<qp

Equation for qp: D(q,-1)

K(9,)=D(q-1)

Discontinuity in K’(qQ)
at g=qp




Self-Organized criticality (SOC)

Operational definition of SOC:
Spatial scaling and Power law probabilities

Sandpile “mean shape” {
= result of extreme b
avalanches s
The mean field results from catastrophes! B

Classical SOC: zero flux limit
Nonclassical multifractal SOC: quasi constant flux

Pr(e, ,, >s)~s ", s>>1



Divergence of moments in Laboratory turbulence

Let’s test the prediction:
— o 49Dg
Pr(8>s)~s ¢>>1

Dissipation Range:

Ay’ Av? Ax _
E=Vy: Vz\_/ ~ VKer—ge>s):Pr(VAx‘; >s] =Pr(Av>(W)s”2j dps = 9D v(diss) /2

Inertial Range:
A

Ax

3

e Pr(8>s):Pr(%>s):Pr(Av>Axs”3) QD,E — qD,v(inertial) /3

Laboratory Data:

Dissipation range estimate: qD,v(diss) = 54’ qD,g =~2.7

Inertial range estimate: qD,v(inem‘al) = 7-7; qD,g ~2.0

Radelescu, L+S+M 2002
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Dlvergence of moments in 15-::““
the horizontal wind field bR
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10° —— (Gaussian
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Corsica horizontal wind data at 20s resolution (Fitton et al 2012)



Precipitation

Probability distributions of
rain water volumes in
10x10x10cm cubes from
stereophotography of
raindops.

...:.l._ﬁ_\
Dl

—

A

=

X))
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gl dp =3

Probability distributions of Rain
rate from rain gauges



Extremes: data versus models

Prediction of cascade models: Pr(AR > s)= 5™ s>>1
. Logys
o) 1/100” /hr

ECMWFx4 (reanalysis)

Jp=2.2
' 20CR -
Logm PI'(AR > S) ' (reanalysis) ° CPC
' gauges

-6 |

-3



Abrupt events, extreme
changes



Abrupt events, extreme changes
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r Current
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- 472 A——

GRIP (GReenland Ice core Project), summit
location (=75°N), High (5.2 yr ) resolution section

_ “Dansgaard Oesger events”
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Last glacial

DO+

Data: thanks to P. Ditlevsen

0 60 80
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GRIP Probabilities of extreme changes

Log,,Pr
N

Log,ys

Greenland ice core
080 temperature
proxies

05 10

Limit of Levy variables (0=q,<2)

4p=7.8, 6.2
Gaussian
Extreme 100__, probability<10-+
changes
| Gaussian /

L probability<104/



Most exponents: range 3-5

Table 5.1a A summary of various estimates of the critical order of divergence of moments (g,) for various atmospheric fields.

Field

Horizontal wind

Potential
temperature

Humidity
Temperature

Paleotemperatures

Geopotential
anomalies

Vorticity
anomalies

Visible radiances
(ocean surface)

Passive scalar (SFg)

Vertical CO; flux
(above a field)

Seveso pollution
Chernobyl fallout

Density of
meteorological
stations

Data source

Sonic
Sonic
Hot wire probe

Hot wire probe

Anemometer
Anemometer
Aircraft, stratosphere
Aircraft, troposphere
Aircraft, troposphere
Aircraft, troposphere
Radiosonde

Scaling gyroscopes
cascade (SGC) model
(Box 3.4)

Radiosonde

Aircraft, troposphere

Aircraft, troposphere
Hemispheric, global

Daily, stations

Ice cores

Reanalyses

Reanalyses

Remote sensing

Fast response
SFg analyzer

Aircraft new ground

Ground
concentrations

Ground
concentrations

WMO surface
network

Type

10Hz, time
10 Hz
Inertial range

Dissipation range

15 minutes

Daily

Horizontal, 40 m
Horizontal, 280 m — 36 km
Horizontal, 40 m - 20 km
Horizontal, 100 m

Vertical, 50 m

Time

Vertical, 50 m

Horizontal, 280 m - 36 km

Horizontal, 280 m — 36 km
Annual, monthly

Average over 53 stations in
France, daily single station
{Macon)

350 years (time), 0.55 m, 1
m (depth)

500 mb, daily

300 mb, daily

7 m resolution MIES data
1 Hz

Horizontal = 1 km
resolution

In-situ measurements

In-situ measurements

Geographic location of
stations

qo

75
73
77

54

~7x1

35

69 +02

33

0.5

27

1.7

36

47

55

22

1.7

37£01

Reference

Schmitt et al, 1994
Finn et al, 2001

Tchiguirinskaia et al, 2006
Tchiguirinskaia et al, 2006
Lovejoy and Schertzer, 2007
Fig. 5.10

Chigirinskaya et al, 1994
Schertzer and Lovejoy, 1985
Schertzer and Lovejoy, 1985,
Lazarev et al., 1994
Chigirinskaya and Schentzer,

1996

Schertzer and Lovejoy, 1985

FM:’]_ 5.10

Fig. 5.10

Lovejoy and Schertzer, 1986,
and unpublished analysis
respectively

Ladoy et al, 1991

Lovejoy and Schertzer, 1985,
Fig. 5.21 respectively

Sardeshmukh and Sura,
2009

Sardeshmukh and Sura,
2009

Lovejoy et al., 2001
Finn et al, 2001

Austin et al,, 1991
Salvadori er al, 1993
Chigirinskaya et al,,

1998; Salvadori et al,, 1993

Tessier et al, 1994

L+S 2013



Most exponents: = 3

Table 5.1b A summary of various estimates of the critical order of divergence of moments (gp) for various hydrological fields.

Field

Radar reflectivity of
rain

Rain rate

Raindrop volumes

Liquid water at

turbulent scales

Stream flow

Data source

Radar reflectivity
factor

Gauges
Gauges
Gauges
High-resolution
gauges
High-resolution
gauges
Gauges
Gauges
Gauges
Gauges

Gauges
Gauges

High-resolution
gauges

Stereophotography

Stereophotography

River gauges
(France)
River gauges (USA)

River gauges
(France)

Type

1 km? resolution

Daily, Nimes
Daily, time, France
Daily, USA

8 minutes

155

Daily, time

1-8 days

Hourly, time

Daily, four series from
18th century

Hourly, time

Hourly, time

155, averaged to 30
minutes

10 m’ sampling volume

Total water in 40 cm
cubes

Daily
Daily

Daily

do
1.1

26
~ 3
1.7-3

~ 2
2.8-85
36 + 007
35

40
3.78 £+ 046

3.2 + 007

32 £+ 007

25-10

Reference

Schertzer and Lovejoy,
1987

Ladoy et al,, 1991

Ladoy et al, 1993
Georgakakos et al, 1994
Olsson, 1995

Harris et al, 1996

Tessier et al., 1996

De Lima, 1998

Kiely and Ivanova, 1999
Hubert et al,, 2001

Fig. 5.10c; Schertzer et al,
2010

Fig. 5.20b; Lovejoy et al,,
2012

Verrier, 2011

Lovejoy and Schertzer,
2008

Lovejoy and Schertzer,
2006b

Tessier et al, 1996
Pandey et al, 1998; Tessier

et al, 1996
Schertzer et al, 2006

L+S 2013



Multifractal analysis of sets of points:
Codimension versus dimension
multifractal formalism




Box, information, and correlation
dimensions (1)

We introduced both the box (D,,) and correlation (D_,) dimensions of a set of
points: the first is the exponent of the average number of disjoint boxes size L/I
needed to cover the set, while the second is the exponent of the number of
point pairs separated by a distance < L/I. Since both dimensions are in common
use (D, particularly for characterizing strange “chaotic”/”strange” attractors)
such as the Mandelbrot set, let us now consider the relation between the two.
First suppose that the set of interest (denoted A) can be embedded in a d-
dimensional “cube” of size L; and cover the cube with a grid of A? disjoint boxes
each of size | = L/A. Denote the number of points in the it" /-sized grid box by n;,

so that the total number of points is: 7\‘_1 ¢
7\,d
N = Enm <— 1.
" i\

—
1
>
[

N\
vi



Box, information, and correlation
dimensions (2)

If the points are from a strange attractor (such as the Lorenz attractor), then the
space is the system’s phase space and (with an ergodic hypothesis) we can interpret
P.,=n; /N is an empirical frequency that approximates the probability of finding the
sy’stem’ in the /™ box at phase space resolution | = L/, this would be its asymptotic
limit for an infinite resolution. In order to characterize the scale by scale statistics of
the attractor, similarly to estimating the “trace moments” we can use a “partition
function” approach to introduce the following family of measures indexed by g
(Hentschel and Procaccia, 1983), (Grassberger, 1983), (Halsey et al., 1986):

kd
“q(k)ZZPfx Pi,Izni,I/N
i=1

and with the corresponding scaling exponents

u, ( 7\,) oc [14) o )9




Box, information, and correlation
dimensions (3)

q = 0: adopt the convention that for any x, xX° =1 if x>0, and x°= 0 if x =0. In this
case, L, is simply the number of boxes needed to cover the set and t(0) =-D,,,.

q = 2: in each box, the number of points which are within a distance [ of each
other is equal to the number of pairs in the box: (for large n and ignoring
constant factors). However we have so that we see that L, is proportional to
the number of point pairs within a distance [, and hence t(2) = D, . (the
correlation dimension).

cor

The above suggests the definition:

I
D(g)=H L 08k |y

B q—l_q—l =0 logl

Renyi
dimension




Box, information, and correlation
dimensions (4)

What about the value ¢ = 1?7 In this case, since the sum of the probabilities is unity, we

have M1 = ZPI‘J» =1 5o that we must use I’Hopital’s rule to evaluate the limit g->1. We find:

- _
Zpi,x log Pix
D(1)=lim| = - I=L/\
1—0 logl
kd
D(1) is thus the exponent of the information /;: I, = ZPM log p;,

i=1

so that /, =/’ where the information dimension D, = D(1).

Since we show that t(q) = D(g-1) -K(q) so that the convexity of K(g) implies the concavity of t(q) so that D(q)
is a monotonically decreasing function of g; we therefore have the hierarchy: D, <D, < D

cor®




Codimension and dimension multifractal formalisms

Codimension (stochastic)

Dimension (deterministic)

Singularities [=)\" VOZ(BA) =1 M, -F
g, =N I, = J.Sxddﬁ_c =A% Q=h
A integral By,
densi -
v o, =d—1Y I, =¢,vol(B, )= A"
Probabilities Number(Hx _ % ) _ 9, aloa)
Pr(e, = A7) =1 Number = . Pr
Ja (ad) =d - C(Y)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g
Statistical Moments Y10, = A"l
— K(Q) A i;}
<8?\~ > — 7\4 ZH;{ _ <Z(7"d8x)q> _ kd(q—l) <8;{> _ KK(q)—d(q—l)




