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energy per unit mass in the octave (En) divided by the
typical time scale of the transfer, the eddy turnover time:

Y
n �

En
tn

ð2:48Þ

Now assume that the cascade is local, so that the domin-
ant contribution to En comes from the velocity gradient
at the same scale, i.e. vn. This implies En e vn2 (recall
that due to incompressibility all energies are taken per
unit mass) and that tvis, n >> tn so that there is no
energy dissipation in this wavenumber band. If the
energy injection rate ε (e.g. by stirring) at large scale is
balanced by viscous dissipation at small scale then it is
possible that the system is stationary (statistically
invariant under translations in time) then

Y
n e

constant, i.e. there are no viscous losses and no sinks
or sources. This is assumed to be a quasi-steady state:
energy flows through the nth octave at a rate ε which
is on average equal to the large-scale injection rate
and to the small-scale dissipation (as we will see, such
statistical stationarity is quite compatible with violent
fluctuations):

ε ¼ Y
n � En

tn
� vn2

ln
vn

� 	 � vn3

ln
� constant ð2:49Þ

(assuming that the injection rate is constant).
Y

n is
therefore a scale-invariant quantity (it is independent
of n). This yields Kolmogorov’s law (1941):

vn � ε1=3ln
1=3 ð2:50Þ

Since the fluctuation vn is a scaling power law func-
tion of size ln, we expect that the spectrum will also be
a power law (see Box 2.2 for more details on
Tauberian theorems that relate real space and Fourier
space scaling). For wavenumber p, we therefore seek
the spectral exponent b:

EðpÞ � p�b ð2:51Þ
corresponding to the real space exponent 1/3 in
Eqn. 2.50. Assuming b > 1 we get the following
expression for the total variance due to all the low
wavenumbers in the nth band:

vn
2 � ln

2

ð ffiffi
2

p
kn

kn=
ffiffi
2

p
dp p2 EðpÞ ð2:52Þ

(since the variance in a spherical shell between p and
p þ dp is 4p p2dp, and we ignore the constant factor).
We thus obtain:

vn
2 � ln

2 kn
3�b � ln

2�3þb ð2:53Þ
(since ln � kn�1). Comparing this with Eqn. (2.50), we
obtain 2 – 3 þ b ¼ 2/3, or:

b ¼ 5
3

ð2:54Þ

The Kolmogorov–Obukhov spectrum is thus derived:

EðkÞ � ε2=3kn
�5=3 ð2:55Þ

A schematic diagram of the 3D cascade is shown in
Fig. 2.5. The slope of the spectrum on the low-frequency
side of the injection wavenumber is of the form
E(k)� k2. This follows since using statisticalmechanical
arguments, one expects that there is a low-frequency
“equilibrium” range where each mode has roughly
the same energy (equipartition). The spectral form
E(k) � k2 then follows, since there are k2dk modes
between wavenumbers k and k þ dk.

2.4.3 Vortex stretching, the break-up of
eddies and the cascade direction
It is easy to identify each term in the vorticity equa-
tion (2.40): Do=Dt is the convective (total) derivative
of the vorticity (remembering that the total derivative
operator is just D

Dt ¼ @
@t þ v�r, it represents the change

in a quantity that moves with the flow; it is also called
a Lagrangian derivative), the term vr2o (ignored in
Eqn. (2.40)) represents the molecular dissipation, the
term ðr�vÞo is the compressibility term; we consider
here the simplest incompressible case, r�v ¼ 0. The
all-important “vortex stretching” contribution
ðo�rÞv is so named because its component is only
positive when the gradient of v is parallel to o, in
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Fig. 2.5 Schematic diagram of 3D energy cascade showing the
equipartition (“equilibrium”) range at low wavenumbers, the energy
flux injection wavenumber ki, the “inertial” k�5/3 range and the
dissipation range k> kdiss dominated by viscous β dissipation.
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which case vortex lines are “stretched” by the velocity
field (Fig. 2.6: a vortex line is like a line of electric or
magnetic force – its tangent is everywhere parallel to
the field lines; the analogous line for the velocity field
is called a “streamline”).

However, a more important property of vorticity
is that – ignoring viscosity – vortex lines are material
lines. To see this, let dr represent the vector between
particles A and B (Fig. 2.6). Then the equation of
evolution of dr is:

DðdrÞ
Dt

¼ DðrAÞ
Dt

� DðrBÞ
Dt

¼ vA � vB ¼ dv ð2:56Þ

and to first order in dr:

dv ¼ ðdr �rÞv ð2:57Þ
then:

Ddr

Dt
¼ dv ¼ ðdr�rÞv ð2:58Þ

which is identical to the (incompressible) vorticity
equation if dr is taken parallel to o (recall we are
considering negligible viscosity, n ¼ 0). This shows
that if at some initial time a vortex line is composed of
a given set of fluid particles then at any later time the
(evolved) vortex line will still be composed of
the same particles. Vortex lines are therefore material
lines.

Now apply this to the evolution of vortex tubes
(these are the surfaces bounded by vortex lines): the
volumes enclosed by the tubes are constant, since the
fluid is incompressible and vortex lines are material
lines. As the system evolves, the ends of the tubes
move apart on average (this is a statistical effect: in a
turbulent fluid, the ends of the tube will execute a
convoluted random walk; on average, they will move
apart). Since the volumes of the tube are

incompressible, this implies that as the lengths of
the tubes increase the cross-sectional areas tend to
decrease. Hence there will be “pinching” of the tube
at certain regions where there is a high stretching,
leading locally to extremely high gradients of �v. The
nr2�v term will become large and viscosity will tend to
smooth the high gradients and break (smooth out)
the vortex tubes. This stretching–pinching mechan-
ism means that a fat (large) vortex tube “slims”
(cross-sections become smaller) and then gets broken
up, the energy flux being conserved throughout the
process, except for the final viscous smoothing/dissi-
pation at very small scales. If we now imagine a
complex turbulent flow as a “spaghetti” of vortex
tubes evolving in time, we can see that ends of tubes
which are far apart will tend to move further apart
(just as a drunkard tends to move away from his
starting bar), and hence the tubes will be generally
stretched and then pinched (Fig. 2.7). Since this
causes tubes with initially large cross-sections to tend
to evolve into tubes with small cross-sections, this
gives a simple explanation for the downscale direction
of energy cascades in three-dimensional turbulence,
and indeed whenever vortex stretching is important.

2.4.4* The vorticity spectrum
In homogeneous isotropic turbulence E(k) contains a
lot (but by no means all!) of the statistical information
about the turbulent flow (it is still only a second-order
moment depending on only the separation �r of the
two points �x and �x þ �r ; it is a “two-point” statistic).
We now derive the relation between E(k) and the
spectrum of the vorticity, which will be important in
considering two-dimensional turbulence. First we use
the vector identity:

�A�ðr � �BÞ ¼ �B�ðr � �AÞ � r�ð�A� �BÞ ð2:59Þ
If �A and �B are functions of �v, and if we assume that
the statistical properties of �v are independent of pos-
ition (statistical homogeneity) then hA� Bi is a con-
stant and it follows that the expectation of the last
term is zero (i.e. r�constant 
 0). Now, using

�A ¼ r��v ¼ o and �B ¼ v, we obtain:

ho2i ¼ h�A�ðr � �BÞi ¼ h�B�ðr � �AÞi ¼ h�v�ðr � ðr ��vÞÞi
ð2:60Þ

Finally, using the following vector identity for incom-
pressible flows:

A

δr

B

Fig. 2.6 Schematic showing an infinitesimal segment of a vortex
line.

2.4 Classical isotropic 3D turbulence phenomenology
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r� ðr ��vÞ ¼ �r2
�v ð2:61Þ

we obtain:

ho2i ¼ �h�v�r2
�vi ð2:62Þ

Therefore, since spectra are Fourier transforms of
correlations and since the Laplacian corresponds to

multiplication by (ik)2 in Fourier space, we have the
following relationship between the vorticity spectrum
Eo and velocity spectrum Ev:

EoðkÞ ¼ k2EvðkÞ ð2:63Þ

3D: Vortex stretching,“spaghetti” 2D: No vortex stretching,
vortices are vertically aligned

(limited vortex stretching is possible in
“quasi-geostrophic” turbulence)
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Fig. 2.7 A schematic showing the “spaghetti plate” view of vortices stretching and tangling in 3D turbulence (the left-hand side) compared
with the vortex-stretching free dynamics in 2D turbulence (the right-hand side). Spaghetti of vortex tubes thanks to numerical simulations by
M. Wilczek, thanks to http://www.vapor.ucar.edu/ software.

Box 2.2 Scaling and Fourier transforms: correlation functions, structure functions and Tauberian theorems

In the following we will use both real-space and Fourier-space statistics, so it is useful to consider the general
relation between real- and Fourier-space scaling. First define the Fourier transform and its inverse (note that o in this
section no longer denotes the vorticity but the angular frequency, i.e. the Fourier conjugate of the time t):

evðoÞ ¼ FðvÞ ¼
ð1

�1
dt e�iotvðtÞ ð2:64Þ

vðtÞ ¼ F�1ð~v Þ ¼
ð1

�1
doeiotevðoÞ ð2:65Þ

We recall two fundamental properties of Fourier transforms:

F
dnv
dtn

� �
¼ ðioÞn evðoÞ ð2:66Þ

Fðv � wÞ ¼ evðoÞewðoÞ ð2:67Þ
where v * w is the convolution of v and w :
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