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Abstract

Fractal and multifractal concepts are introduced with the help of rain and turbulent

phenomenology, as well as with the help of very simple toy models. A particular emphasis is

placed on defining the adequate formalism to take into account in a straightforward manner the

random nature of the fields, as well as it consequences. It is first shown that the notion of

(statistical) codimension is much more convenient, and presumably much more fundamental

than the notion of dimension, in order to characterize the (random) singularities of the fields.

Within this formalism, rather generic features of stochastic multifractal processes are discussed:

multifractal universality, finite sample size and second order phase multifractal transition,

statistical divergences and first order phase multifractal transition. All of these features are well

beyond the scope of deterministic-like multifractal formalism and have enormous practical

importance. This is in particular the case for the extremes of the fields at large scale, e.g. the
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climatological fluctuations of the geophysical fields. It is also shown that these results can be

easily extended into a scaling anisotropic framework.

1 Introduction

Everyone has some rather intuitive notions of the intermittency of precipitation. They are based

on a common sense and empirical knowledge: most of the time it does not rain furthermore

when it rains its intensity can be extremely variable. Nevertheless, the corresponding adequate

mathematical framework had been paradoxically rather elusive for a while and began to be

elaborated only during the last 15 years. Indeed, this variability of precipitation, which occurs

on a wide range of (space and time) scale and intensity, is well beyond the scope of classical

approaches in Geophysics. A symptom of this problem corresponds to the fact that the rain rate

r , which is the basic quantity of interest for precipitation, has strong scale dependence.

Therefore, it has no self-consistent definition of a function r x t( , ) of space coordinates x  and

time t , contrary to an hypothesis which has been often taken as granted. Indeed, it should

correspond to a density of rain per elementary space-time volume (in general per elementary

horizontal surfaced x  and elementary time increment dt ) and therefore should have a scale

independent limit for small scales. In other words, contrary to classical assumptions the rain

rate r  does not correspond to a regular (mathematical) measure dR x t( , ) with respect to the

(Lebesgue) volume measure. More precisely the rain rate cannot be defined as the density

r x t( , ) of the measure dR x t( , ) with respect to the Lebesgue measure, i.e.

dR x t r x t dx dt( , ) ( , )= .  We will show that stochastic multifractal fields offer a very convenient

and operational framework to handle such stochastic (multi-) singular measures.

As a consequence, stochastic multifractal fields overcome the strong limitations of traditional

approaches to studying extremely variable fields. These approaches are compelled to proceed to

drastic scale truncations, transforming partial differential equations (PDE) into ordinary

differential equations (ODE), arbitrarily hypothesizing regularity of the fields, and performing

ad-hoc and unjustified parameterizations (in particular for non explicit scales).  These various

manipulations and mutilations violate a fundamental symmetry of nonlinear PDE's: scale
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invariance. Even in spite of these (over) simplifying assumptions, the consequences of such

choices are ultimately complex and unwieldy numerical codes. Often the relevance of such

codes, remain highly questionable: increasingly, they are "tested" by making

"intercomparisons" with other models!  This is the case for rain field modeling, in particular due

to the large difference between the explicit scales of the model and the observation scale.

The alternative approach that is discussed below is on the contrary based on a fundamental

property of the nonlinear (e.g. Navier Stokes) equations: scale invariance.  Indeed, the simplest

way of understanding how extreme variability occurs over a very large range of scales is to

suppose that the same type of elementary process acts at each relevant scale (from the large scale

to the viscosity scale).  At first, this began as a fractal approach, even before the word was

coined, with Richardson's celebrated poem on self-similar cascades ([Richardson, 1922]).

Then it evolved (after 1983), into a multifractal approach.  Τhe earliest scale invariant

multifractal models, which we will review, are superficially quite simple phenomenological "toy

models". Nevertheless, they yield exotic phenomena (exotic compared to conventional smooth

mathematical descriptions of the real world...) and have highly nontrivial consequences!  For

example, as we will see later, simple cascade models already give rise to a fundamental

difference between observables and truncated processes, and such a difference is a general

property of the wide class of "hard" multifractal processes (which distinguish between

"dressed" and "bare" properties respectively). These models produce hierarchies of self-

organized random structures.

 2 Fractal notions

2.1 Fractal dimension and counting occurrences

Fractal (geometrical) sets  ([Mandelbrot, 1977; Mandelbrot, 1983]) provide the simplest

nontrivial example of scale invariance.  Unfortunately, we are usually much more interested in

fields (with values at each point or at each neighborhood of points) and rarely interested in

geometrical sets.  However, over long time series, fractal dimensions can still be useful in

“counting the occurrences of a given phenomenon”—as long as this question can properly be
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posed.  If this is the case and the phenomenon is scaling, then the number of occurrences

( NA(l) at resolution scale l  in space and/or time of a phenomenon occurring on a set A) follows

a power law (here and below the sign  ∼  means equality within slowly varying and constant

factors).

NA(l) ~
−DF

l

L( ) (1)

DF  is the (unique) fractal dimension, generally not an integer, and L is the (fixed) largest scale.

For a very classical example, see Fig. 1, which illustrates the Cantor, set and its main

properties.

 For instance, let us consider the occurrences of rain: Fig. 2 displays the records of rain events

during the last 45 years in Dedougou ([Hubert and Carbonnel, 1989]).  These authors show

that the occurrence of rainy days in intervals of duration T is fractal, have a dimension

DF ≈ 0 8. , which accounts for the fact that the rain events on the time axis form a Cantor-like

set.  Amusingly, the wet season is often considered to last 7 months per year, and

0 8 7 12. ( ) / ( )≈ Log Log .  We recall that the standard Cantor set (see Fig.1) which is obtained by

iteratively removing the (closed) middle section of the unit interval is of dimension

Log Log( ) / ( ) .2 3 0 63≈ .

2.2 Codimension and probability of events

A strong emphasis has been very unfortunately placed for years and years on fractal dimensions

and especially their connections with the mathematically defined Hausdorff dimension: this

connection suffers of many troubles, which are rather symptomatic of a fundamental problem.

Indeed, it turns out that it is quite more rewarding ([Schertzer and Lovejoy, 1992]), at least

quite less cumbersome, to use the notion of codimension as the fundamental notion, whereas

usually the latter is introduced in a restrictive way (as discussed below) with the help of the

former. Indeed for stochastic processes, one is not so much able to count events, but rather

their frequency, especially when the latter is finite, whereas the former is not!
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One must note that the notion of codimension is not restricted to stochastic processes, although

it is definitely required for them! Indeed, the notion of fractal codimension can be defined both

statistically and geometrically.  While the geometrical definition is much more popular, we will

demonstrate that the statistical definition is much more useful and general since not only it is

already interesting for deterministic processes, but it is rather indispensable for stochastic

processes, whereas dimension notions get into trouble.

2.2.1         Geometric        definition        of       a       fractal       codimension:

Lest us recall the classical definition of the fractal codimension, i.e. its geometric definition,

which we will show as being rather restrictive. Let A ⊂ E  ( E  being the embedding space with

dim(E) = D and dim(A) = Dg (A) the (geometric) dimension of the set A , then the (geometric)

codimension Cg (A) is defined as:

Cg (A) = D − Dg (A) (2)

This definition corresponds merely to an extension of the (integer) codimension definition for

vector sub-spaces, i.e., E1 and E2  being in direct sum (i.e.,E1 ∩ E2 = ∅  ):

E = E1 ⊕ E2  ⇒   codim(E1) = dim(E2 ) (3)

This definition (Eq. (2)) bounds above the codimension by the dimension of the embedding

space, since the fractal dimension (as the Hausdorff dimension) should be non-negative, i.e.:

Dg (A) ≥ 0 ⇔ Cg (A) ≤ D (4)

In fact this constraint does not hold anymore as soon as we consider the codimension to be

more fundamental than the notion of fractal dimension This obviously requires to introduce

directly the notion of codimension. One obtains such a definition considering the scaling

behavior of the probability of events, rather than their number, therefore leaving from

enumerations to probabilities.  

2.2.2        Statistical        definition        of       a       fractal       codimension:

Let us consider a sequence of events Aλ  defined with higher and higher resolution λ , i.e. with

smaller and smaller inner scale: 
  
l = L

λ
. In the simplest case; it will correspond to a fractal
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geometric set defined by a deterministic or random iterative procedure (e.g. the Cantor set,

illustrated in Fig. 1). A more general framework is discussed in Appendix A.  In a general

manner, we expect that the measure of the fraction of the probability space Ω  occupied by Aλ

is thinner and thinner, as well as scaling. Therefore, us let define its fractal (statistical)

codimension by the asymptotic scaling exponent c   -when it exists- of their probability (denoted

by Pr in the following ):

λ λλ>> −1:  Pr( ) ~A c (6)

Let us emphasize that c  should not depend on the details of the sequence events Aλ , but rather

their asymptotic behavior, as well as the one of their probabilities. When the Aλ 's have a well-

defined limit A , it is rather convenient to use the short hand notation c C A= ( ). In Appendix A,

we discuss this as well as other generic cases, which for instance involve the upper limit of the

Aλ 's (i.e. the set of points that belong to infinitely many Aλ ). In any case, the Aλ 's, as well as

their possible limit, no longer need to be compact, and their embedding (probability) space Ω

can be an infinite dimensional space. There is no upper bound to the statistical codimension,

since:

C(Ω) = 0,  C(∅ ) = ∞ ⇒ C(A) ∈ [0,∞] (7)

Ω,  ∅  are particular cases of almost sure events, respectively null events.

A rather generic and useful example corresponds to the intersection by (fractal) random balls

Bλ , of finer and finer resolution λ (smaller and smaller size 
  
l = L

λ
), of a given (possibly

random) set G :

A B Gλ λ= ∩ (8)

In order to fully explore (in fact cover) the set G , the centers of the balls are independently and

uniformly distributed (with respect to the Lebesgue measure of the embedding space E ) and

independently from the probability distribution of G  (if any). If E  is not bounded, one must

consider the corresponding Poisson distribution. When G  has some scaling property (e.g. is a

fractal geometric set) we expect that the probability of Aλ 's defined by Eq. (8) will have a
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scaling behavior  (Eq. (7)). Furthermore, when G  is a geometric set we expect that its statistical

codimension, denoted by C G( ), correspond to its geometrical codimension (C Gg( )).

Example   :

The rather academic Cantor set (Fig. 1) is an illuminating example. Here the balls correspond

to sub-segments defined by the iteration of the division a segment into λ1 3=  sub-segments.

Due to the fact that only 2 sub-segments over 3 are kept, when the ball resolution is increased

by the factorλ1 3= , its probability of intersecting G  decreases by a factor 2/3:

Pr( ) Pr( )3
2
3

λ λB A B A∩ = ∩ (9)

therefore:

C G
Log

Log

Log

Log
C Gg( )

( / )
( )

( )
( )

( )= = − =3 2
3

1
2
3

(10)

This is a result, which is not only easy to derive but also holds for random Cantor sets.

Furthermore, the latter do not need to be restricted to a segment, but could be defined for the

full real axis.

2.2.3       Intersection       theorem        :

It is not only straightforward to evaluate the codimension of the intersection of two events

E1 ∈ Fand E2 ∈ F , but important for many applications. For instance it corresponds to the

measurement by a fractal network (e.g. World Meteorological Organization network, [Lovejoy

et al., 1986], or a local monitoring network [Salvadori et al., 1994]) of a fractal set

(occurrences respectively of rain and pollution). If the series of two events E1,λ , E2,λ  are

independent, then the (statistical) codimension of their intersection is:

C(E1 ∩ E2 ) = C(E1) + C(E2 ) (11)

i.e. codimensions just add for the intersection of independent fractal processes.  This is an

immediate consequence of the fact that the probability of the intersection (for any λ ) factors

into:

Pr(E1,λ ∩ E2,λ ) = Pr(E1,λ )Pr(E2,λ ) (12)
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therefore the corresponding exponents (Eq. (6)) just add. It is worth to note that the derivation

and the validity of this "theorem" is far from being obvious when using the deterministic and

geometric definition (see for discussion [Falconer, 1990]). Indeed, there are many cases that are

rather troublesome, which can be perceived by considering simple examples with integer

dimensions (e.g. the intersection of two planes in a three dimensional embedding space does

not always yield a geometric codimension equals to 2). However, these annoying cases are

irrelevant for statistics.

Furthermore, the theorem of intersection can be extended to the case of dependent events, with

the help of conditional codimensions ([Schertzer and Lovejoy, 1993]; [Salvadori, 1993];

[Salvadori et al., 2001]). The latter corresponds to the exponent of the conditional probability in

a rather straightforward extension of Eq. (5):

Pr(E1,λ E2,λ ) ~ −C( E1 E2 )λ (13)

which yields:

C(E1 ∩ E2 ) = C(E1 E2 ) + C(E2 ) (14)

due to the fact that (for any λ ):

Pr(E1,λ ∩ E2,λ ) = Pr(E1,λ E2,λ )Pr(E2,λ ) (15)

2.2.4         Union       theorem:

One obtains readily a similar theorem for the intersection of two events:

C(E1 ∪ E2 ) ≤ inf(C(E),C(E2 )) (16)

where the equality is obtained when the series of two events E1,λ , E2,λ  are independent. This

results from the fact that for any λ :

Pr(E1,λ ∪ E2,λ ) ≤ Pr(E1,λ ) + Pr(E2,λ ) (17)

where the equality is achieved for independence. With the help of Eq. (5), it yields Eq. (16).

This theorem immediately demonstrates that enlarging an event E1 with the help of a null event

( C(E2 ) = ∞) will not change its codimension.
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2.2.5        Relating       the       two        definitions        of       codimension:

In order to relate the two definitions of codimension in the case of a finite D-dimensional

embedding space, it is convenient to use the fact that the probability of the event ( )B Gλ ∩  is

defined as the ratio of the number of balls intersecting G  and of the total number of balls

(indeed intersecting the embedding space), we have:

Pr( )
)

( )
λ

λ

λ
B G B G

N B
∩ ∩

 ~  
N(

 (18)

since each of the numbers involved in the ratio defining the probability (Eq. (18)) admits a

dimension as a scaling exponent (Eq. (1)):

N(
 ~  λ

λ

λ
λ

B G

N B

D G

D

g∩ −

−

)
( )

( )

(19)

As far as this estimate is valid, it yields with the help of Eq. (8) that:

g gC G D E C G C G( ) dim( ) ( ) ( )< = < ∞ ⇒ = (20)

However, whereas there is no limitation on C  (Eq. (7)), there is an upper bound on the

geometrical codimension (Eq. (4)).  Therefore, the equivalence between the two definitions

does not hold any longer as soon as C G D( ) > :

C G D C G C G Dg( ) ( ) ( )  ( )> ⇒ > = (21)

A straightforward consequence is that the fractal dimension D G( ) computed with the help of

the statistical codimension (i.e. by inverting Eq.  (2) with C G( ) instead of C Gg( )) will be non

positive:

C G D

D G D C G
D G

( )

( ) ( )
( )

>
≡ −





⇒ < 0 (22)

The non-positiveness of this apparent dimension corresponds to the so-called “latent”

dimension  “paradox” (e.g.[Mandelbrot, 1991]) which is then immediately clarified since D G( )

cannot be understood as a deterministic geometric dimension1. It is only a statistical exponent,

                                                
1 In particular, there is no possible definition of a negative Hausdorff dimension.  
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which is furthermore defined with the help of the (statistical) codimension, only the latter

statistical being intrinsic since directly defined (Eq. (5)).

 This is not surprising: the statistical definition overcomes many limitations of the Hausdorff

dimension which is defined for compact sets (hence bounded sets): the codimension measures

the relative scarcity of a phenomenon (the frequency of its occurrence), whereas the dimension

measures its absolute scarcity (the number of its occurrence).  Obviously, we do not need to

know the latter in order to be able to determine the former.

2.2.6        The       sampling        dimension:

We emphasized the fact that the (statistical) codimension can be defined in a rather more general

manner than the (geometric) fractal dimension, since it needs not be restricted to a finite

dimensional embedding space E  nor to component sets A .  However, empirically we never

deal directly with infinities. Especially, this is true since when doing statistical analysis we

always use finite size samples.  It is thus quite important to understand what happens when we

more and more explore the probability space, which can be understood as the set of all possible

realizations (as illustrated by Fig. 3), by studying more and more samples. Obviously, the

"effective" dimension of this subspace of probability space (the "effective" embedding space)

should increase.  Indeed, considering sN (more or less2) independent samples each of

dimension D  and resolution λ  (i.e. the ratio of the largest scale to the smallest resolved scale),

the total number of pixels examined will be of the order:

N ⋅ Ns = λ d +Ds (23)

where the "sampling dimension" sD  [Lavallée et al., 1991; Schertzer and Lovejoy, 1989] is

defined as:

sD ~ log Ns

logλ
(24)

                                                
2A more precise condition will be discussed later.  
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This shows how the effective dimension can be increased above D  (a unique sample) and this

allows us (for large enough sN , Ds) to render positive any negative (statistical) dimension!

Indeed, consider an event sufficiently rare so that C(A) > D , we will nonetheless obtain a

positive intersection dimension with our sample as soon as Ds  is large enough, indeed the

(statistical) dimension being:

Ds (A) = D + Ds − C(A) (25)

it becomes positive for large samples:

Ds (A) > 0  for any Ds > C(A) − D (26)

The limits case, Ds (A) = 0  (Ds = C(A) − D), corresponds to the presence of isolated points in

our sample: when  Ds < C(A) − D almost surely A is not present in our sample, it is almost

surely present when  Ds < C(A) − D.

2.3 Beyond fractal geometry

Fields having different levels of intensity rarely reduce to the oversimplified binary question of

occurrence or non-occurrence. The latter is relevant only if the fractal dimension of occurrences

does not depend in a sensitive manner with respect to the threshold defining a negligible

intensity. Otherwise, we have to address the fundamental question: what is the field at different

intensities and at different scales?  In the case of rain, the dimension of the rain occurrence

depends ([Hubert and Carbonnel, 1991; Hubert et al., 1993; Hubert et al., 1995]) indeed on the

threshold defining a negligible rain rate.  Generalizations of fractal/scale invariance ideas going

well beyond geometry were desperately needed and appeared in 1983 when the dogma of a

unique dimension was finally abandoned ([Hentschel and Procaccia, 1983], [Grassberger,

1983], [Schertzer and Lovejoy, 1984]).

 3 Phenomenology of turbulent cascades

The phenomenology of (scalar) turbulent cascades had been first discussed in the context of

hydrodynamic turbulence (since [Richardson, 1922]) and where the structures were considered

as eddies. However, this phenomenology is much more general and not restricted to a hierarchy
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of eddies, since we simply follow how the "activity" of turbulence becomes more and more

inhomogeneous at smaller and smaller scales. The phenomenology of turbulent cascades thus

corresponds to a general paradigm, for fields where the activity tends to be concentrated more

and more at smaller and smaller scales.  In the case of turbulence, this activity can be estimated

in a rather precise manner by the rate at which energy is transferred to smaller scales, hence the

fundamental importance of the density of the energy flux to smaller scales (ε )3

We will see that the most general property will be that a scaling field cannot be characterized by

a unique (fractal) geometric set, but by an infinite hierarchy of them, hence the generic name

"multifractal" (a term coined by Parisi [Benzi et al., 1984; Parisi and Frisch, 1985]. However,

we will show that under this innocent expression there exists a much richer diversity of

multifractal processes and phenomena than is usually realized.  

The key assumption in phenomenological models of turbulence (which became explicit with the

pioneering work of Yaglom ([Yaglom, 1966]) is that successive steps define (independently)

the fraction of the flux of energy distributed over smaller scales.  Note that it is clear that the

small scales cannot be regarded as adding energy; they only modulate the energy passed down

from larger scales. The explicit hypothesis is that the fraction of the energy flux (or "activity")

from a parent structure to an offspring will be determined in a scale invariant way.  

In the (pedagogical) case of "discrete cascade models" (the much more realistic continuous

scales model will be discussed in Sect.6), "eddies" are defined by the hierarchical and iterative

division of a D-dimensional cube into smaller sub-cubes, with a constant ratio of scales λ1

(greater than 1, very often equal to 2). More precisely, the initial D-dimensional cube ∆0
0  of

size L is divided step by step for each n ∈ N  into smaller sub-cubes

∆n
i

j
ni j D( , ,... ; , ... )= − =0 1 1 1 21λ , which form a disjoint cover of ∆0

0  and are of size 
  
ln = L

λ1
n

.

In other words, the D  coordinates ij  of a sub-cube at step n  are defined in base λ1  with the

                                                
3 However as discussed by [Schertzer and Lovejoy, 1995], the scalar cascade framework is insufficient to deal with the
vectorial nature of turbulence, but can be extended to 'Lie cascades' framework.
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help of only n  first digits.  The density of the flux energy εn  at the step n  is supposed to be

strictly homogeneous on each "sub-eddies" of scale   ln , i.e. εn  a is a step function:

ε ε
λ

n
i

i
nx x

n

n
i( )  ( )=

=

−

∑
0

1

1
∆

(27)

 where 1
∆ n

i  is the characteristic function of the sub-cube ∆n
i . The energy density εn−1 at step

n −1  will be multiplicatively distributed to sub-eddies:  

ε µε εn n nx x x( ) ( ) ( )= −1 (28)

with the help of a multiplicative increment4:

µεn (x) = µεn
i 1

∆ n
i (x)

i
∑ (29)

where the variables µεn
i  are usually assumed to be identically and independently distributed

(i.i.d.), as well as independent of the variables ε i
n .

In spite of their over-simplistic and somewhat awkward discrete discretization, these models are

already able to give key understanding of some of the fundamentals of cascade processes,

which will be confirmed for continuous scale cascades (see Sect. 6), which are indispensable

to take into account other (statistical) symmetries (e.g. translation invariance).

3.1 Unifractal insights and the simplest cascade model (β-model)

The simplest cascade model, often called β-model, takes the intermittency of turbulence into

account by assuming [Novikov and Stewart, 1964];  [Mandelbrot, 1974]; [Frisch et al., 1978]

that eddies are either dead (inactive) or alive (active). This corresponds5 to the fact that the

multiplicative increments µε 's have two states (see Fig.  4 for an illustration) :

 
Pr(µε = cλ1 ) = −cλ1             (alive)

Pr(µε = 0) = 1 −c−λ1           (dead)
(30)

 The boost µε = cλ1 >1 is chosen so that the ensemble averaged ε is conserved:

                                                
4The notation µ   for multiplicative increments, is analogous to the symbol δ  for additive increments.
5The β-model  is often defined more vaguely than this. We follow the more precise stochastic presentation by
[Schertzer and Lovejoy, 1984].
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< µε >=1 ⇔< εn >=<ε0 > (31)

where <.> denotes the ensemble average. At each step in the cascade the fraction of the alive

eddies decreases by the factor −c β = λ1  (hence the name "β-model") and conversely their

energy flux density is increased by the factor 1 / β  to assure (average) conservation. After n

steps, this drastic and simple dichotomy is merely amplified by the total scale ratio λ1
n :

Pr(εn = λ1
nc ) = λ1

−nc            (alive)

Pr(εn = 0) = 1 − λ1
−nc           (dead)

(32)

Hence either the density goes on to diverge with an (algebraic) order of singularity c, or is at

once calmed down to zero! Following our discussion (and definitions) given in Sect. 2.2, c  is

the codimension of the alive eddies, hence their corresponding dimension Ds  is (when c < D:

Ds = D − c (33)

 This is the dimension of the support of turbulence and corresponds to the fact that the average

number of alive eddies (in the β-model is

 nN = d −c( nλ ) (34)

3.2 The simplest multifractal variant (α -model)

We already pointed out that on the empirical level, occurrences of rain are not so much

informative. For instance, a 1 mm daily rain rate is rather negligible compared to a 150 mm

daily rain rate! Fig. 5 displays the rain rate at Nîmes (France) during a few years, and averaged

over varying time scales T (from a day to a year). This figure illustrates the great intermittency

of rain rates: most of the time it is negligible, while sometimes it reaches 200 mm (even 228 mm

in a few hours—the famous October 1988 catastrophe!)— in comparison the daily average is

~ 2.1 mm . The variability is so significant in this time series that [Ladoy et al., 1993] and

[Bendjoudi et al., 1997] find evidence of divergence of high order statistical moments (a subject

we will discuss more in Sect. 7). Qualitatively this variability seems strikingly analogous to

that of the energy flux cascade in turbulence (as displayed in Fig. 6), an analogy that turns out

to be quite profound.
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On the theoretical level the β-model turns to be a poor approximation to turbulence because it is

unstable under perturbation: as soon as we consider a more realistic alternative to the caricatural

dead/alive dichotomy, most of the peculiar properties of the β-model are lost.  To show this, the

"α-model" ([Schertzer and Lovejoy, 1984]) was introduced. It was named this way because of

the divergence of moments exponent α  it introduces. In the notation used below, this exponent

is rather denoted qD , where the “D” emphasizes that it depends on the dimension of space D

over which the multifractal is averaged.  In any case, this exponent should not be confused with

the Lévy, nor with the strange attractor notation.

Rather than only allowing eddies to be either “dead” or “alive” we consider a more realistic α-

instability allowing them to be either “more active” or “less active” according to the following

binomial process:

Pr( )

Pr( )

µε λ λ
µε λ λ

γ

γ

= =
= = −

+

−

−

−
1 1

1 11

c

c

            (increase)

          (decrease)
(35)

with +γ = c

α
 (> 0) and −γ = − c

α '
 (< 0). The β-model is recovered with α = 1,  α ' = 0.  

The ensemble “canonical” conservation (Eq. (31)) implies that here are really only two free

parameters out of c, +γ , −γ , since it corresponds to:

+γλ1  ⋅ −cλ1  + −γλ1  ⋅ (1 − −cλ1 ) =  1 (36)

The "p-model" [Meneveau and Sreenivasan, 1987] and the “binomial multifractal measure”

correspond to microcanonical versions of the α-model, i.e. which means that the flux of energy

is strictly conserved, not only on the average. This constraint fundamentally changes the

properties of the processes, as we shall see below.

The pure orders of singularity −γ  and +γ  lead to the appearance of mixed orders of singularity,

as soon as −γ > −∞  (the "β-model"), mixed singularities of different orders −γ (γ ≤ γ ≤ +γ ) ,

are built up step by step through a complex succession of −γ  and +γ . For instance consider

two steps of the process, the various probabilities and random factors are:
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Pr(µε = 2 +γλ1 ) = −2cλ1                         (two boosts)

Pr(µε = +γ + −γλ1 ) = 2 −cλ1 (1 − −cλ1 )     (one boost and one decrease)

Pr(µε = 2 −γλ1 ) = 2(1− −cλ1 )                  (two decreases)

(37)

This process has the same probability and amplification factors as the three states α - model
with a new scale ratio of λ2  i.e.,

Pr(µε = +γ( 2λ1 ) ) = −c( 2λ1 )
Pr(µε = +(γ + −γ ) / 2( 2λ1 ) ) =

−c / 2
2(

2λ1 ) − −c
2( 2λ1 )

Pr(µε = +γ( 2λ1 ) ) = −c / 2
1−2( 2λ1 ) + −c( 2λ1 )

(38)

Iterating this procedure, after n = n+ + n−  steps we find:

 

+n , −nγ =
+n +γ + −n −γ
n+ + n−  ,         n+ = 1,...,n;  n− = n − n+

Pr(εn = +n , −nγ
(λ1

n ) ) =
n

+n







−c +nλ1

−n(1− −cλ1 )
(39)

where 
n

+n







 is the number of combinations of n objects taken k at a time.  This implies that we

may write:

Pr(εn ≥ iγ
nλ1( ) ) = Σ

j
ijp ij−c( nλ1 ) (40)

The ijp ’s are the “submultiplicities” (the prefactors in the above), cij  are the corresponding

exponents (“subcodimensions”) and 
nλ1  is the total ratio of scales from the outer scale to the

smallest scale.  Notice that the requirement that µε = 1 implies that some of the λ1
γ  are greater

than one (boosts) and some are less than one (decreases), that is, some γ i > 0 and some

γ i < 0.

In other words, leaving the simplistic alternative dead or alive (“β - model” for the alternative

weak or strong (“α - model”) leads to the appearance of a full hierarchy of levels of survival,

hence the possibility of a hierarchy of dimensions of the set of survivors for these different

levels. Therefore the field can be understood as 'multifractal', i.e. defined by an (infinite)

hierarchy of fractal sets.

 4 The general multifractal framework
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4.1 The codimension function c(γ )

The pedagogical example of the α-model is helpful to get insights for a general formalism

adequate for more general cascade processes. For instance, as the number n  of cascade steps

becomes large in the α-model, one obtains asymptotic expressions (Eq. (40)) which are

independent of the steps, but depend only on the total ratio of scale, denoted now by 
  
λ = l

L

instead of nλ1 :  

Pr(ελ ≥ γλ ε0 ) ~ −c(γ )λ  (41)

 This is a basic multifractal relation for multifractal processes, which merely states, in the light

of our earlier discussion on the notion of codimension (see Sect. 2.2, in particular Eq. (5)),

that the measure of the fraction of the probability space corresponding to the events

Aλ (γ ) = {( λx,ω) ∈ ExΩ | ε (x,ω) ≥ γλ ε0} (42)

has a (statistical) codimension c(γ ). As already emphasized, in general there is no upper bound

on c(γ ). On the other hand, due to the nested hierarchy of these events

( ∀ λ , γ ≤ γ' :  Aλ (γ ) ⊂ Aλ (γ' )) c(γ ) is an increasing function of γ .

Other fundamental properties, which will be readily derived with the help of statistical moments

(next section, Sect. 4.2), are that c(γ ) must be convex and that if the process is conservative

(i.e. any λ : < ελ >= ε0), thenc(γ ) has the fixed point: c(C1) = C1, where C1 is at the same time

a singularity corresponding to the mean of the process and its codimension:  c(γ ) is at this

point tangent the first bisectrix.  Fig. 7 illustrates these properties of the codimension function

c(γ ). This graphical representation helps also to estimate the limitations due to the finite size of

a sample. Indeed, corresponding to our discussion on the sampling dimension (Sect. 2.2.6),

there is a "sampling singularity" γ s ; i.e. the maximum almost sure maximum singularity

presents in a sample of sampling dimension Ds : . This singularity has a codimension equal to

the effective dimension of sampling (see Fig. 8), therefore:

γ s (Ds ) = c−1(D + Ds ) (43)
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With no surprise, this heuristic estimate can be secured, at least for Ds = 0, by rigorous

mathematical derivation .

4.2 The Multiscaling of Moments K(q)  and the Legendre Transformation

Under fairly general conditions its probability distribution or (all) its statistical moments may

equivalently specify the properties of a random variable.  More precisely, for a non-negative

random variable x, these two representations are linked by a Mellin transformation M, which is:

q qx M p x p x dx− ∞ −= = ∫1
0

1( ) ( ) (44)

p x M x
i

x x dqq
c i

c i
q q( ) ( )= =− −

− ∞

+ ∞ − −∫1 1 11
2π

(45)

(essentially these are simply the Laplace and inverse Laplace transforms for the logs). In fact, if

the moments are not increasing too quickly with the order q (more precisely, when they satisfy

the “Carleman criterion”—see [Feller, 1971]), only the knowledge of the moments of integer

orders is required. The relevance of this condition for turbulence have been discussed ([Orszag,

1970]), but it is important to note that the Mellin duality is nevertheless ([Schertzer and

Lovejoy, 1993]) relevant for cascades and somewhat more general than the Legendre duality

pointed out by  [Parisi and Frisch, 1985] in a restrictive multifractal framework (see Sect. 4.3)

than the stochastic one we are presently discussing.

However, it is useful to check that the latter is an asymptotic (λ → ∞) result from the former

for the corresponding exponents. Since c( )γ  is the exponent that characterizes the scaling of the

probabilities, we introduce the corresponding function K(q)  to characterize the moments,

anticipating that the two will be related:

λ
qε ≈ K (q)λ (46)

For large Log λ , we can use the saddle point approximation (Laplace's method, see for

example [Bender and Orszag, 1978]) which yields asymptotic approximations to integrals of

exponential form.  One obtains that K(q)  is related to c(γ ) by:

ε ε ε ε λ λ γ λ λλ λ λ λ
γ γ γq q q cd d Log dc= ∫ ∫ ∫−∞

∞
−      q ~Pr( ) Pr( ) ( ) ( )~ ( ) (47)
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which yields the asymptotic behavior (λ → ∞):

−∞

∞

∫ dγ ln(γ )(q⋅γ −c(γ ))e ~ exp ln(λ ) ⋅ max
γ

q ⋅ γ − c(γ ){ }




 ,    λ >> 1, (48)

as well as the prefactor, which we do not consider here. A similar expansion can be done for

the inverse Mellin transform Eq. (45), and we have therefore the (involutive) Legendre duality

for the exponents:

K(q) = max
γ

qγ − c(γ ){ } ⇔ c(γ ) = max
q

qγ − K(q){ } (49)

This demonstrates that both curves are convex (due to the fact that iterating twice the Legendre

transform on a non-convex curve yields only the "convex hull" of this curve). One may note

that it is rather straightforward to directly demonstrate it for K(q) . This also means that the

curve c(γ ) is the envelop of the tangencies of K(q)  and reciprocally (see Fig. 9). Hence there

is a simple one-to-one correspondence between moments and orders of singularities.  

4.3 Comparison with other multifractal formalisms

Until now, we discussed multifractal notions within a codimension framework [Schertzer and

Lovejoy, 1987b; Schertzer and Lovejoy, 1992] it is therefore timely to compare it with

dimension frameworks. In relation to the nonlinear scaling of the velocity structure functions

[Anselmet et al., 1984], i.e. statistical moments of the velocity increments, [Parisi and Frisch,

1985] introduced a notion of multifractals by considering the geometric distribution of the

singularities of the velocity increments. With the help of the so-called refined self-similar

hypothesis [Kolmogorov, 1962; Obukhov, 1962], the latter can be related linearly to the

singularities of the energy flux. However, they consider neither a probability space nor a

cascade process, but rather a geometric distribution of the singularities. The popular f(α )

formalism was introduced by [Halsey et al., 1986] who dealt with multifractal “geometric

attractors” and in many respect emphasized the implicit non-random framework developed by

[Parisi and Frisch, 1985].  Rather than considering the density of the multifractal measure λp

(the non-random analog of the turbulent ελ ), they considered the measure itself integrated over

a ball (box) size L / λ .
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In both cases, it was assumed that the support of the singularities, which in our notations could

be defined as:  

S x xλ λ
γγ ε λ ε( ) { ( ) }= ≈ 0 (50)

has a well-defined limit (fractal) dimension, as well as its (lower) limit:

S S S( ) lim ( ) ( )γ γ γ
λ λ

= ≡ ∪ ∩
→∞ >Λ

Λ Λ Λ (51)

which corresponds to the set of points, where there exists a given resolution λ , after which

they have a singularity γ . In fact, these definitions and assumptions are too much demanding.

First, due to the (approximate) equality sign in Eq. (50), instead of the inequality sign involved

in Eq. (42), the supports Sλ (γ ), contrary to the events Aλ (γ ) , are not in general hierarchically

nested. Therefore [Parisi and Frisch, 1985] were compelled to add an ad-hoc hypothesis to

assure this feature as well as the convexity of the analogue of c(γ ). If we change this equality

sign to the inequality of Eq. (42),  Sλ (γ ) corresponds to a D-dimensional cut of the event

Aλ (γ ) , i.e. the restriction of the latter for a given ω ∈Ω . As a consequence of Appendix A,

whereas the (upper) sequence Aλ γ( ) and its (upper) limit A( )γ  have always a well-defined

statistical codimension, they do not have always a well-defined dimension. [Frisch, 1995;

Parisi and Frisch, 1985] acknowledged that within their formalism they could get only a

bounded range of singularities (in fact c(γ ) ≤ D) for the so-called lognormal model. This is a

generic limitation of their formalism. However, the consequences of this limitation were not

discussed, whereas we will see that they are of prime importance (Sect. 7). There is another

limitation, which is rather related to the type of limit that is considered for the supports or the

events of a given singularity γ .  In the stochastic framework, it is more than likely that when as

we add in more and more cascade steps, γ  will undergo random walks as λ  is increased.

Therefore, the relevant notion limit is the upper limit (Eq. (6)) rather than the most stringent

lower limit (Eq. (51)). For applications is means that he multifractal field is nonlocal, and one

cannot track a given singularity value by locally refining the analysis of the field, e.g. with the

help of wavelet analysis. The latter could yield spurious results.
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Let us mention the relation between the codimension notations and f(α )  dimension notations.

Due to the fact that in the latter case, the measure rather than its density is considered:

λB∫ λp  Dd x = λp −Dλ  ~  −
Dαλ (52)

we have:

Dα = D − γ ;  f( Dα ) = D − c(γ ) (53)

Let us emphasize that this correspondence is valid only for deterministic singularities, i.e.

satisfying f( Dα ) ≥ 0 or c(γ ) ≤ D (Sect. 2.2). We introduced the subscript “D”, which was not

used in the original, to α , in order to underscore its dependence on the dimension D  of the

system. On the other hand, [Halsey et al., 1986] used a partition function introduced by

[Hentschel and Procaccia, 1983], whose scaling exponent τ (q) can be related to the scaling

moments function K(q)  (Sect. 4.2), with the help of the Trace Moment (which is discussed in

Sect.7.3.2) in the following way:

τ D (q) = (q −1)D − K(q) = (q −1)(D − C(q)) (54)

 5 Universality

5.1 The concept of universality

This issue of universality for multifractal processes had been the subject of a hot debate, whose

main steps and conclusions are discussed at length by [Schertzer and Lovejoy, 1997], who

emphasized that "due to the growing number of attempts at modeling and analyzing multifractals

in rain (and elsewhere) - it is becoming central for applications". . In the following, we

summarize this discussion and highlight its conclusion.

Let us first emphasize that there is only a convexity constraint on the nonlinear functions K(q)

and c( )γ , therefore a priori, an infinity of parameters is required to determine a multifractal

process.  For obvious theoretical and empirical reasons physics abhors infinity!  This is the

reason why in many different fields of physics the theme of universality appears: among the

infinity of parameters it may be possible that only very few of them are relevant. This is

especially true as soon as we consider not only ideal systems, but more realistic systems
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subjected to perturbations or interactions with itself.  Indeed, such perturbations or interactions

may wash out many of the peculiarities of the theoretical model, retaining only some essential

features.  The system can be expected to converge to some universal attractor6, in the sense that

a whole class of models/processes, belonging to the same domain of attraction, will converge to

the same process defined by (far) fewer (relevant) parameters (see Fig. 3.6).

Although the term is not always explicitly used, the notion of universality is fairly widespread

in physics.  It corresponds to the fact that among the many parameters of a theoretical model,

very few will in fact be relevant.  For instance, in critical phenomena most of the many

exponents describing phase transitions will depend only on the dimensionality of the system.

Loosely speaking, a theoretician may imagine a model depending on a very large number of

parameters for an isolated system, but most natural systems are open and it is the existence of

these interactions which leads most of the details introduced by the fantasy of the theoretician to

be washed out, just leaving the (few) essentials.  The general idea, exploited for instance in the

Renormalizing Group approach is that repeated iterations of a given process with itself,

converges towards a limit, and this limit will be reached starting with quite different processes.

More precisely, all the processes belonging to the “same basin of attraction" will converge

toward the same limit or “attractor”, although they could be originally quite different, henceforth

the notion of universality: the larger the basin, the more universal the attractor.

5.2 Universality in multiplicative processes?

The study of multiplicative random processes has a long history (see [Aitchison and Brown,

1957]), going back to at least [McAlsister, 1879], who argued that multiplicative combinations

of elementary errors would lead to lognormal distributions.  [Kapteyn, 1903] generalized this

somewhat and stated what came to be known as the “law of proportional effect”, which has

been frequently invoked since, particularly in biology and economics (see also [Lopez, 1979]

                                                
6 Indeed, it was the realization that low dimensional systems (such as nonlinear mappings or coupled nonlinear
ordinary differential equations) had universal behavior (such as the famous Feigenbaum constant) that lead to an
explosion of interest in deterministic chaos.  Universal multifractals may be considered as analogies with large
numbers of degrees of freedom.
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for this law in the context of rain).  This law was almost invariably used to justify the use of

lognormal distributions i.e. it was tacitly assumed that the lognormal was a universal attractor

for multiplicative processes.  Although [Kolmogorov, 1962] and [Obukhov, 1962] did not

explicitly give the law of proportional effect as motivation, it was almost certainly the reason

why they suggested a lognormal distribution for the energy dissipation in turbulence.  Since

then, culminating in the multifractal processes, we have seen that there have been many

proposals for explicit multiplicative cascade models that would reproduce the strong

intermittency in turbulence. Unfortunately, in the course of development of these models the

basic issues of universality were obscured by various technical questions.

If we simply iterate the model step by step with a fixed ratio of scale λ , we indefinitely increase

the overall range of scales Λ → ∞ posing already a non trivial mathematical problem (weak

limit of random measures, see [Kahane, 1985]).  In his pioneering work, [Yaglom, 1966])

claimed that iterating the process to smaller scales may lead to the (universal) lognormal model.

The claim of universality of the lognormal model was first criticized by [Orszag, 1970] and then

by [Mandelbrot, 1974]. Whereas the former was on the grounds that the (infinite) hierarchy of

integer order moments would not determine a lognormal process, the latter pointed out that even

if the cascade process was lognormal at each finite step, that in the small scale limit, the spatial

averages of the cascade process would not be lognormal7. Furthermore, since the particularities

of the discrete models (e.g. the α - model) remain as a discrete cascade proceeds to its small-

scale limit, the opposite extreme claim has since been made: that multiplicative cascades could

not admit any universal behavior. For instance, Mandelbrot stated ([Mandelbrot, 1989]): “in the

strict sense, there is no universality whatsoever... this fact about multifractals is very significant

in their theory and must be recognized...” (see also [Mandelbrot, 1991] for more

antiuniversality statements).  More recently, [Gupta and Waymire, 1993] repeated the same

kind of claim. In both cases, their rejection of universality was based on a misunderstanding of

                                                
7 Indeed, we already noted that the particularities of the discrete models (e.g., the α-model) remain as the cascade
proceeds to its small scale limit (λ → ∞) and this non universal limit already  poses a non trivial mathematical problem
(that of weak limits of random measures).
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the alternatives discussed by [Schertzer and Lovejoy, 1987a] and [Schertzer and Lovejoy,

1991].  

5.3 Universal Multifractals

On the contrary, keeping the total range of scale fixed and finite, mixing (by multiplying them)

independent processes of the same type, (preserving certain characteristics, e.g. variance of the

generator), and then seeking the limit Λ → ∞: a totally different limiting problem is obtained! 

For instance, this may correspond to densifying the excited scales by introducing more and

more intermediate scales (see Fig.11), and seeking thus the limit of continuous scales of the

cascade model. Alternatively, we may also consider the limit of multiplications of identically

independently distributed (i.i.d.) discrete cascades models leading also to universal multifractal

processes. [Schertzer and Lovejoy, 1997] established rigorous demonstrations of the fact that

the renormalized nonlinear mixing over a finite range of scales of i.i.d. cascade processes, as

well as renormalized scale densification of a given multifractal processes, converge to a

universal multifractal.

 6 Continuous scale cascade

6.1 Limitations of discrete scale cascades

One important consequence of universality is the possibility to obtain a continuous scale process

from a discrete cascade model with the help of a scale densification, i.e. introducing more and

more intermediate scales between the discrete cascade. Continuous scale processes are rather

indispensable, then discrete cascades have many limitations. Indeed, it is already questionable

to have a scale ratio of the elementary cascade step λ  strictly larger than 1, in fact larger or

equal to 2, without any physical reason, e.g. a quantification rule. Furthermore the hierarchical

splitting rule of structures into sub-structures introduces a notion of distance which is no longer

a metric, but an ultra-metric. More precisely it corresponds to the λ -adic ultrametric: the

distance between two structures at a given level of a discrete cascade process is defined by the

level of the cascade where there is their first (and smaller) common ancestor, not the usual

metric.  This means for instance that the distance between the centers of two contiguous eddies



-25-

is not uniform. This fact has many drastic consequences, since all the statistical interrelations

between different structures will depend on this ultra-metric, not on the usual metric. In

particular, there is no hope to obtain a (statistically) translation invariant cascade, since a

translation is related to the metric, not the ultra-metric. In other words, discrete cascades have

been useful to grasp some fundamentals, but one has to take care of not being blocked by some

of their artifacts. As final note on discrete scale cascade, let us emphasize that almost all

rigorous mathematical results on cascade processes have been derived in this restricted

framework; this is presumably due not only because it is rather convenient, but also for some

complex historical reasons, including the question of the biased debate on universality (see

previous section). As a consequence, the question of continuous scale cascade has been not

discussed enough.

6.2 Continuous scale cascades and their generators

The general idea of continuous scale cascade ([Schertzer and Lovejoy, 1987a]) corresponds to

considering a stochastic one-parameter multiplicative group property for the densities ελ

defined for arbitrary scale ratios λ  instead of being defined only to (discrete) powers

( λ1
n ,n = 1,2...) of the elementary step scale ratio (λ1):

∀Λ ,λ ≥ 1: εΛ = ελ ⋅ Tλ (ε' Λ / λ ) (55)

where ε' λ  and ελ , are independently and identically distributed for any λ . This means that not

only a multiplicative cascade from scales L to L / Λ  factors into the same given cascade from

L to L / λ  and from L / λ  to L / Λ , but the latter corresponds to a cascade of the same type

from L to Lλ / Λ  rescaled with the help of the contraction operator Tλ  . The simplest case,

which will be considered until Sect. 8, corresponds to an isotropic self-similar cascade,

whereTλ  is the isotropic contraction: Tλ (x) = x / λ .

As for any one-parameter group, we are interested by its infinitesimal generator, which will be

stochastic in the present case, and therefore, loosely speaking, to come back to an additive

group. Let us consider the generator of the cascade over a (non-infinitesimal) scale ratio λ

defined by:
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ελ = exp(Γ λ ) (56)

And which should satisfy the corresponding additive group property:

∀Λ ,λ ≥ 1: Γ Λ = Γλ + Tλ (Γ' Λ / λ ) (57)

This gives a simple and very convenient meaning to the moment scaling function K(q)  (Eq.

(46)): it is nothing else than the (Laplace) second characteristic function-or cumulant generating

function- of the generator and the latter should be logarithmically divergent (with the scale ratio)

in order to satisfy Eq. (46). The latter property can be satisfied by considering 'colored'

generators obtained by fraction integration of a white noise γ0 , called for rather obvious reason

the sub-generator. The logarithmic divergence is obtained by selecting the appropriate order of

integration to be performed.

For a concrete and generic example, let us consider the case of universal multifractals (sect.

5.3). As a consequence of their universality, their generators should be (colored) stable Lévy

noises ([Schertzer and Lovejoy, 1987a]). The appropriate order of fractional integration to

obtain the logarithmic divergence is D / α '  for a stable white noise of Lévy's stability index

0 < α ≤ 2  , where α '  is the conjugate ofα : (
1
α

+ 1
α '

= 1). In order to get some convergent

moments, this stable white noise should be furthermore extremely asymmetric ([Schertzer and

Lovejoy, 1989]) for α < 2 , i.e. with a skewness β = −1, whereas it is obviously symmetric

(β = 0) for the gaussian case (i.e.α = 2).

7 The extremes

7.1 The singular limit of a cascade process

The small-scale limit λ → ∞  of a cascade process is very singular since for any positive

singularity γ , the density λε ≈ λγ  diverges. These divergences are statistically significant for

γ > C1, since we have ελ = λ K (q) → ∞ for all q >1, due to the fact that K(q) > 0for q >1.

This singular behavior means that if a limit exists, it is not in the sense of functions.  We really

have something similar to the Dirac δ -measure, which can be defined as a “generalized

function” as a limit of functions, without being itself a function and is indeed only meaningful if
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we integrate over it. It is rather obvious that the β-model does correspond to a (random)

generalization of the Dirac δ -measure for non isolated points belonging to a fractal set of

codimension c = D − Ds > 0. Conversely the Dirac δ -measure can be understood as the

particular (deterministic) case corresponding to a codimension c = 0, i.e. A is a set of isolated

points.

As a consequence, one has to consider the limit of the corresponding measures

λ∏ (A) → ∏∞ (A) over compact sets A  of dimension D , i.e. the D -dimensional integration

of the density ελ  over A :

∞∏ (A) = lim
λ →∞ λ∏ (A) = lim

λ →∞ A∫ ελ
Dd x (58)

In agreement with turbulent denominations, the integrals λ∏  can be called fluxes (of energy

through the scale   l = L / λ ), whereas ελ  can be called flux density (of energy at the scale

  l = L / λ ). Therefore, we expect a convergence in fluxes, but not in densities. Due to the

singularity of the limit, we may furthermore expect that there will be convergence for only a

limited range (0 < q < qD) of moment orders of the flux, since higher moments are related to

higher singularities (see below for a detailed discussion) i.e.:

∃ qD >1,  ∀ q ≥ qD:  < ∏∞ (A)q >= ∞  (59)

whereas:

∀ λ < ∞:  < ∏λ (A)q >  < ∞  (60)

The sub-index D  of the critical order qD underscores its dependence on the dimension of the

integration which is performed. This dependence can be used ([Schertzer and Lovejoy, 1984])

in order to demonstrate that cascades processes are generically multifractals: increasing order qD

of convergence defines a hierarchy of fractal sets having larger and larger fractal dimension D  .

It is very important to note that the critical order qD of divergence of statistical moments is also

the exponent of the power-law fall-off of the probability distribution:  

∃ qD >1,  π >>1: Pr(∏∞ (A) > π) ≈ π−qD (61)

and that the two equations Eq. (59) and Eq.(61) are equivalent. The latter has many practical

implications that we will review below.



-28-

7.2 Bare and dressed cascades

The singular limit of the cascade process underscores the necessity to distinguish the properties

of a cascade stopped at a finite resolution λ , from those corresponding to the limit. [Schertzer

and Lovejoy, 1987a] argued that in a very general manner this difference is related to the

importance of the interaction with finer scale activity, which 'dresses' the former to yield the

latter, in similarity with what happens in renormalization when higher and higher order of

interactions are taken into account.  Therefore, it is rather appropriate to distinguish between the

“bare” cascade quantities obtained after the cascade has proceeded down to a finite resolution

λ , and the corresponding “dressed” quantity obtained after integrating a completed cascade

over the same scale (  l = L / λ ). See Fig.12 for an illustration for a finite resolution Λ , although

we are primarily interested by Λ → ∞. Due to the group property of a multiplicative cascade

(see Sect. 6.2), a dressed cascade factors into its bare part and an hidden part, which

corresponds to a flux of a cascade from L to Lλ / Λ  rescaled with the help of the contraction

operator Tλ . Bare and dressed properties are similar, as far as the latter flux remains a finite

prefactor with Λ → ∞. A drastic change occurs as soon as this prefactor scale with Λ / λ  since

it will diverge with Λ → ∞.  

7.3 Scale dependence and divergence of the flux:

7.3.1         Heuristics

Let us first consider some simple heuristics ([Schertzer et al., 1993]), whose main interest is

that they are model independent. They are based on the fact that a D -dimensional integration of

a singularity γ  just corresponds to shift the latter by −D, which corresponds to the scaling

exponent of the elementary volume of integration. As a consequence, all singularities of order

γ < D will be smoothed out. This already explains why this question of statistical divergences

is beyond the scope of deterministic-like multifractal formalisms (see Sect. 6.2). On the

contrary those corresponding to γ ≥ D will not be smoothed out and therefore the scale of

observation is irrelevant: the flux will scale with the inner scale of activity of the cascade and

therefore will diverge with Λ → ∞. However, this divergence may remain statistically
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insignificant, due to its low statistical weight. Nevertheless, one may reach a critical γD ≥ D

where the divergence becomes statistically significant. Above this critical singularity, the

observed dressed codimension function cd (γ )  does not correspond any longer to c(γ ): dressed

quantities will have much larger fluctuations than the bare quantities. cd (γ )  can be therefore

estimated ([Schertzer, 2001]) by considering that cd (γ )  should maximize the occurrences of

high singularities, respecting nevertheless the convexity constraint. This means that cd (γ )

should be the tangency of c(γ ) in γD:  

γ < γD:  cd (γ ) = c(γD );   γ ≥ γD:  cd (γ ) = c(γD ) + qD(γ − γD )  (62)

The divergence of the statistical moments for q ≥ qD  - qD being the critical order corresponding

to γD in the framework of the Legendre duality- results from the fact that a straight line is

singular for the Legendre transform, therefore:

q < qD:  Kd (q) = K(q);   q ≥ qD:  Kd (q) = ∞ (63)

7.3.2        Trace         moments

The previous heuristics are secured by introducing ([Schertzer and Lovejoy, 1987a]) Trace

Moments of the flux which are simpler to handle than the statistical moments of the flux.

Indeed, the latter are rather complex since already for integer order q >1, they correspond to a

q -multiple D-dimensional integration:

A∫ ελ
Dd x [ ] q

=
A∫

Dελ (x1)d x1 ⋅ ⋅ ⋅
A∫  ελ (xq ) Dd xq (64)

The  “trace moments” are obtained by performing the same integration, but only over the

"diagonal" ∆(Aq ) = {x1 = x2...= xq} of Aq , the domain of integration of Eq. (64), i.e.:

TrA [(ελ )q ] =
A∫ ελ

q dqD x (65)

This quantity, which is defined also for non-integer orders q  (including negative orders), is

rather easy to handle since it corresponds to a simple D-dimensional integration, and indeed, its

scaling behavior is readily obtained:

TrA [(ελ )q ] ~
Aλ

∑ ελ
q λ−qD =

Aλ

∑λ K (q)λ−qD ~ λ K (q)−(q−1)D (66)
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and this yield a twin divergence rule for the trace moments (illustrated in Fig. 13):  

ATr ε∞
q =

0    for   1 < q < Dq

∞    for   q > Dq  or  q <1





(67)

which results from the fact that due to the convexity of K(q) , the exponent K(q) − D(q −1)

(Eq. (66)) has only two zeroes corresponding respectively to q = 1 (due to K(1) = 0, which

corresponds to the conservation of the density:  < ελ >=1) and q = qD ≥ 1, where qD will be

shown below to correspond to the critical exponent of divergence discussed in Sect. 7.3.1.

Indeed, we have the following inequalities between moments and trace-moments ([Schertzer

and Lovejoy, 1987a]):

q

λ∏ (A) ≥ TrA[ε
q

λ
]            (q ≥ 1) (68)

q

λ∏ (A) ≤ TrA[ε
q

λ
]            (q ≤ 1) (69)

due to the convexity of the function f (x) =| x|q  for q ≥ 1 and its concavity for q ≤ 1. We

therefore obtain with the help of Eq. (69):

ATr
qε∞ = ∞{ }  ⇒  ∞∏ (A) = ∞   (q ≥ qD ) (70)

which confirms that qD is the critical order of divergence of moments as well as of the trace

moments, since it is rather straightforward to check that when a divergence of moments occurs,

its leading term corresponds to the trace-moment. On the other hand, Eq. (68) implies that:

 ∞∏ (A)q > 0{ } ⇒  ATr
qε∞ = ∞{ }       (q ≤ 1) (71)

which means that the low-order divergence (q = 1) of the trace-moments is indispensable in

order to ensure that the multifractal process is non-degenerate, i.e. the bare process is too sparse

to be observed in the space D and converges almost surely to  0.

 7.4 Sample finite size effects

In practice we are able only to examine finite size samples, hence, instead of computing the

theoretical moments,

X q = xqdPX∫ (5)
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one only deals with estimates, the most usual ones being an average over the Ns independent

samples

{Xq}s =
1
Ns

Xi
q

i=1

Ns

∑
(6)

As long as the law of large numbers applies, these estimates usually converge (Ns → ∞)

towards the theoretical moments:

Xq =
Ns →∞
lim {Xq}s (7)

One may also consider space/time averages and ergodicity assumptions.  In our case, we will

have to consider a combination of statistical and space/time averaging, in particular when

estimating the trace moments (Sect. 7.3.2). A first consequence of finite Ns is that only a

limited range of moment orders q  's can in fact be safely explored: as we will now show,

estimates of moments (or of trace moments) of higher order give no real information about the

process and may even lead to an erroneous understanding of the real statistics if this limitation is

not taken into account 8.

The finite sampling limitation can be best understood with the help of the sampling dimension

Ds  (Sect. 2.2.6). Indeed, consider a sample consisting of Ns  independent realizations, each of

dimension D , each covering a range of scales λ .  As we increase Ns , we gradually explore the

entire probability space encountering extreme but rare events that would almost surely be

missed on any finite sample (Fig 3). This corresponds to the fact that we are increasing the

dimension of observation D  to an (overall) effective dimension ∆ s , which may be quantified,

with the help of the sampling dimension Ds   (Eq.(24), Ds = 0 in case of a unique sample).  The

latter help us to determine the highest order singularity (γ s ) we are likely to observe on Ns

realizations:

c(γ s ) = D + Ds = ∆s; (72)

                                                
8Indeed, various authors have speculated on the significance of the q→∞ limit on the basis of finite empirical samples
of turbulence data!
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The Legendre transform of c(γ ) = c(γ s ) withγ ≤ γ s leads to a spurious linear estimate Ks

instead of the nonlinear K  forq > qs where qs = c' (γ s ) is the maximum moment that can

accurately be estimated:

q ≥ qs :  Ks (q) = γ s (q − qs ) + K(qs ),q < qs ;  Ks (q) = K(q) (73)

In Sect.7.5.2, we will show that this linear behavior corresponds to the analogue of a phase

transition and therefore is rather model -independent.

 7.5 Multifractal phase transitions

7.5.1        Fluxdynamics       and       thermodynamics

As discussed by different authors ([Tel, 1988], [Schuster, 1988], [Schertzer, 2001; Schertzer

and Lovejoy, 1992]), there are strong analogies between multifractal exponents and standard

thermodynamic variables. However, there are notable differences in viewpoints, depending on

the chosen multifractal framework. Table 1 displays the analogies, within the codimensional

multifractal formalism, between what can be called (statistical) "fluxdynamics", due to the fact

that the quantity of main interest is a flux of energy, and the classical thermodynamics. We

believe that these are easier to be obtained in a codimensional framework, since it originates

from the analogies between the exponents of probability density and of number density, which

define respectively the codimension c(γ ) of a singularity γ  and the D − S(E) entropy of a state

energy E .  The conjugate variable of the singularity and the energy for the Legendre transform

corresponds respectively to the moment of order q  and the (reciprocal) temperature β = T −1,

and the scaling moment function K(q)  is the analogue of a (Massieu) potential.

Discontinuities of the analogues of the free energy (the dual codimension function C(q) ) and

the thermodynamic potential (K(q)) can be understood as corresponding to multifractal phase

transitions. However, there is a large difference between fluxdynamics and thermodynamics,

the latter is related to systems in equilibrium and without dissipation, while the former

corresponds to a system out of equilibrium and strongly dissipative. A practical consequence

related to this distinction is that a multifractal process is fundamentally a system requiring an

infinite hierarchy of temperatures, not a unique one, in order to define its statistics. Therefore

observing a multifractal process at a given temperature yields only a very partial information,
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and a multifractal phase transition corresponds rather to a qualitative change of observation of

the same system when one changes the observation temperature, whereas a thermodynamic

phase transition rather corresponds to a qualitative change of the system behavior under

observation.

7.5.2        Second        order        phase       transition

Sample finite size effects (Sect. 7.4) can be now understood as corresponding to a phase

transition of second order and in fact a "frozen free energy" transition which have been

discussed in various contexts [Derrida and Gardner, 1986], [Mesard et al., 1987], [Brax and

Pechanski, 1991]. Indeed, we saw that the almost sure highest order singularity (γ s ) which can

be observed on Ns  realizations, yields with the help of the Legendre transform a linear behavior

of the observed Ks  (Eq. (73)) forq > qs, whereas it is nonlinear as K(q)  for q < qs.

Therefore, Ks has a discontinuity of second order at qs . On the other hand, this linear behavior

implies that the observed analogue of the free energy Cs (q) seems to be "frozen" for low

temperature (q → ∞), since we have:

Cs (q) ≡ Ks (q)
q −1

≈ γ s (1 + q−1(1 − qs / γs )) (74)

Further to the heuristics derivation we have presented here, some exact mathematical results

have been obtained, which are however restricted to discrete cascades and furthermore to

Ds = 0 . On the contrary, the notion of second order phase transition is interesting, because it is

rather model-independent since based on the analogies of the statistical exponents of the

cascade. Indeed, it should occur as soon as there are no bounds on the singularities or their

range exceeds the critical γ s .

        7.5.3        First        order        phase       transition

We can now revisit the question of the divergence of moments (Sect. 7.3) taking care now of

the sample size finite effects, in the heuristic and very general framework we discussed in

Sect. 7.3.1. We pointed out that above a critical singularity γD, the dressed codimension

cd (γ )  becomes linear (Eq. (62)). Due to the definition of the codimension (Eq. (41)), this
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corresponds to a power-law for the probability distribution, and by consequence to a divergence

of statistical moments. However, due to the finite size of the samples, one obviously cannot

observe directly this divergence, but in fact a first order transition, instead of the second order

transition discussed above (Sect.7.5.2).  Indeed, following the argument for Eq. (72), the

maximum observable dressed singularity γd ,s is the solution of:

cd (γd ,s ) = ∆s .  (75)

By taking the Legendre transform of cd  with the restriction γd ≤ γd ,s , we no longer obtain the

theoretical Kd (q) = ∞  for q > qD , (Eq. (63)), but then obtain the finite sample dressed Kd ,s (q) :

q ≤ qD : Kd ,s (q) = K(q);  q ≥ qD :  Kd ,s (q) = γd ,s (q − qD ) + K(qD ) (76)

As expected, Eq. (63) is recovered for Ns → ∞ , due to the fact that γd ,s → ∞. For Ns  large

but finite, there will be a high q  (low temperature) first order phase transition, whereas the

scale breaking mechanism proposed for phase transitions in strange attractors ([Szépfalusy et

al., 1987]; [Csordas and Szépfalusy, 1989]; [Barkley and Cumming, 1990]) is fundamentally

limited to high and negative temperatures (small or negative q).  This transition corresponds to a

jump in the first derivative K' (q) of the potential analogue  ([Schertzer et al., 1993]):

∆K' (qD ) ≡ K' d ,s (qD ) − K' (qD ) = γd ,s − γD =
∆ s − c γD( )

qD

(77)

On small samples (∆ s ≈ c(γD )), this transition will be missed, the free energy simply becomes

frozen and we obtain: Kd ,s (q) ≈ (q −1)D , which was already discussed with help of some

experiments ([Schertzer and Lovejoy, 1984]), whereas Eq. (76) corresponds to an

improvement of earlier works on "pseudo scaling" ([Schertzer and Lovejoy, 1984; 1987a]).

Note that the above relations, especially Eq. (77) were tested numerically with the help of

lognormal universal multifractals ([Schertzer et al., 1993; 1994]).  

        7.5.4        The        big       image;        hard       and       soft         multifractal        ph       ases

Now, we can display the different multifractal phases in the (q−1, D ) plane where q  is the order

of the statistical moment and D  the dimension of space, which is also the integration dimension
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yielding the dressed quantities9. The latter is rather the analogue of an external field h , since it

has a smoothing role as for instance a magnetic field applied to an antiferromagnet. In the latter

case, by increasing the magnetic field one may succeed in preventing this inflation of the

microscopic world, maintaining a finite border line down to a transition temperature (the Néel

temperature) lower than the (zero-field) critical Tc . Therefore, the transition lines delineating the

phases in the (q−1, D ) plane (Fig. 14) are quite similar to the (T,h) transition lines of an

antiferromagnet [Coniglio and Stanley, 1986], [Nagamiya et al., 1955].  

The transition line (qD
−1, D) corresponds to the first order transition (Sect. 7.5.3) which

separates the "soft' and "hard" phases. These phases are rather the respective analogues of the

disordered and ordered phases. The soft phase corresponds to the common sense

presupposition that the flux will converge without any sensitivity to the small scale activity, i.e.

that cutting off hidden fluctuations/interactions involving scale ratio larger than λ  does not

induce major changes, i.e. there is no significant difference between bare and dressed

properties.  This soft phase is the analogue of a classical disordered phase, since each sub-

domain of integration A  of same scale ratio λ  gives rather similar contributions.  

But there is the possibility of a hard phase in which on the contrary small scale activity cannot

be ignored: it becomes fundamental to distinguish between the bare (theoretical) and dressed

(observed) fields.   The contribution to the flux by the sub-domains can be quite uneven, rather

in analogy to a classical ordered phase, some of them can yield overwhelming contributions

thereby creating dominant large-scale structures.  As we discussed it (Sect. 7.3.1), this

corresponds to the fact that the space/time integration is not able to impose its own scale ratio λ

and that the effective scale ratio is the (divergent) scale ratio of the process itself Λ → ∞.

The critical transition line (qD
−1, D) ends at the critical point (1,0) after a sharp vertical bend at

the point (1,C1).  This bend arises because when D  is smaller than the codimension C1 of the

mean of the process, the mean of the D-dimensional intersection (D1 = D − C1) has an apparent

negative dimension.  Any D-dimensional observation will therefore almost surely have huge

fluctuations before collapsing to a null process.  The very singular statistics corresponding to

this "degeneracy" are the following: while the mean of the process is kept constant and finite,

                                                
9Despite a slight complication in notations, it is rather straightforward to consider two distinct dimensions.
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simultaneously, all moments of order q >1 diverge to infinity while those <1 converge to zero.

The analytical continuation of the transition line (1, D) for D > C1 corresponds to the divergence

not of the moments of the flux (implied by the divergence of the trace moments), but only to the

divergence of the trace moments (see Sect. 7.3.2). Therefore, the second continuation qD
−1, D

indicated in Fig. 14 for q <1 remains the separation of the finite and infinite trace moments

however the latter no longer imply divergence or convergence of the fluxes. The empirical

evidence of these distinct phases is reviewed by [Schertzer, 2001].

8 Generalized Scale Invariance (GSI)

We now show that all the previous results can be extended in a rather straightforward manner to

strongly anisotropic processes, whereas the usual approach to scaling is first to posit (statistical)

isotropy and only then scaling, the two together yielding self-similarity.  Indeed this approach is

so prevalent that the terms scaling and self-similarity are often used interchangeably!  Perhaps

the best known example is Kolmogorov's hypothesis of "local isotropy" from which he derived

the k−5/3 spectrum for the wind fluctuations.  The GSI approach is rather the converse: it first

posits scale invariance (scaling), and then studies the remaining non-trivial symmetries. For

instance, Fig. 15 gives a (scaling) anisotropic version of the isotropic cascade scheme (Fig. 4).

One may easily check that this type of anisotropy—which reproduces itself from scale to

scale—does not introduce any characteristic scale. The straightforward generalization of scaling

shown in fig. 4 involving scaling anisotropy in fixed direction is called “self-affinity”.  As far

as we know this anisotropic scheme ([Schertzer and Lovejoy, 1983; Schertzer and Lovejoy,

1985a]) seems to be the first explicit model of a physical system involving a fundamental self-

affine fractal mechanism.

GSI corresponds to the fact that the contraction operator Tλ , which was introduced in Sect.6.2

(Eq. (55)), is no longer an isotropic contraction: Tλ (x) = x / λ . Linear GSI corresponds to the

fact that Tλ  is a linear one-parameter group; i.e. it admits a linear generator G  distinct from the

identity, which generates to isotropic contractions:

Tλ (x) = λG ≡ exp[Log(λ )G] (78)
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One can define a generalized notion of scale  ([Schertzer and Lovejoy, 1984; 1985b; 1987b;

Schertzer et al., 1997; 1999]), associated to the one-parameter (linear) contraction Tλ , which

satisfies the following:

• nondegeneracy, i.e. :

x = 0 ⇔ x = 0 (79)

linearity with the contraction parameter 1 / λ , i.e.:

Tλ x = x / λ (80)

•  Balls defined by this scale are strictly decreasing, i.e.

∀ λ ,λ ' ∈ R+:λ ≥ λ ' ⇒ Bλ ⊂ Bλ ' (81)

where the balls Bλ  defined by the contraction Tλ  satisfy:

Bλ = {x  x ≤ L / λ} (82)

It is important to note that the scaling of the volume of the balls Bλ , defines an effective

dimension Del , which has been called 'elliptical dimension' in reference to the shape of the balls

under GSI contraction. It is indeed an invariant merely defined with the help of the Jacobian of

the contraction:

det[Tλ ] = λ−Del (83)

and due a well-known matrix identity, it corresponds to the trace of its generator:

Del = Tr(G) (84)

It is straightforward to check that the usual Euclidean norm x = ( xi
2

i
∑ )1/ 2  of a metric space is

the scale associated to the isotropic dilation (G = 1) and Del = D. On the other hand, whereas

the two first properties are rather identical to those of a norm, the last one is weaker than the

triangular inequality, which is required for a norm.
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The conditions of existence of a generalized scale should depend on the generator G  of the one-

parameter group of (linear) contractions. Indeed we have the following property ([Schertzer and

Lovejoy, 1985b, Schertzer et al., 1999]):

•  let the unit ball defined as an ellipsoid generated by a positive symmetric matrix A :

B1 = {x  (x, Ax)1/ 2 ≤ L} (85)

• The contraction group Tλ  defines a generalized scale, if and only if: its generator G

satisfies:

Spec(sym(AG) > 0 (86)

where Spec(.) and sym(.)  denote respectively the spectrum and the symmetric part of a linear

application.  One can show furthermore that when the unit ball is an ellipsoid defined by a

positive symmetric matrix A , which belongs to a given neighborhood of a scalar linear

application, i.e. A = µ1,  µ ∈ R+ , the dilation group Tλ  defines a generalized scale, if and only

if its generator G  satisfies:

Spec(sym(G)) > 0 ⇔ Re(Spec(G)) > 0 (87)

9 Conclusion

The codimension multifractal formalism that we introduced in this course, was initially

developed, and discussed with respect to a scalar stochastic measure, e.g. the turbulent flux of

energy, which has a fundamental property of conservation (on ensemble average). We limited

our introduction to this question, which already requires many theoretical developments.  

However, in turbulence directly observable quantities are rather the (vector) velocity field or the

temperature field.  Both of them are non-conservative, i.e. their ensemble averages have scaling

laws. Let us point out that a rather straightforward extension to (scalar) non-conservative fields

corresponds to Fractionally Integrated Flux models (FIF, [Schertzer et al., 1997]). On the other

hand, we briefly mentioned that the scalar cascade framework is insufficient to deal with the

vector nature of turbulence, but can be extended to 'Lie cascades' framework [Schertzer and

Lovejoy, 1995].
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Let us finally mention the important question of multifractal space-time processes, which can be

approached ([Marsan et al., 1996]) by combining the General Scale Invariance notions

(Sect. 8, in order to take into account the strong scaling anisotropy between time and space)

within the Fractionally Integrated Flux models, by taking care of the causality with the help of

causal Green functions.
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Appendix A

A.1) A General Framework

One considers a sequence of events Aλ  ( Aλ ∈ F , where F  is a σ-field of events of a probability

space (Ω,  F, P ) with probability P ), where the parameter λ → ∞, will in fact correspond to

the (finer and finer) resolution of a stochastic process. The resolution is related a notion of scale

defined on the embedding (topological) set E  where the stochastic processXλ ω( ) is valued,

and to its Borelian σ-field B E( ). In the simples cases E  is a bounded subset of Rn  and Xλ ω( )

corresponds to a geometric subset of points (e. g. a (random) fractal set at resolution λ ), but in

the most interesting cases E  is a functional space and Xλ ω( ) is a random field or random

measure (e. g. the energy flux at resolution λ ). The resolution λ is in general related to a scale

  
l = L

λ
( L being the outer scale) of homogeneity, either of observation (e.g. fluctuations are not

estimated below this scale) or in simulations (the fluctuations are not computed below this

scale).

It is rather convenient to use the notation Pr for probability on any space, either on the original

σ-field F  (i.e. P ) or its image on the Borelian σ-field B E( ). (i.e.PX ).
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In the simplest case, the sequence of events Aλ  is defined by a discrete iterative process (e.g. a

discrete cascade process), and the λ 's follow a power law:

  λ λ λ λ= = ∈ = >n
n n N Const1 1 1, ,  . . (A.1)

In general, F  is in fact defined by a filtration, i.e. it contains the σ-field generated by an

increasing family of σ-fields Fλ :

  
σ λ

λ
( )F FU ⊆ (A2)

and A Fλ λ∈  is defined by a process Xλ ω( ) adapted to this filtration.

The asymptotic behavior indicated by Eq. 6 is more precisely defined by:

lim
logPr( )

logλ
λ

λ→∞
= −

A
c

(A.3)

if this limit exists. For heuristic reasons, c  corresponds to a notion of (statistical) codimension.

Indeed, loosely speaking a probability corresponds to the frequency of events:  

Pr(A )
A

A Aλ
λ

λ λ

≈
#( )

# (   )  and c
(A.4)

and each number (denoted by #)  of events scales like a power of a dimension, therefore the

probability scales like a power of a difference of dimension, i.e. a codimension (this will be

more discussed in Sect. ??)

A.2) Existence of a codimension

The limit c in Eq.A3 exists when the upper and lower limits, which are always defined on

0,∞[ ] :

lim sup
logPr( )

log
lim sup

logPr( )
logλ

λ
λ λλ→∞ →∞ ≥

=↓ ≡ −
A A

c
Λ

Λ

Λ (A5)

lim inf 
logPr( )

log
lim inf

logPr( )
logλ

λ
λ λλ→∞ →∞ ≥

=↑ ≡ −
A A

c
Λ

Λ

Λ (A6)

are equal, whereas generally c c≥ .  c c,  can be called respectively the upper and lower

codimensions of the sequence of events Aλ{ } .
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However, more general results can be obtained by considering the following monotonous

sequence of events A Aλ λ{ } { },  (respectively the upper and lower sequences of Aλ{ } ) and their

corresponding limits A A, :

A A A Aλ
λ λ

λ≡ ∪ ≡↓
≥ →∞Λ Λ :  lim

(A7)

A A A Aλ
λ λ

λ≡ ∩ ≡↑
≥ →∞Λ Λ :  lim

(A8)

A A,  correspond respectively to the upper limit of the Aλ 's, i.e. the infinitely often Aλ , and

their lower limit, the set of eventually  all Aλ  (i.e. for large enough λ ).

Proposition        1:

We have the following sufficient conditions of existence of a codimension for a (discrete)

sequence of events Aλ{ } , λ  's being a discrete increasing sequence on R+ (generally defined

by Eq. (A.1):

(a) if Aλ{ }  is a  non increasing sequence of events, then it has a well defined codimension c ,  

(b) the upper sequenceAλ{ } ;  generated  by Aλ{ }  with the help of Eq.(A7), has a well defined

codimension  c Aλ{ }( ), which is a lower bound of the lower codimensionc  (as well of the

codimension c  , if the latter exists),

(c) the lower sequenceAλ{ } ;  generated  by Aλ{ }  with the help of Eq.(A8), has a well defined

upper codimension  c Aλ{ }( ), which is an upper bound  of the upper codimensionc  (as well

of the codimension c  , if the latter exists),

(d) if Aλ{ }  has a well defined set limit A , then it has a well defined codimension : ,  

c c A c A= { }( ) = { }( )λ λ  (A9)

(e) if c  exists and is positive and the λ 's follow a power law (Eq.A1), c Aλ{ }( ) is also

(strictly) positive.

Proof:

Proposition (1,a) results from the monotone convergence property of the probability measure.

Indeed, the sequences Pr( )Aλ and Log A LogPr( ) /λ λ are both monotonously non increasing and

therefore the following two limits are always defined (respectively on 0 1,[ ]  and on 0,∞[ ] ):
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Pr( ) lim Pr( )A A= ↓
→∞λ λ (A10)

c
A

≡ − ↓
→∞

 lim
logPr( )

logλ
λ

λ
(A11)

Due to the fact that the sequence Aλ{ } , as defined by Eq. (A7), is non increasing, Proposition

(1.a) implies that the following codimension is always defined on 0,∞[ ] :

c A
A

( )  lim
logPr( )

logλ λ
λ

λ{ } ≡ − ↓
→∞

(A12)

We will demonstrate that:  

c c A≥ { }( )λ
(A13)

Indeed, we have also:

Pr( ) supPr( )A Aλ
λ

≥
≥Λ

Λ (A14)

as well as:

Log A

Log

Log A

Log

Pr( )
sup

Pr( )λ

λλ
≥

≥Λ

Λ

Λ
(A15)

Therefore:

↓ ≥↓ =
→∞ →∞ ≥ →∞

lim
Pr( )

lim sup
Pr( )

lim sup
Pr( )

λ

λ

λ λλ
Log A

Log

A

Log

A

LogΛ

Λ

Λ

Λ

Λ Λ
(A16)

which corresponds to the announced inequality (Eq.A13) and therefore demonstrates

Proposition (1.b).

 The monotone convergence property of the probability measure still imply that the sequences

Pr( )Aλ and sequence Log APr( )λ  are monotone non decreasing and:

Pr( ) lim Pr( )A A=↑
→∞λ

λ (A17)

However, it does not imply that the sequence Log A LogPr( ) /λ Λ is monotone non-decreasing.

Nevertheless, the following codimension is always defined:

c A
Log A

Log
λ

λ

λ

λ
{ }( ) ≡ −

→∞
lim inf

Pr( )
(A18)
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and we have (note the difference with Eq. A14):

Pr( ) Pr( )A AΛ Λ≤ (A19)

as well as:

inf
Pr( )

inf
Pr( )

Λ

Λ

Λ

Λ

Λ Λ> ≥
≤

λ λ

A

Log

A

Log
(A20)

Therefore:

↑ ≤↑ =
→∞ ≥ →∞ ≥ →∞

lim inf
Pr( )

lim inf
Pr( )

lim inf 
Pr( )

'λ λ λ λ λ

Log A

Log

A

Log

A

Log
Λ

Λ

Λ

Λ

Λ

Λ Λ Λ
(A21)

and by consequence:

c c A≤ { }( )λ
(A22)

This demonstrates Proposition (1.c). Finally, Proposition (1.d) results from (1.b) and (1.c), as

well as the fact that if the limit set limit A  is defined, then:

A A A= = (A23)

One may note that (1a) is in fact a particular case of (1.d).

Proposition (1.e) is a straightforward consequence of the first Borel Cantelli lemma, since:

Pr( ) Pr( ) ( )A A c An nn n

c
λ λλ∑ ∑≈ < ∞ ⇒ = ⇒ { } >

−
1 0 0 (A24)

 A.3) Consequences

A.3.1        Some       rather        general       consequences:

Propositions (1.a) or (1.d) are useful for the simplest cases, for instance for geometrical set

defined recursively, in particular when it corresponds to a repeated truncation, since Proposition

1.a is then relevant. This is in particular the case for the Cantor set discussed in the main text.

On the contrary, the slightly more involved Proposition (1.b) is always relevant. It implies that,

given a sequenceAλ{ }  (in general, this sequence is chosen for some physical reasons), we have

in general to consider its upper sequenceAλ{ } .  Indeed, the latter has always a well defined

codimension, whereas it is not always the case for the original sequence, and at the same time it

is in general physically relevant, since its limits corresponds to the event of infinitely often the

original events.
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A.3.2       Intersections       and       covers         with        balls

In general, the notion of scale defined on the embedding spaceE  with the help of balls Bλ  of

size 
  
l = L

λ
 (e.g. the non-classical notion of scale will be defined in Sect.8), which generate its

topology and are in general translation invariant. It is therefore rather important to evaluate the

statistics of intersection of these balls (of finer and finer resolution) with a given (measurable)

subsetG  of the embedding set E . Indeed in of Sect. 2.2.2, we propose to consider a rather

generic way (Eq. 8) to defining a sequence of events Aλ{ }  (belonging to the σ-field (S E( ) )) as

the intersection of a sequence ofBλ{ } of balls of decreasing size 
  
l = L

λ
 (e. g. λ 's constitute a

power law sequence, as in Eq. A1):

A B Gλ λ= ∩ (A25)

and whose centers xc,λ  are identically and independently distributed according to the uniform

distribution (or to the Poisson distribution, if E  is not bounded) with respect to the Lebesgue

measure of the embedding space E . Furthermore, if G is random, its distribution is

independent of the center distribution.  As a rather straightforward example, let us take G x= { },

i.e. a given single point, therefore of zero dimension and d E= dim  (geometrical) codimension:

Pr({ } ( )) Pr({ } ( )) Pr({ } ( )), , ,x B x x B x x B xc c
d

c∩ = ∩ = ∩−
λ λ λ λ λ 1 1 (A26)

where B xλ ( ) is deterministic, contrary to B xcλ λ( ),  Therefore the statistical codimension is equal

to the geometrical codimension. One obtains a similar agreement, when on the contrary G is d-

dimensional and has a zero codimension.  Indeed;

Pr(G B∩ ≈ { } ∝ ∫λ λ) Pr( ),x d xc
d

G

(A27)

Note that similar results hold for a Poisson distribution of ball centers when considering

elementary volumes, i.e. the asymptotic limit λ → ∞. In respect to the heuristic arguments

discussed in Sect. 2.2.5, let us point out that more rigor can be obtained by refining the above

arguments (Eq. A27) and by considering the small-scale power-law of the d-dimensional

Hausdorff measure of G, when G is no longer d- dimensional.   

A.3.3        Covers         with        balls
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The upper sequence Bλ{ }  generated by the sequence Bλ{ }  corresponds to a (partial) random

cover of the embedding space. In turn, by intersection with a given subset G , they generate a

sequence of (partial) random cover Aλ{ } of the set G :

A B G A B Gλ λ= ∩ = ∩;  (A28)

we already discussed in Sect. A.3.3 on the physical and mathematical interest to consider the

upper sequenceAλ{ }  instead of the original one B Gλ ∩{ } . In the present case, we are shifting

our interest from random intersection to random cover. It is important to estimate how dense or

sparse is this cover. This obviously depends on the rate of decrease of the size of balls Bλ .

Indeed, due to Proposition 1, we have in general:

c B c B dλ λ{ }( ) ≤ { } =( ) (A29)

where the right hand side equality corresponds to Eq. A26. On the other hand, due to the

independence of these balls, both Borel Cantelli lemma apply:

λ λn
d

n
B c B n

−∑ < ∞ ⇒ = ⇒ { } >Pr( ) ( )0 0 (A30)

 Pr( ) ( )λ λnn

d
B c B n∑ −

= ∞ ⇒ = ⇒ { } =1 0 (A31)

In case of a power law discretization of the λ 's (Eq.A1), Bλ{ } corresponds to a sparse cover

(Eq.A30). Nevertheless, interesting problems arise when one densifies the process, i.e.

considers the limitλ1 1→ + (see Sect. 5.3).  

Appendix B

B.1) Numerical implementation of Universal Multifractal

This numerical implementation has been discussed with some details by [Wilson et al. 1991,

Pecknold et al. 1995, Tchiguirinskaia et al. 2000]. However, it turn out that is rather

indispensible to have an adequate large wave- number  cut-off in the Fourier space . In this

appendix, we will focus on this question. Indeed, one needs to perform, in the physical space,

a convolution of a Lévy white noise γ x( )(the subgenerator) of Lévy stability index α  by a

power-law Green function:
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G x x d( ) /∝ − α (B1)

both being taken with a given (finte) resolutionλ  . This corresponds in the Fourier space to a

multiplication of a Lévy noise γ̂ k( )(the hat denotes a Fourier transform, and k  is the wave

vector) by the dual power law:

 ˆ ( ) /G k k d∝ − α (B2)

with  
1 1

1
α α

+ =
'

 . The main question is how to define the resolution, since a sharp cut-off in

the Fourier space  -i.e. multiplication by the characteristic function of the sphere

S k kλ λ= ≤ ≤{ }1 - will generate convolutions with Bessel fucntions in the physical space. A

role of thumb is to introduce an exponential cut-off. It turnout that there is a rather convenient

way to do it the physical with the help of "Cauchy wavelet", which is a misnomer since the

physical space function is not localized as a wavelet should be. Let us consider  for simplicity

the 1D case, due to fact that a translation in the physical space corresponds to phase shift in the

Fourier space:

G x G x a G k e G ka a
ika( ) = +( ) ⇒ ( ) = ( )−ˆ ˆ (B3)

it suffices to take  a pure complex number, e.g. a i= ξ , and consider the real part of the inverse

Fourier transform to obtain the desired exponential cut-off in the Fourier space.  

B.2) A Mathematica package for 2D Universal Multifractals simulation:

In order to illustrate how easy it is to implement an algorithm  for generating Universel

Multifractals, we display the few lines contained in a corresponding Mathematica package:

<< Statistics`ContinuousDistributions`

<< Statistics`DescriptiveStatistics`

<< Graphics`Graphics`

Needs["Graphics`Animation`"]

Needs["Graphics`ImplicitPlot`"]

 Below are the statistical distribution definitions.

nuni = UniformDistribution[-Pi/2, Pi/2]
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\!\(UniformDistribution[\(-\(\[Pi]\/2\)\), \[Pi]\/2]\)

this gives a uniform between -Pi/2 and +Pi/2

ndist[lam_] := ExponentialDistribution[lam]

RanE[lam_] := Random[ndist[lam]]

RanE  gives an exponential random deviate lam is mean

Levy[\[Alpha]_] :=

  Module[{\[Phi], \[Phi]0}, {\[Phi] =

        Random[nuni], \[Phi]0 = -(Pi/2) (1 - Abs[1 - \[Alpha]])/\[Alpha]};

    Sign[\[Alpha] -

          1]  Sin[\[Alpha] (\[Phi] - \

\[Phi]0)]  Cos[\[Phi]]^-(1/\[Alpha])(Cos[\[Phi] - \[Alpha]  (\[Phi] - \

\[Phi]0)]/RanE[1])^((1 - \[Alpha])/\[Alpha])]

This gives a unit Levy r.v.

epsmodule[lam_, \[Alpha]_, C1_, H_] :=

  Module[{sin, kalpha, kH, gen, sgen,

      ep}, {sin =

        Table[(1 - I ( {x, y}.{x, y})), {x, (-lam/2 + 1),

            lam/2}, {y, (-lam/2 + 1), lam/2}],

      kalpha = Re[sin^-(1/\[Alpha])], kH = Re[sin^-((2 - H)/2)],

      sgen = ((C1 Log[

                      lam]/(( Abs[\[Alpha] - 1]) lam^2  Mean[

                          Flatten[kalpha^\[Alpha]]])))^(1/\[Alpha])  Table[

            Levy[\[Alpha]], {lam}, {lam}],

      gen = ListConvolve[kalpha, sgen, 1], ep = E^gen};

    ListConvolve[kH, ep, 1]/Mean[Flatten[ep]] ]

epsmodule calculates the  fractionally integrated multifractal, of order H.  It uses microcanonical

normalization.

topotest2 = epsmodule[2^6, 1.9, 0.12, 0.5];
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ListPlot3D[topotest2, PlotRange -> All]

\[SkeletonIndicator]SurfaceGraphics

11  Tables

Flux        Dynamics Thermodynamics

probability space phase space

moment order:q (reciprocal) temperature: β = T −1

singularity order: γ (negative) energy: -E

generator (negative) Hamiltonian

singularity codimension: c(γ ) codimension of entropy:

D − S(E)

scaling  moment function:

K(q) = max
γ

(q.γ − c(γ ))

(negative) Massieu potential:

−Σ(β) = −min
E

(βE − S(E))

dual codimension function:

C(q) = K(q)
q −1

(negative)free

energy

−F(β) = −Σ(β) / β

dimension of integration: D external field: h

ratio of scales: λ correlation length: ξ  

Table 1 Correspondence between fluxdynamics and thermodynamics (setting for notation

simplicity kB = 1  for the Boltzman's constant kB ): Σ(β) being the Massieu potential (e.g.

[Balian, 1987]) F(β)  the Helmhotz free energy.(from [Schertzer and Lovejoy, 2001])
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12  Figures

Cantor set example (1882):

   l0 = 1 N0 = 1

   l1 = 1 3 N1 = 2

  l4 = 1 34 N4 = 24

  nl = 0l nλ λ > 1

  

Nn = N( nl ) ~ n
−Dl nN = n2 λ = 3

↓
1 244 344

D = Log Nn

n Logλ here: D = Log 2
Log 3

↑

D = Log(Nn Nn−1)
Logλ ← Nn

Nn−1

= 2

 Fig. 1 Summary of Cantor set. (From [Schertzer and Lovejoy, 1993]).
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 Fig. 2: Rainfall data from Dedougou for a period of 45 years.  Each line is a different year,

each point a rainy day (From [Hubert and Carbonnel, 1989]).
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A

N 
s

Ds

Independent 
Realizations

Physical 
space

Physical
space

Probability
Space

λ~

Fig. 3  Illustration showing how in random processes the effective dimension of space (D) can

be augmented by considering many independent realizations ( )sN . As sN → ∞ , the entire

(infinite dimensional) probability space is explored. (From [Schertzer and Lovejoy, 1993]).
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L

L
L/2

L/2

L/2

L/2

N(L) -D N(L) -Ds

Ln 4

Ln 2
Ln 3

D = 
Ln 2

= 2

D   = s =1.58

ISOTROPIC
= self similarity

L∝∝ L

____

____

  4 Isotropic Cascade.  The left hand side shows an non-intermittent (“homogeneous”) cascade,

the right hand side shows how intermittency can be modeled by assuming that not all sub-

eddies are “alive”.  This is an implementation of the " mod "β − el .  (From [Schertzer and

Lovejoy, 1993]).
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 Fig. 5 Rain rate at Nîmes (France) for years 1978 to 1988 and averaged over time scale

varying from (top to bottom): 1, 4, 16, 64, 256, 1024 and 4096 days. (From [Ladoy et al.,

1993])
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CASCADE
  LEVELS

 0 --

 1 --

 
 2 --
  .
  .
  .

 n --  

x
y

ε

0
l

l
0

/ λ1

2

n

l 0 / λ

l
0
/ λ

multiplication by 4
independent random
(multiplicative)
increments

multiplication by 16
independent random
(multiplicative)
increments

 Fig. 6: A schematic diagram showing few steps of a discrete multiplicative cascade process,

here the "α - model"  with two pure orders of singularity − > −∞γ  ( )  and +γ  (corresponding to the

two values taken by the independent random increments, − <γλ 1 and + >γλ 1) leading to the

appearance of mixed orders  of singularity +−≤ ≤γ γ γ γ ( ) . (From [Schertzer and Lovejoy, 1989]).
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γ

c(  )

C1

rare
events

extreme
events

γ

C1

 Figure 7: A schematic illustration of a conserved multifractal c( )γ , showing the relations

c C C( )1 1=  and ′ =c C( )1 1, where 1C  is the singularity of the mean.(From [Schertzer and Lovejoy,

1993]).

extreme
events

rare
events

D

D

D+Ds

N
Ds

s

γ
s

c( )γ

γ

≈ λ

Figure 8: Schematic illustration of sampling dimension and how it imposes a maximum order of

singularities sγ . (From [Schertzer and Lovejoy, 1993]).
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c( )

q γ

slope

K(q)

q

K(q)

1

γ

γ

Figure 9—K(q) versus q showing the tangent line ′ =K q( )γ γ with the corresponding chord qγ

(From [Schertzer and Lovejoy, 1993]).

Figure10 The universal limits of drunkards walks: as soon as the distance between lamp posts

  l  tends to zero, the details of the precise rule of choice left/right at each lamppost becomes less

and less relevant to the walk which converges either to the usual Brownian motion ( )α = 2  or to

a Lévy flight” ( , , )0 2< < 〈 〉 = ∞ ≥α α  qx q∆ . (From [Schertzer and Lovejoy, 1993]).
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Fig. 11— Scheme of densification of scales.(From [Schertzer and Lovejoy, 1997]).

1

λ

dressed cascade

bare cascade

hidden cascade

1 1

X=

T

λ

Λ/λ

Λ

Λ

λ

λ

Figure 12—A schematic diagram showing a cascade constructed down to scale ratio Λ , dressed

(averaged) up to ratio λ .  This is equivalent to a bare cascade constructed over ratio λ ,

multiplied by a hidden factor obtained by reducing by factor λ , with the help of the operator

Tλ , a cascade constructed from 1 to Λ / λ . (From [Schertzer, 2001]).
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∞

q1 D

T
r A

εq

A
∫

∫
A
d  xD

d  x
D

ε

ε
q〈(          ) 〉

ε

Figure 13—Twin divergences of trace moments. (From [Schertzer and Lovejoy, 1987a]).

D

1/q1

SOFT 
PHASE

Finite trace moments Divergent trace moments

Finite trace moments 

Divergent trace moments
and moments

HARD 
PHASE

(finite fluxes)

Fig. 14: Hard and soft multifractal phases.  The bold line represents the transition line (qD
−1, D)

for fluxes and trace-moments, whereas its analytical continuation (qD
−1, D) (light line) concerns

only the trace-moments.  One may note that for any given D , we have the twin divergence of

the trace moments rule (see Fig. 13 and Sect.  7.3.2): trace moments are convergent only for

intermediate values of q . (From [Schertzer, 2001]).
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ANISOTROPIC

= COMPRESSION AND
         REDUCTION

L y

L x
/4L x

L y /2 L y /2

/4L x

sD ™™
Ln 4
Ln 6 = 1.29=

Del
Ln 8
Ln 4™™ = 1.5=

N(L) ã L
- DsN(L) ã L- Del

Figure 15—Anisotropic cascade scheme: compare with Fig. 4 (From [Schertzer, 2001]).

13   References

Aitchison, J., and J.A.C. Brown, The lognormal distribution, with special reference to its uses

in economics, 176 pp.,  Cambridge University Press, 1957.

Anselmet, F., Y. Gagne, E. Hopfinger, and R.A. Antonia, High-order velocity structure

functions in turbulent shear flows, Journal of Fluid Mechanics, 140, 63, 1984.

Balian, R., Physique Statistique, Ellipses, Paris, 1987.

Barkley, D., and A. Cumming, Thermodynamic of the quasiperiodic parameter set at the

borderline of chaos: Experimental results, Physical Review Letter, 64, 327, 1990.

Bender, C.M., and S.A. Orszag, Advanced mathematical methods for scientists and engineers,

Mc Graw Hill, New-York, NY, 1978.

Bendjoudi, H., P. Hubert, D. Schertzer, and S. Lovejoy, Interprétation multifractale des

courbes intensité-durée-fréquence des précipitations, Multifractal point of view on



-60-

rainfall intensity-duration-frequency curves,  C. R. Acad. Sci. Paris, II,, 325, 323-

326., 1997.

Benzi, R., G. Paladin, G. Parisi, and A. Vulpiani, On the multifractal nature of fully

developped turbulence, Journal of Physics A, 17, 3521-3531, 1984.

Brax, P., and R. Pechanski, Levy stable law description on intermittent behaviour and quark-

gluon phase transitions, Physics Letter B, 253, 225-230, 1991.

Coniglio, A., and H.E.P. Stanley, Physical Review A, 34, 3325, 1986.

Csordas, A., and P. Szépfalusy, Physical Review A, 39, 4767, 1989.

Derrida, B., and E. Gardner, Journal of Physics C, 19, 5783, 1986.

Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley and

Sons, 1990.

Feller, W., An Introduction to probability theory and its applications, vol. 2, Wiley, New

York, 1971.

Frisch, U., Turbulence: The Legacy of A. N. Kolmogorov, 296 pp., Cambridge University

Press, Cambridge, 1995.

Frisch, U., P.L. Sulem, and M. Nelkin, A simple dynamical model of intermittency in fully

develop turbulence, Journal of Fluid Mechanics, 87, 719-724, 1978.

Grassberger, P., Generalized dimensions of strange attractors, Physical Review Letter, A 97,

227, 1983.

Gupta, V.K., and E. Waymire, A Statistical Analysis of Mesoscale Rainfall as a Random

Cascade, Journal of Applied Meteorology, 32, 251-267, 1993.

Halsey, T.C., M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures

and their singularities: the characterization of strange sets, Physical Review A, 33,

1141-1151, 1986.

Hentschel, H.G.E., and I. Procaccia, The infinite number of generalized dimensions of fractals

and strange attractors, Physica D, 8, 435-444, 1983.

Hubert, P., and J.P. Carbonnel, Dimensions fractales de l'occurence de pluie en climat

Soudano-Sahélien, Hydrologie Continentale, 4, 3-10, 1989.



-61-

Hubert, P., and J.P. Carbonnel, Fractal characterization of intertropical precipitations

variability and anysotropy, in Non-linear variability in geophysics: Scaling and

Fractals, edited by D. Schertzer, and  S. Lovejoy, pp. 209-213, Kluwer, 1991.

Hubert, P., F. Friggit, and J.P. Carbonnel, Multifractal structure of rainfall occurrence in west

Africa, edited by Z.W. Kundzewicz, pp. 109-113., Cambridge University Press,

Cambridge, 1995.

Hubert, P., Y. Tessier, P. Ladoy, S. Lovejoy, D. Schertzer, J.P. Carbonnel, S. Violette, I.

Desurosne, and F. Schmitt, Multifractals and extreme rainfall events, Geophysical

Research Letter, 20 (10), 931-934, 1993.

Kahane, J.P., Sur le Chaos Multiplicatif, Annales des Siences mathématique du Québec, 9,

435, 1985.

Kapteyn, J.C., Skew frequency curves in biology and statistics, Astronomical Laboratory,

Noordhoff., Groningen, 1903.

Kolmogorov, A.N., A refinement of previous hypotheses concerning the local structure of

turbulence in viscous incompressible fluid at high Reynolds number, Journal of Fluid

Mechanics, 83, 349, 1962.

Ladoy, P., F. Schmitt, D. Schertzer, and S. Lovejoy, Variabilité temporelle des observations

pluviométriques à Nimes, Comptes Rendues Acad. des Sciences, 317, II,  775-782,

1993.

Lavallée, D., S. Lovejoy, and D. Schertzer, On the determination of the codimension function,

in Non-linear variability in geophysics: Scaling and Fractals, edited by D. Schertzer,

and  S. Lovejoy, pp. 99-110, Kluwer, 1991.

Lopez, R.E., The log-normal distribution and cumulus cloud populations, Mon. Wea. Rev.,

105,  865-872, 1979.

Lovejoy, S., D. Schertzer, and P. Ladoy, Fractal characterisation of inhomogeneous measuring

networks, Nature, 319, 43-44, 1986.

Mandelbrot, B.,  Fractal geometry: what is it and what does it do?, in Fractals in the Natural

Sciences, edited by D.J.T. M. Fleischman, R. C. Ball, pp. 3-16, Princeton University

press., Princeton, 1989.



-62-

Mandelbrot, B., Random multifractals: negative dimensions and the resulting limitations of the

thermodynamic formalism, in Turbulence and Stochastic Processes, edited by

J.C.R.H.e. al., The Royal Society, London, 1991.

Mandelbrot, B.B., Intermittent turbulence in self-similar cascades: divergence of high moments

and dimension of the carrier, Journal of Fluid Mechanics, 62, 331-350, 1974.

Mandelbrot, B.B., Fractals, form, chance and dimension, Freeman, San Francisco, 1977.

Mandelbrot, B.B., The Fractal Geometry of Nature, Freeman, San Francisco, 1983.

Marsan, D., D. Schertzer, and S. Lovejoy, Causal Space-Time Multifractal modelling of rain,

J. Geophy. Res., D 31 (26), 333-346, 1996.

McAlsister, D., The law of the geometric mean, Proc. Roy. Soc., 29, 367, 1879.

Meneveau, C., and K.R. Sreenivasan, Simple multifractal cascade model for fully develop

turbulence, Physical Review Letter, 59 (13), 1424-1427, 1987.

Mesard, M., G. Parisi, and M.A. Virascoro, , World Scientific,, Singapore, 1987.

Nagamiya, T., K. Yoshida, and R. Kubo, Philos. Mag., 4 (B2), 1955.

Novikov, E.A., and R. Stewart, Intermittency of turbulence and spectrum of fluctuations in

energy-disspation, Izv. Akad. Nauk. SSSR. Ser. Geofiz., 3, 408-412, 1964.

Obukhov, A., Some specific features of atmospheric turbulence, Journal of Geophysical

Research, 67, 3011, 1962.

Orszag, S.A., Indeterminacy of the moment problem for intermittent turbulence, Phys. Fluids,

13, 2211-2212, 1970.

Parisi, G., and U. Frisch, A multifractal model of intermittency, in Turbulence and

predictability in geophysical fluid dynamics and climate dynamics, edited by M. Ghil,

R. Benzi, and  G. Parisi, pp. 84-88, North Holland, 1985.

Pecknold, S. , S. Lovejoy, D. Schertzer, 1995: the Morphology and Texture of anisotropic

multifractals using generalized scale invariance. Stochastic Models in Geosystems,

IMA Mathematical Series, , S. S Molchanov and W.A. Woyczynski, Ed..,Springer-

Verlag, 269-311.
Richardson, L.F., Weather prediction by numerical process, Cambridge University Press

republished by Dover, 1965, 1922.



-63-

Salvadori, G., Multifracttali Stocastici: Theoria e Applicazioni", Ph. D. thesis, Universita di

Milano, Milano, Italy, 1993.

Salvadori, G., S. Ratti, G. Belli, S. Lovejoy, and D. Schertzer, Multifractal and Fourier

analysis of Seveso pollution, J. of Toxicological and Environ. Chem., 43, 63-76,

1994.

Salvadori, G., D. Schertzer, and S. Lovejoy, Multifractal objective analysis and interpolation,

Stoch. Environ. Resear. and Risk Analysis, (in press), 2001.

Schertzer, D., S. Lovejoy, Multifractal Generation of Self-Organized Criticality, in Fractals In

the Natural and Applied Sciences, edited by M.M. Novak, pp. 325-339, Elsevier,

North-Holland, 1994.

Schertzer, D., S. Lovejoy, Heavy Tails, Multifractal Phase Transition, Self-Organized

Criticality in Turbulence and other Dissipative Nonlinear Systems, Phys. Reports, (in

press), 2001.

Schertzer, D., and S. Lovejoy, Elliptical turbulence in the atmosphere, in Fourth symposium

on turbulent shear flows, Karlshule, West Germany, 1983.

Schertzer, D., and S. Lovejoy, On the Dimension of Atmospheric motions, in Turbulence and

Chaotic phenomena in Fluids, IUTAM, edited by T. Tatsumi, pp. 505-512, Elsevier

Science Publishers B. V., 1984.

Schertzer, D., and S. Lovejoy, The dimension and intermittency of atmospheric dynamics, in

Turbulent Shear Flow 4, edited by B. Launder, pp. 7-33, Springer-Verlag, 1985a.

Schertzer, D., and S. Lovejoy, Generalised scale invariance in turbulent phenomena, Physico-

Chemical Hydrodynamics Journal, 6, 623-635, 1985b.

Schertzer, D., and S. Lovejoy, Physical modeling and Analysis of Rain and Clouds by

Anysotropic Scaling of Multiplicative Processes, Journal of Geophysical Research, D

8 (8), 9693-9714, 1987a.

Schertzer, D., and S. Lovejoy, Singularités anysotropes, divergence des moments en

turbulence, Annales de la Sosiété mathématique du Québec, 11 (1), 139-181, 1987b.



-64-

Schertzer, D., and S. Lovejoy, Nonlinear variability in geophysics: multifractal analysis and

simulation, in Fractals: Physical Origin and Consequences, edited by L. Pietronero,

pp. 49, Plenum, New-York, 1989.

Schertzer, D., and S. Lovejoy, Non-Linear Variability in Geophysics, Scaling and Fractals,

Kluwer, Dordrecht-Boston, 1991.

Schertzer, D., and S. Lovejoy, Hard and Soft Multifractal processes, Physica A, 185, 187-

194, 1992.

Schertzer, D., and S. Lovejoy, Lecture Notes: Nonlinear Variability in Geophysics 3: Scaling

and Mulitfractal Processes in Geophysics, 291 pp., Institut d'Etudes  Scientifique de

Cargèse, Cargèse, France, 1993.

Schertzer, D., and S. Lovejoy, From scalar cascades to Lie cascades: joint multifractal analysis

of rain and cloud processes, in Space/time Variability and Interdependance for various

hydrological processes, edited by R.A. Feddes, pp. 153-173, Cambridge University

Press, New-York, 1995.

Schertzer, D., and S. Lovejoy, Universal Multifractals do Exist!, J. Appl. Meteor., 36, 1296-

1303, 1997.

Schertzer, D., S. Lovejoy, and D. Lavallée, Generic Multifractal phase transitions and self-

organized criticality, in Cellular Automata: prospects in astronomy and astrophysics,

edited by J.M. Perdang, and  A. Lejeune, pp. 216-227, World Scientific, 1993.

Schertzer, D., S. Lovejoy, F. Schmitt, Y. Chigirinskaya, and D. Marsan, Multifractal cascade

dynamics and turbulent intermittency, Fractals, 5 (3), 427-471, 1997.

Schertzer, D. , M. Larchevêque, J. Duan, and S. Lovejoy, Generalized Stable Multivariate

Distribution and Anisotropic Dilations,     Instit.         Math.        and        its         Appl.    preprint series

1666, 11 pp, 1999

Schuster, H.G., Deterministic Chaos, VCH, New York, 1988.

Szépfalusy, P., T. Tél, A. Csordas, and Z. Kovas, Phase transitions associated with dynamical

properties of chaotic systems, Physical Review A, 36, 3525, 1987.



-65-

Tchiguirinskaia, I, Lu, S., Molz, . F.J, Williams,  T.M. Lavallée D., 2000: Mulitfractal versus

monofractal analysis of wetland topography, Stocastich Environmental Research and

Risk Assessment, Springer-Verlag.

Tel, T., Fractals and multifractals, Zeit. Naturforsch, 43a, 1154-1174, 1988.

Wilson, J. , Lovejoy, S., Schertzer, D., 1991: Physically based cloud modeling by

multiplicative cascade processes.  Nonlinear Variability in Geophysics: Scaling and

Fractals, D. Schertzer and S. Lovejoy Eds, Kluver Academic Press,Dordrecht-Boston,

185-208.

Yaglom, A.M., The influence on the fluctuation in energy dissipation on the shape of turbulent

characteristics in the inertial interval, Sov. Phys. Dokl., 2, 26-30, 1966.


