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ABSTRACT 

Schertzer, D. and Lovejoy, S., 1988. Multifractal simulations and analysis of clouds by multipli- 
cative processes. Atmos. Res., 21: 337-361. 

Clouds exhibit fractal structures over wide ranges of scale. However, clouds are not geometrical 
objects: they are produced by highly intermittent fields (e.g. liquid water content). On the other 
hand, they are rarely isotropic: "texture", stratification, as well as variable (scale-dependent) 
orientation of structures are common. To deal with such fractal features, we must generalise scale 
invariance notions beyond the (usual) geometrical self-similar (or even self-affine) notions. We 
outline the necessary formalism (generalised scale invariance) and show how it can be used to 
deal with the strongly intermittent fields which result from multiplicative (cascade-type) pro- 
cesses concentrating matter or energy into smaller and smaller scales leading to the appearance of 
multiple singularities, multiple dimensions and divergences of statistics for these fields. 

We illustrate these ideas with radar rain data showing first how to directly estimate the elliptical 
dimension characterising the stratification, and second, how to determine universal scale-inde- 
pendent (co-)dimension functions that characterise the distribution of the intense rain regions. 

RESUME 

Les nuages forment des structures fractales sur une tr~s large gamme d'dchelles. Ils ne sont pas 
pour autant des objets purement gdomdtriques: ils sont produits par des champs tr~s intermittents 
(telle que la densit~ d'eau liquide). D'autre part, ils sont rarement isotropes: les ph~nom~nes de 
"texture", de stratification et d' orientations diffdrentielles sont des traits communs. Pour saisir 
de tels aspects fractals, nous sommes conduits ~ gdndraliser les notions d'invariance d'~chelles 
bien au del~ du cadre habituel des notions auto-similaires et mfime auto-affines. Nous rfisumons 
le formalisme ndcessaire (Invariance d' Echelle Gdndralisde ) et montrons comment il peut fitre 
utilisd pour traiter des champs fortement intermittents produits par des processus multiplicatifs 
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(tels que les cascades ) qui concentren~ les flux de mati~re et d' ~nergie dans les ~chelles de plus en 
plus petites, cr~ant des singularit~s multiples, des dimensions multiples, et des divergences 
statistiques. 

Nous illustrons ces idles ~ l' aide de donn~es radar: nous montrons d 'une  part comment estimer 
directement la dimension elliptique caract~risant la stratification de ta pluie et, d' autre part, com- 
ment d~terminer des fonctions co-dimensions universelles caract~risant la distribution des r~gions 
de pluie intense. 

1. INTRODUCTION 

Scaling notions are associated with power-law spectra, lack of characteristic 
scales over wide ranges, and the appearance of fractal dimensions and struc- 
tures. More precisely, a field is said to be scaling (or scale-invariant) over a 
range if the small- and large-scale structures are related by scale changing 
transformations involving only the scale ratio. It is obviously very attractive 
to deal within such a framework with clouds, since details of a cloud look rather 
the "same" as the whole cloud. 

The above characteristics are common in many areas of geophysics, and, it' 
considered under the general rubric of non-linear variability, constitute a cen- 
tral, and indeed unifying aspect of geophysical systems. In recent years, there 
has been a series of new developments in our understanding of scaling, includ- 
ing several that were specifically stimulated by geophysical applications (for 
discussions see: Lovejoy and Schertzer, 1987a; Schertzer and Lovejoy, 1987a). 
These new ideas involve both the possibility of very general anisotropic types 
of scaling ( necessary, for example to deal with rotation, stratification or "tex- 
ture" ), as well as "multiple scaling" associated with highly intermittent pro- 
cesses. Scaling is thus no longer confined to the notion of self-similarity (the 
small scale is a reduced copy of the large), nor to the geometric properties of 
sets of points: multiple scaling involves fields in which the weak and intense 
regions have different scaling behaviour. 

For rain and cloud fields, attractive Stochastic alternatives to deterministic 
modelling - -  the latter relying extensively on ad-hoc "sub-grid scale parame- 
terisations" and having only a very limited range of explicit scales - -  have been 
developed (for relevant surveys see: Waymire and Gupta, 1981; Lovejoy and 
Schertzer, 1986a) exploiting some of their scaling properties in a fairly simple 
manner (e.g., Lovejoy and Schertzer, 1985; Waymire, 1985). By simulating 
rain by the scaling sum of a large number of random increments or "pulses" of 
different sizes, one is able to produce cloud and rain field simulations, that 
include texture, clustering, bands, as well as intermittency. Unfortunately, the 
linear structure of such processes is in sharp contrast with the actual non- 
linear dynamics. 

Indeed, as discussed in the following section and in distinction to these ad- 
ditive processes, the phenomenological cascade models studied in turbulence 
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(e.g., Novikov and Stewart, 1964) are multiplicative: the large structures mul- 
tiplicatively modulate the various fluxes (e.g. of energy) at smaller scales. Ad- 
ditive and multiplicative scaling processes are known to be fundamentally 
different (Schertzer and Lovejoy, 1985a). In the former case called "simple 
scaling", "scaling of the increments" or "scaling in probability distributions" 
(e.g., Lovejoy and Mandelbrot, 1985), a single scaling exponent suffices to 
describe the behaviour of the statistical moments at different scales. In con- 
trast, the latter case called "multiple scaling" requires multiple exponents (e.g., 
the mean and variance etc. scale differently) and is therefore more general. If 
we define structures in the field by those regions that exceed a fixed threshold, 
then additive processes have a single fractal dimension (independent of the 
threshold), while multiplicative processes have multiple fractal dimensions 
that decrease as the threshold is increased (Schertzer and Lovejoy, 1983a, 1984, 
1985a, 1986, 1987a-c; Frisch and Parisi, 1985; Halsey et al., 1986). In simulat- 
ing rain, a basic choice must therefore be made between additive and mono- 
dimensional, or multiplicative and multidimensional (also called "multi- 
fractal") processes. 

In this paper, we outline a number of relevant theoretical developments and 
give examples of the applications. Section 2 gives a fairly non-mathematical 
overview of scaling notions, and Section 3 gives insights in the way to generate 
multifractal clouds by multiplicative processes. Section 4 outlines the moti- 
vations for generalising scale invariance to anisotropic situations. Sections 5 
and 6 give a more precise mathematical formulation, including relations to 
intermittency, singularities and divergence of high order statistical moments. 
More detailed developments of the formalism can be found in Schertzer and 
Lovejoy (1987b,c), and other geophysical applications will be found in the ref- 
erences Schertzer and Lovejoy (1987a). Section 7 discusses some applications 
to radar rain data and includes two new data analysis techniques: functional 
box-counting and elliptical dimensional sampling. 

2. SIMPLE AND MULTIPLE SCALING 

The simplest (geometrical) illustration of scaling and scale invariance is to 
consider the (apparently "metric", in fact "measurable") notion of dimension 
of a set of points. The intuitive (and essentially correct) definition is that the 
number of points n (L) of the set of scale L is given by: 
N ( L ) ~ L  D (1) 

where D is the dimension (e.g. for homogeneously distributed points on a line 
n ( L ) oc L, on a plane n ( L ) ~: L 2, but for in-situ meteorological measuring sta- 
tions n (L) oc L 1.75; Lovejoy et al., 1986a,b ). More generally, the "volume" ( ac- 
tually the D-dimensional Hausdorff measure of the set) has the same simple 
scaling (power law) behaviour (see Section 4), and the dimension is important 
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precisely because it is the scale invariant ( independent of L) notion which 
prescribes how dense are the points of the set (more generally how frequent is 
a phenomenon etc. ). 

In geophysical fluid dynamics, the existence of scaling regimes can often be 
argued directly from the dynamical equations themselves: the only scales as- 
sociated with the Navier-Stokes equations are a largest scale of energy injec- 
tion, and a small viscous scale where most of the dissipation occurs. In the 
atmosphere these scales (along the horizontal) are roughly of the order of 
thousands of kilometres and several ram, respectively, allowing the possibility 
of a scaling regime spanning over nine orders of magnitude in scale. Further- 
more, the notion of scaling regimes in the atmosphere can be traced back to 
Richardson (1922, 1926) who suggested a model of atmospheric dynamics in- 
volving a self-similar cascade of energy from large to small scales. Since then, 
scaling ideas have been central to studies of turbulence, a fact that  is most 
notably expressed by the ubiquity of the scaling k-'~/:~ Kolmogorov spectrum 
of velocity fluctuations in geophysical flows. 

The turbulent velocity field (v) affords a convenient example with which to 
develop the basic scaling ideas. The first scaling of interest might best be called 
"simple scaling" since it occurs when only one parameter  is sufficient to specify 
the scaling of all the statistical properties. In this case, it can be expressed as 
( assuming statistical isotropy and translation invariance ) : 

Av (1/).) = d).-ttAV (l) (2) 

where Av(1)= Fv(x+l) -v(x) '~ ,  ). is a scale ratio, l ( =  [/]) a separation dis- 
tance, H the ( single ) scaling parameter.  The equality = a is understood in the 
sense of probability distributions, hence the scaling of the various high order 
statistical moments  follows: 

<2v(i/) . )h> = ) - ¢ ( h ) < A v ( / ) h  > (3) 

with ~ ( h ) =  hH, and " < - > "  means "ensemble" average. Since the energy 
spectrum is the Fourier t ransform of the covariance, we have a spectrum k -z  
with fl = 2H + 1. If one assumes a scale invariant flux of energy ( i.e., of a nearly 
constant  density e) to small scales (the non-linear terms in the Navier-Stokes 
equations conserve this flux, while breaking up large eddies into smaller and 
smaller sub-eddies), then dimensional analysis gives Av (l)oc ~ 1/311/3, hence, 
H =  1/3, fl = 5/3. Note that  such a behaviour for the velocity field already leads 
to singular velocity shears ( since Ov/ax ,~ Av/1 ~ l - 2/3 which diverges as l--. 0 ). 
The problem of such singular behaviour was first discussed by Leray (1934) 
and Von Neumann (1949). As we shall see below, it is indeed central to our 
current  understanding of scaling fields, but with a whole hierarchy of 
singularities. 

Kolmogorov (1962) and Obhukov (1962) pointed out that  scaling generally 
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involves an infinite number of parameters  (~(h)  is not  generally linear in h).  
This is a richer and more interesting behaviour called multiple scaling. The 
simplest way of expressing this is to consider a scale-invariant quanti ty such 
as the energy flux density, whose ensemble spatial average is fixed (indepen- 
dent  of scale), but is nonetheless ( in a given realisation of the cascade process) 
highly intermittent.  This extreme variability or intermit tency can be built up 
step by step in the cascade process in which large eddies modulate multiplica- 
tively the flux to smaller and smaller scales (as discussed in Section 6; see 
schematic diagrams in Figs. 1 and 2). Denote by ~n the density of the flux 
obtained after n steps of the cascade process of steps ratio ;t ( the scale of ho- 
mogeneity is reduced to I, = lo/~ n, 2 > 1, in Fig. 2: ;L = 4 ). As the process is going 
on, e, becomes more and more singular (i.e., appearance of sharp peaks cor- 
responding to growing singularities) and respects multiple scaling: 

<e  h>  =~(h-1)C(h)<~o h> (4) 

C(h) is a convex function which for each moment  h, can be interpreted 
( Schertzer and Lovejoy, 1987b, c) as the co-dimension associated with the hth 
moment  (the co-dimension is simply the difference between the fractal dimen- 
sion of a set and the space in which it is embedded).  Indeed, as soon as we 
"integrate" the limit e (which is no more a function) of the ~, over a set A (of 
dimension D (A) ) in order to obtain the f lux/7(A ) of energy on the set A, we 
obtain a flux with hth divergent moments  as soon as D(A)  is smaller than 
C(h). This singular statistics are due to the fact that  in such multiplicative 
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Fig. 1.a. A schematic  diagram showing one step of an  isotropic homogeneous cascade; b. same as 
a, but  inhomogeneous case; c. same as a for anisotropic case (see Section 3 ); d. same as c but  for 
inhomogeneous case. 
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Fig. 2. We show a function which begins by being strictly homogeneous (constant) over the entire 
interval shown in a, whose scale of homogeneity is then systematically reduced by a successive 
factor of 4 in b,c,d,e. This is an example of a cascade "s-model" (see Schertzer and Lovejoy, 
1985b), which is constructed by multiplying randomly chosen (positive) weights (with only two 
values: one large and one small) over smaller and smaller scales in such a way that on average, the 
area under the curve (representing the energy flux to smaller scales) is conserved. Because of this 
constraint, the increasingly high peaks must become more and more sparse. In the limit of the 
scale of homogeneity going to zero, the function becomes dominated by singularities distributed 
over sparse fractal sets. 

cascades, s ingulari t ies  of all orders  (y)  are bui l t  up progress ively  as the  cascade 
proceeds  to smal ler  scales, hence  a s / - ~ 0 ,  q~l-" with singulari t ies  of  each 
order  d i s t r ibu ted  themse lves  over  a ( f rac ta l )  set of  co-d imens ions  c (),) (see 
Sect ion  6 for more  deta i l s ) ,  Hence ,  a scaling field is perce ived  as a h ie ra rchy  
of embedded  fractals  ( leading to the  express ion  of  mul t i f racta l ;  Fr isch and  
Parisi,  1985).  Bo th  families of  co-d imens ions  ( C (h )  and  c (y ) )  are re la ted  
th rough  a simple ( Legendre  ) t r ans fo rma t ion .  

These  surpr is ing ma thema t i ca l  p roper t i es  of  mul t ip l ica t ive  processes  are 
themselves  associated wi th  a n u m b e r  of  in te res t ing  p h e n o m e n a  (no tab ly  the  
divergence of  h igh-order  s ta t is t ical  moment s ,  expla in ing  the  exis tence  of  sta- 
t ist ical  "out l ie rs"  in the  da t a ) ,  and  involve fields t h a t  are ex t r eme ly  in te rmi t -  
t en t  with s ta t is t ical  p roper t ies  depending  no t  on ly  on the  scale, bu t  also on the  
d imens ion  (e.g. line, p lane  or f ractal  se t )  over  which they  are averaged,  Th i s  
leads to in te res t ing  appl ica t ions  to the  p rob lem of  m e a s u r e m e n t  and  calibra- 
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tion of geophysical data ( Lovejoy et al., 1986a,b; Montariol and Giraud, 1986; 
Lovejoy and Schertzer, 1987b; Marquet and Piriou, 1987). 

3. SCALE INVARIANCE AS A PHYSICAL INVARIANCE PRINCIPLE FOR CLOUDS 
AND RAIN MODELLING 

We have pointed out the example of scaling for geophysical fluid dynamics 
where scaling ideas have been developed over a considerable period of time. 
Clouds or rain fields are theoretically solutions of complex sets of coupled non- 
linear partial differential equations including the effect of the dynamical in- 
teractions of water vapour and liquid, latent heat release, radiation, wind fields, 
etc. over a range of over roughly nine orders of magnitude in scale (along the 
horizontal), and are therefore way beyond the scope of direct deterministic 
numerical modelling. Even when the dynamical equations are unknown, we 
can still argue that, at least over certain ranges, these fields respect certain 
(statistical) symmetries, here scale-changing operations. It must be realised 
that the requisite scale changes T~ can be far more general than simple (iso- 
tropic) reductions. In fact, it turns out that practically the only restriction on 
T~ is that it has group properties, viz.: T~=2 ° where G is the generator of the 
group (more generally the semi-group) of scale-changing operations. In our 
"generalised scale invariance" ( GSI, see Fig. 3 and Section 5 below), G can be 
either a matrix ("linear GSI", see Fig. 4a, self-similarity means G= identity), 
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-- Hence Tx=} 'G O is the Generator 
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where de[ = Troce 5 

Fig. 3. Schematic illustration of the scaling ( semi- ) group T~ = 2 -  e. 
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or a more general non- l inear transformat ion ( see Fig. 4b ). In fact, it turns out 
that  scale invariance al lows for such a t remendous  variety of  behaviour (i.e., 
it is only a very weak constraint  on the dynamics  ), that  we are just  beginning 

/// 

\ 

Fig. 4.a. Self-affine balls (with linearly increasing scales ). b. Non-linear examples of balls. 
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exploring. Detailed data analysis and ( multi- ) fractal models doubtless are re- 
quired to gain more insight into the relevant dynamics. 

As a first step in cloud modelling, it is natural to consider only the dynamical 
advection processes. The corresponding passive scalar advection has the ad- 
vantage of being based upon well defined (and studied) equations and phe- 
nomenology. It is already sufficiently complex in order to require us to come 
to grips with some of the basic aspects of the non-linear variability of clouds. 
Indeed, it is worth noting that  in numerical weather prediction models, passive 
advection of water substance corresponds to the only dynamical process di- 
rectly taken into account to produce rain; other processes are highly "param- 
eterised". We argue that adding other non-linear effects will not fundamentally 
change the cascade-type behaviour of the system and the basic modelling tech- 
niques will still apply. 

In the passive advection of water (concentration p) by a velocity field (v), 
in the limit of vanishing viscosity and diffusivity, the non-linear terms in the 
dynamical equations conserve the flux of energy and of scalar variance (of 
respective densities E and Z ) while effecting a transfer to smaller scales ( hence 
the cascade). If the injection of these quantities at large scale is constant (or 
at least a stationary random process), the simplest assumption (going back to 
Kolmogorov, 1941), is: 

E= - < Ov2/Ot> =cons tan t  
Z = - < OP2/Or> = constant (5) 

In this framework, ~ and Z are considered spatial averages over the whole flow 
(and are denoted by bold script to distinguish them from the local quantities 
used later) ignoring local variability (which actually turns out to be extreme), 
and consider that  a statistically stationary, relatively homogeneous field of 
these quantities exists. Then, by dimensional arguments (see Schertzer and 
Lovejoy, 1987b for a derivation based on the scaling properties of the corre- 
sponding equations), we are led to the celebrated scaling laws of Kolmogorov 
(1941), Obukhov (1949) and Corrsin (1951): 
Ev(K) ~ e ~ / 3 K  -5/3 
Ep(K) ~ ~12/3K -5/3 (6) 

where ~=Z3/2~  -1/2 and E v ( k ) ,  E p ( k )  are the power spectra for the velocity 
and passive scalar fields, respectively, k is a wavenumber ( k ~ l f l ) .  ~ is the flux 
resulting from the non-linear interactions of the velocity and water. Eqs. 6 are 
satisfied when the velocity and concentration fields are resulting from frac- 
tional integrations (i.e., in the Fourier space by multiplying by a non-integer 
power of the wave-number) over non-intermittent  densities of fluxes (e.g., 
gaussian white-noise). In Schertzer and Lovejoy (1987b), it is proposed to 
keep on the same line, but with extremely intermittent densities of fluxes pro- 



346 

duced by multiplicative processes. Before outlining this proposal, we feel the 
need to give some insights on scaling anisotropy. 

4. ANISOTROPIC SCALE INVARIANCE 

A self-similar model of atmospheric fields could not hope to cover more than 
a very limited range of scales. This is particularly obvious when one considers 
clouds: extrapolating, by self-similarity, a roughly cubic cloud 1 km in size, to 
a cloud a thousand kilometres long one would also obtain a cloud a thousand 
kilometres high! More fundamentally, self-similarity is precluded by the strong 
atmospheric stratification. The classical schema of atmospheric motions (e.g., 
Monin, 1972 ), attempts to overcome this difficulty by considering that atmo- 
spheric turbulence is three-dimensional at small scales but (a very different) 
two-dimensional turbulence at large enough scales. Due to numerous advances 
in remote and in-situ measurements (see e.g., Lilly, 1983, or Schertzer and 
Lovejoy, 1985b for reviews) it is now clear that single scaling regimes exist 
over most of the range of meteorologically significant scales in both the hori- 
zontal and vertical directions, although with very different scaling exponents 
( e.g. horizontal wind has spectral exponents flh ~ 5/3, flv ~ 11/5 in the horizon- 
tal and vertical directions, respectively). 

To avoid this untenable 2D/3D dichotomy, we have proposed an alternative 
scaling model of atmospheric dynamics ( Schertzer and Lovejoy, 1983a,b, 1984, 
1985a-c, 1986a,b, 1987a-c; see also Lovejoy and Schertzer, 1986 for a non- 
mathematical review). In this model, the anisotropy introduced by gravity via 
the buoyancy force results in a (fractional) differential stratification and a 
consequent modification of the effective dimension of space, involving a new 
elliptical dimension (del), with resulting anisotropic shears. In isotropy, de! : 3, 
while in completely flat (stratified) flows, del= 2. Empirical and theoretical 
evidence were given indicating del is rather the intermediate value: 

del = 2 + (fib- 1 ) / (f lv-  1 ) ~ 23/9 = 2.5555 

In order to take into account this and other effects such as the differential 
rotation introduced by the Coriolis force, a general formalism of scaling is re- 
quired. The fundamental problem is that of finding a family of "balls" repre- 
senting the statistical properties of the eddies at different scales, via 
(mathematical) random measures, such as the flux of energy through struc- 
tures of a given scale. The first step is to generalize the notion of Hausdorff 
measures and the related (Hausdorff, fractal) dimensions in an anisotropic 
framework. We recall that such measures are rather straightforward exten- 
sions to non-integer D of the Lebesgue measure (defined for integer d), thus 

the n o t a t i o n  [dDx for the D-dimensional Hausdorff measure of w e  u s e  a 
JA 
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(compact) set A, and we recall that  contracting A with a scale ratio 2 reduces 
its measure by the factor 2 °. The Hausdorff dimension D (A) of A is still de- 
fined by a divergence rule ( "the length of a surface is infinite, the volume of it 
zero...", see Fig. 5 ) : 

~AdD x=c~, for D<D(A ); IAdDx=O for D> D(A ) (7) 

It turns out that  the divergence of statistical moments  derived from a slightly 
more complex (twin) divergence rule (see Section 6). 

5. GENERALISED SCALE INVARIANCE (GSI) 

Close examination of the phenomenology of turbulent cascades reveals the 
basic properties associated with the notion of scale: the (intermittent)  con- 
centration of the flux on sparser and sparser regions as the scale of homoge- 
neity goes to zero. Thus scale changing is related to measurable properties of 
the flow, i.e. how the measure of the energy flux becomes more and more in- 
termit tent  (less and less homogeneous).  We are led to the following abstract 
definition in terms of a (semi-) group (the "scaling group") of operators T~ 
which reduce the scale by ratio ~ ( see Fig. 3 for a schematic illustration): 

T~ = 2 - a = e x p  ( - G  log2) (8) 

If G is not the identity, T~ is no longer a mere contraction; and the eddies 
are no longer self-similar (when G is linear, and has no off-diagonal elements, 
then T~ is self-affine). The consequence of this kind of transformation is that  
the energy flux is no longer evenly distributed on subsets with equal topological 
or (isotropic) Hausdorff dimensions. For example, as soon as we anisotropi- 
cally distribute the activity of turbulence (such as in Fig. lc, d), a vertical line 
is no longer equivalent to a horizontal one, etc. 

In isotropy, scaling is based on three essential ingredients: (1) a unit sphere; 
(2) the identity 1 as the generator of the self-similar scale changing transfor- 
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marion, ratio 2 (T:  =~.-1);  (3) the resulting scale notion 0 (which is simply 
the radius of the sphere S:~)O(S~) =,~. 10(St) =).-- ~; S:.=~-1S1. 

These three ingredients result in the family of self-similar spheres S~ ( the 
"balls"),  whose radii define the scale notion, and are obtained by the scale- 
changing operation ( T: ) from one to another  ( S:, into S:x,). 

Anisotropic scaling is based on the same ingredients, but  with Tx =)~ - a with 
G #  1, and OoI~T:~S1) =)~ -IO~,I(S~ ). The subscript "el" is used in the following 
to refer to the fact tha t  in anisotropy, the scale-defining spheres are typically 
flat tened ellipsoids ( see Fig. 4a ). In fhct much more general shapes are possible 
as soon as we use non-linear generators: the balls need not  even be convex 
( Fig. 4b). Using such anisotropic scale-changing operators instead of isotropic 

Fig. 6. A cross-sec t ion  of  an anisotropic ,  f rac ta l -sums-of-pulses  process  wi th  de~ = 2.555. 
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ones, it is straightforward to transform self-similar stochastic processes into 
their anisotropic counterparts. Figure 6 gives an example of vertical cloud cross- 
section obtained by modifying the fractal sums of pulses processes (Lovejoy 
and Mandelbrot, 1985) so as to simulate a cross-section of a 2.555... dimen- 
sional cloud (see Lovejoy and Schertzer, 1985). More elaborate processes (such 
as those discussed in the following sections) can be rendered anisotropic by 
using similar techniques. The remaining of the present section (which can be 
skipped over in a first lecture) gives few indications on the (rather simple) 
technical ways to solve such a problem. 

Indeed, we are thus led to study the properties that a given generator G 
should satisfy in order that starting from the isotropic triplet {SI,I,O}, with 

0= ( |  ddx)1/d, to the anisotropic {$1, G, ~el} the resulting balls E;. = T;.(S1) 
d A  

correspond to a defined notion of scale (via ~el)" We are particularly interested 
in the fact that the E~ should be decreasing with 2 and in a simple definition 
of ¢e~. It turns out that such conditions (Schertzer and Lovejoy, 1985a, 1987b,c) 
are satisfied as soon as every (generalised) eigenvalue of G has a non-negative 
real part, i.e.: 

infRe a(G) >0 (9) 
a (G) = {~eC[G-/I 1 non invertible in CXIR d } 
a(G) being the (generalised) spectrum of G (we recall that in the above def- 
inition the usual eigenvalues are included, with the coefficients of the Jordan 
blocks decomposition) and ¢el is simply defined as: 
0¢1 ae' (Ex) = ¢a (Ex) = 2-de, Ca ( $1 ) =) . -  ae'O¢lae' ( S1 ) (10) 

with det = Tr (G) ( the trace of G) being the "effective" dimension of the space 
(the anisotropic counterpart of d). Anisotropic Hausdorff measures of dimen- 
sion Del are simply defined (generalising straightforwardly the definition of 
the usual isotropic Hausdorff measures) as: 

f dDelx=lim inf ~i  (~elDel(Ei) 
g---,O UEi ~ A 

eel (Ei) <~ 
(11) 

One may note that since (eq. 10) Oel Dei ( Tx S1 ) = O D ( T~ S1 ), with D = ( dldel ) Deb f ,  
| dDelx is similar (due to eq. l l )  to | d °x, notwithstanding the difference 
JA ,I A 

that the former case involves a covering by ellipsoids (El) rather than spheres 
(Si) as in the latter. Nevertheless, if A is not "strange" (pathological), a near 
optimum covering (i.e. nearly equal to the infimum above ) of ellipsoids can be 
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associated with a near optimum covering of spheres ( each of the ellipsoids is 
itself covered nearly optimally by smaller spheres). We can therefore expect 

the divergence rule for | dD° ' x  and [ dDx to be the same. We have thus the 

following rule: 

Del(A ) /de~ = D ( A  ) /d (12) 

Nevertheless, it is important to point out exceptions of particular impor- 
tance: if A is restricted to a (generalised) eigenspace gi  of G, then the preceding 
rule must be rewritten: 

Del (A ) /deli = D ( A ) /di (13) 

where di is the topological dimension of gi, deti its anisotropic dimension de- 
fined as the trace of the restriction (GIE i) of G on Ei (i.e., deli= Tr (G,gi)). 

6. GSI, MULTIPLE SCALING AND SINGULARITIES 

Instead of adding random increments of finer and finer resolution along the 
cascade (as in Fig. 6), one may multiply by random increments of finer and 
finer resolution. This multiplicative procedure corresponds to a cascade pro- 
cess where the non-linear break-up of eddies into sub-eddies rules the fraction 
of the flux of energy transferred from the eddie scale to the sub-eddies one. 

Unlike additive processes where the limit as the inner scale (i.e., the larger 
scale of homogeneity and at the same time the smaller scale of inhomogeneity) 
approaches zero is a function, the corresponding limit of multiplicative pro- 
cesses ( also called "multiplicative chaos", Kahane, 1985 ) is very singular. This 
limit is no longer a function, but an operator converting one measure into 
another ( i.e., the D ( A )-"volume" of A into the energy flux through A ). Indeed, 
as we introduce finer and finer scale (ln = lo/)2) multiplicative perturbations, 
the density ( e~ ) of the energy flux becomes increasingly dominated by singu- 
larities (positive 7): 

en ~ln-: ' ;  Pr(en >~l.-Y) ~l~ -~'~ (14) 

( see sharp spikes present in Figs. 2, 7 ) those of higher order than a given level 
7, being distributed over a fractal set of co-dimension c (y), becoming sparser 
with increasing y (i.e., c(7) is an increasing function). These singularities 
prevent convergence in the usual sense. However, by "integrating" the  result 
over a set A with dimension D (A) (to obtain the flux through A ), the resulting 
smoothing may be sufficient so that  convergence is obtained at least for low- 
order statistics of the flux. Convergence of statistical moments of order h (h > 1 ) 
is assured by the convergence of the "hth trace moment"  (Schertzer and 
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,~' Ei 

A 

Fig. 7. Mul t ip l i ca t ive  process  on  a 128 X 128 square grid. 
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Lovejoy, 1987b,c ). Here ( for simplicity sake ), we give only the explicit expres- 
sions of approximations to the t race-moments:  

( TrA,, e. h ) 
n (15) 

( T r a e )  = lira ( T r a . e ,  ~' } 

where An is A with a resolution I, ( i.e., we compute  the Hausdorff  measure, eq. 
11, by covering only with balls of size similar to tha t  of the homogenei ty  scale ). 
Since the latter quanti ty  is of the same type as a Hausdorff  measure ( Schertzer 
and Lovejoy, 1987b,c ), it is not  surprising tha t  it follows a twin divergence rule 
(represented in Fig. 8),  implying the  convergence of statistics of order h, for 
C(h) < D ( A )  ( h >  1) and divergence otherwise, where C(h) is the codimen- 
sion function defined by the trace moments .  Conversely, for h < 1, we obtain 
C ( h ) > D (A) implying degeneracy of the flux ( statistical moments  are zero ). 

Since a multiplicative group (parameter  2, the generalised ratio of scales ) is 
involved, the characterization of its generator y is fundamenta l  (which differ- 
ent  positive values correspond to the different order of singularit ies).  It  turns  
out tha t  it should b e " l / [  noise" ( its spectrum being proport ional  to the inverse 
of the wave-number)  in order to assure a logarithmic divergence of its "free 
energy" (or its second characteristic functional)  which is required to obtain 
( multiple ) scaling of the resulting field. The  co-dimension functions c ( 7 ), C ( h ) 
are thus related to each other by a Laplace t ransformat ion (which reduces to 
a Legendre t ransformation,  except in divergent cases).  Fig. 7 results from a 
simulation using a gaussian "1 / / no i se " ,  but  Levy noise could also be used. 
Using this type of cont inuous cascade construction,  it was further  shown 
(Schertzer and Lovejoy, 1987b,c) tha t  cont inuous cascade processes define 
universality classes ( for fields obtained by fractional integrations over powers 
of flux densities) in which c(),) is of the form: 

c(7) = c ( 0 )  (7/),1 + 1 )  (~ (16) 

where, with the value a = 2 corresponding to the case of gaussian cascade gen- 

f c o , ~ -  

i 

.D(A) 
SAO x - , 

O~ i . . . . . .  

h 
TRACE MOMENTS 

Fig. 8. Twin divergence rule of the trace moments. 
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erator ( a > 2, corresponds to a Levy's noise of parameter (~': 1 / a  + 1 /a '  = 1 ), 
and c (0), ? 1 are parameters characterising, respectively, the intermittency and 
smoothness of the process. 

The codimension functions c (7) and C (h) ( determining the fraction of the 
(sub-)space where singularities or divergences occur) are directly connected 
to the generator ~ of intermittency. Hence, when the latter is expressed in a 
given framework, defined by the anisotropic generator G with corresponding 
del (i.e., y and G commute ), these two functions remain the same for any re- 
striction of the process on a (generalised) eigenspace of G (this is analogous 
to the isotropic case ). This remark is of particular importance for data analysis 
of anisotropic fields: one may seek to determine the anisotropy generator yield- 
ing such an invariance of the codimension functions or at least the correspond- 
ing elliptical dimension. 

7. ELLIPTICAL DIMENSIONAL SAMPLING AND THE EMPIRICAL EVALUATION OF 
de, IN RAIN 

7.1 The data 

In this section we estimate de~ and c (7) for radar rain reflectivities. These 
reflectivities are probably the geophysical data of highest quality available for 
this purpose. The rain drops act as efficient natural tracers, allowing the 3-D 
rain structure to be quickly and non-perturbatively sampled. The archives of 
the McGill weather radar observatory contain data of the radar rain reflectiv- 
ity (denoted Z) spanning over two orders of magnitude in each horizontal 
direction, one in the vertical, five in time, and six in intensity. The actual data 
analysed here were resampled in (r,0,z) (range, azimuth and height above the 
earth's surface), from the original polar (r,0,0) coordinates, with 
(200 × 375 × 8) resolution elements, with intensities in 16 logarithmic levels, 
4 dBZ apart (factor ~ 2.5). The whole scale therefore spans a range of 15 × 4 
dBZ = 60 dBZ = factor of 106, and it is not uncommon for reflectivity levels in 
rain to exceed 105 times the minimum detectable signal. 

Physically, the reflectivity is simply the integrated backscatter of the rain 
drops. The microwave reflectivity for each drop (here at 10 cm wavelength) is 
proportional to V 2 (where V is the rain drop volume ). At 10 cm, the absorption 
is sufficiently small that  the beam is nearly unattenuated. The reflectivity Z 
measured in this way is the integral over an entire "pulse" volume ( roughly 1 
km 3 ) of V 2 of each drop modulated by its phase. Operational (meteorological) 
use of radar data is limited primarily by the fact that  the rain rate (R) is a 
different integral: that  of the product of V and the fall speed. The standard 
semi-empirical (and very rough) relationship between R and Z is called the 
Marshall-Palmer formula: Z = 200 R 1.6 with Z in ( mm ) ~m -3, and R in mm/h.  
It is important  to note that  by directly studying relative reflectivities rather 
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than R, we avoid the traditional radar calibration problem. Noise and instru- 
mental biases are small. 

7.2. Functional box-counting 

We have to generalise the usual "box-counting" algorithm (designed to es- 
timate the dimension of a set of points, e.g. Hentschel and Proccacia, 1983 ) so 
as to apply it to fields ( "functional box-counting" ). This is achieved (as shown 
in Fig. 9 ) by thresholding the fields (with various threshold T/) and determin- 
ing the corresponding hierarchy of dimensions D(Ti) (approximating them 
by N(L) ~L -D(T'), N(L) being the number of boxes, of sire L, needed to 
cover the set (defined by those regions exceeding the threshold).  From the 
theoretical discussion of Section 6, and especially eq. 14, this hierarchy of 
thresholds (Ti) and corresponding dimensions (D (T/) ) are related to one of 
the orders of singularities ( 7, ) and its co-dimension function ( c ( ?' i ) ) according 
to (see Schertzer and Lovejoy, 1987c ) : 

7',. ~L- ;" ;  c(Ti) =d-D(T,)  (17) 

When such a functional box-counting is applied to the radar reflectivity data 
for a single radar scan, we obtain the results shown in Fig. 10. In the horizontal, 
we have used sectorial (pie-shaped) boxes, increasing the angular and down- 
range box sizes by factors of 2, starting with the highest resolution available 
(the use of pie-shaped boxes eliminates all range-dependent effects due to beam 

The dimension D(T) of regions 
exceeding threshold T: 

NT(L) c L -OCT) 
NT(L) is fhe number of boxes size L needed 
for the cover F . . . . . . . . . . . . . .  

original fietd with ~ [ ~  
isolines T 2 >T  1 . . . .  

L=I  L = 1/2 L = 1/4 

N. h (L)=I  NTI(L)=3 Nq (L)=10 

. .  . . . .  

NT2 ILl= 1 NT2(L)=3 NT2IL) =/* 

Fig. 9. Functional box-counting. 
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Fig. 10.a. N(L) vs. L for the nine radar reflectivity thresholds discussed in the text, for a single 
radar volume scan, analysed with horizontal boxes increasing by factors of two in linear scale 
( data corresponding to a Montreal summer, convective shower). All correlation coefficients of log 
N vs. log L were > 0.99. For clarity, only every second threshold symbol is shown at the left, with 
values representing the ratio of the reflectivities to the minimum detectable signal. The negative 
slope, D, decreases from 1.24 to 0.40. b. Same as a, except that the boxes used are cubical (three- 
dimensional) instead of squares. Here D decreases from 2.18 to 0.81. Only 8 different vertical 
levels were available. 

spreading, etc. ). The straightness of the lines shows that  scaling is accurately 
followed in both horizontal and vertical directions. Note the systematic de- 
crease in the absolute slope ( =D (T) ) as T is increased ( here through 9 values 
separated by 4 dBZ - -  spanning a total range of reflectivity of 10 <9-1~o.4). Of 
twenty radar volume scans studied, all the horizontal D (T)  values calculated 
by regressions of log N(L)  vs. log L resulted in correlation coefficients > 0.99, 
when T was in this range (for the lowest 6 thresholds, where N(L) was fairly 
large, the correlation coefficient was > 0.999). For even higher values of T, 
N(L) was too small to give reliable estimates of D (T) .  

Recently, Gabriel et al. (1986, 1987) have applied this technique to visible 
and infrared satellite pictures of both clouds and surface features in the range 
8-512 km. Their  results clearly show the scaling of both fields and have im- 
portant  consequences for satellite remote sensing, since scaling generally im- 
plies strong ( and undesirable) resolution-dependencies in quantities (such as 
fractional cloud cover) est imated from the satellite. The finding of multiple 
scaling in visible albedoes and IR emission from (cloud-free) land surfaces 
confirms that  scaling is likely to be a property of many geophysical surface 
features. 

7.3 Elliptical dimensional sampling 

We can now apply functional box-counting to horizontal cross-sections and 
volumes (Fig. 10), determining the functions D2 (T)  and Da (T) ,  respectively, 
and use the difference between the two to obtain a characterisation of the de- 
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gree of horizontal stratification in rain. If the rain field was isotropic, then 
D2 (T) ,  D:~(T) can be simply related to each other by the identity of their 
corresponding co-dimensions: 

(!:~(T) = C 2 ( T )  (18) 
Ca(T) =d-D,1(T) 

We have already noted the generalisation of these relations in anisotropy, 
so that the correct elliptical dimension do1 of the rain field should satisfy: 

Cdel(T) = C ~ ( T )  (19a) 
Cd~l(T) =dei -De¿(T) 

We thus sample ( see Fig. 11 ) the data using a family of self-affine boxes 
with corresponding generators G's and associate elliptical dimensions D~l's - -  
seeking the zero of the following function: 
/(D~j) = Y]i: I (CD,,,(T,)-C,,(Ti)) (195) 

with the empirical C's determined by the functional box-counting, and the sum 
is over the k thresholds ( = 9 here).  Furthermore, f (D~)  is linear in D{.~ due to 
the linearity of eq. 13. 

Fig. 12 shows the result as De~ is varied through 15 values between 3 and 2.13, 
which was roughly the lowest value accessible with the data set, (corresponding 
to boxes of 1 X 1 X 1 pixel and boxes of 190 X 190 X 2 pixels; twice the aniso- 
tropic scale, where 2 . 1 3 = 2 + 1 o g  2/log 190). The same nine thresholds were 
used as before, f(Del) was determined separately on 20 radar rain fields: Fig. 

. / \ 

, , \ / 

Oel < del 

B O X E S  TOO S T R A T I F I E D  

/ \ 

, .  / 

Del > del 

B O X E S  N O T  S T R A T I F I E D  

E N O U G H  

', t L J  ,4 ! 
",, i 

L 2=±= . . . . . . .  :E " ; 

Det = del 

B O X E S  C O R R E C T L Y  S T R A T I F I E D  

Fig. 11. Elliptical dimensional sampling. Average eddies at three different scales are represented 
by ellipses, (dimension del), while the boxes used to analyse the fields are shown as rectangles, 
(dimension Dei ). When Del = dol the stratifications of the two are identical. 
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Fig. 12. The function f (De~) described in the text which is the average of data taken from 20 scans, 
using 15 different values of Del and 9 reflectivity thresholds ( = 9 × 15 × 20 = 2700 dimensions ). 
The least squares linear regression (correlation coefficient--0.98), is shown, cutting the axis at 
De,=del=2.22. 

12 shows the averages and standard deviations (indicated by the error bars). 
The linear regression shown, yields de~ = 2.22 + 0.07. The error is the standard 
deviation of del estimated from each of the 20 images separately ( see Lovejoy 
et al., 1987 for more details ). It is interesting to note that  this value is consid- 
erably smaller than the value de~ = 23/9 = 2.555... found for the horizontal wind 
field. 

7.4 The  universality of c (7)  

In order to estimate the scale invariant (resolution-independent) function 
c (7) and hence to test the prediction that  it has universal form (eq. 16), let us 
render more precise the eq. 17 by denoting TL the threshold at scale L (the 
intrinsic resolution of the detector) associated with the singularity of order 7: 

TL/To  = ( L /Lo)  - Y (20) 

To is the field value at a reference scale, i.e. the mean field over the entire image. 
We now show that  the empirical c (7) function fits into the universality classes 

(eq. 16 ). For the radar data used here (the same data set discussed in 7.1 ), the 
empirically accessible range of 7's is quite small ( the maximum is ~ 2.0). This 
makes it difficult to accurately estimate a since the latter measures the con- 
cavity of c (7) which is only pronounced for large 7. The difficulty is that  if eq. 
16 is considered to define a multiparameter regression problem for the coeffi- 
cients c (0), 71, a,  as determined from the various empirical values c (7), then 
all three parameters are highly correlated with each other and the optimum 
values are ill-defined. To obtain well-defined estimates, we therefore made the 
plausible assumption that  generators were in the gaussian domain of attraction 
( i.e., a = 2), and for each satellite ( and radar) image, we empirically estimated 
the parameter 71 via a least squares regression using the formula: 
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Fig. 13. The mean normalised co-dimension, < CN(7) > for the radar data, analysed in Fig. 10 
(with one standard deviation error bars ) plotted against the mean < (1 + 7/7 ~ ) 2 > to test whether 
the empirical c(y) functions belong to the universality class defined by a = 2 (c(0) is measured 
directly, and 7 ~ is determined by regression for each image separately). A perfect fit ( correspond- 
ing to the line x=y) is shown for reference. 

CN(7) =C(p)/C(O) = ( l + y / 7 , )  2 (21) 

where CN (p) is the co-dimension "normalised" by c (0) which is the empirically 
determined co-dimension of the field at average brightness (since 
TL= To~7 = 0 ) .  The standard error of the fit (of c(7) ) in all 20 cases, over the 
entire range of c (y),  was _+ 0.062 which is comparable to the errors in deter- 
mining c(7) from the box-counting algorithm. We then plot the curves 
<CN(}'  ) > VS. "~ ( 1 + 7 / 7 , ) 2 >  in Fig. 13 where the angle brackets indicate 
ensemble averaging {here all available cases). As predicted by eq. 21, the curves 
all closely follow the line x = y ( shown for reference ). This shows that  the main 
difference between the various radar image cases were in the values of the 
parameters.  Similar results ( also for c~ = 2 ) for visible and IR satellite images 
can be found in Gabriel et al. {1987). 

&CONCLUSIONS 

We have argued that  clouds as anisotropic highly intermit tent  fields can be 
best understood and quantitatively studied in the framework of generalised 
scale invariance (GSI) .  This formalism is a development ofphenomenological  
models of anisotropic turbulent  cascades, but  applies generally to anisotropic 
scale-invariant geophysical fields. Within GSI, singularities of the fields of 
interest are generated ( or analysed in terms of) two multiplicative one-param- 
eter semi-groups. The first defines the anisotropy from scale to scale, and the 
second, the concentration of the field into sparser and sparser regions, for higher 
and higher order singularities. The resulting stratification and intermittency 
have no characteristic scale. 
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These groups define two (dual) "elliptical" co-dimension functions C (h) 
and c(~). The former prescribes the divergence of the hth order statistical 
moments of the flux over regions A of dimension D (A) < C (h) (h > 1 ) or its 
degeneracy ( h < 1 ), while the latter describe the distribution of the (multiple) 
singularities exponents y. 

Multiplicative processes point out features in some respect similar to ther- 
modynamics, but with quite important differences since they correspond to 
non-equilibrium statistics (the expression "flux dynamics" seems accept- 
able ). For instance, the equivalent of "free energy" (the "free-flux"? ) being a 
1If noise is unacceptable for thermodynamics, as the divergence of moments. 
However, some reasonings on the role of symmetries are quite similar. These 
processes point out the fundamental distinction to be made between theoreti- 
cal quantities of a partial process (built down to a certain scale of homogeneity 
of the fluxes) and the "observables" at the same scale (obtained by linear or 
non-linear integration of a process completed down to an infinitesimal scale 
of homogeneity) : the latter may have statistical divergences (which depend 
on the dimension of the integration ) contrary to the former (which is free from 
this problem). This distinction must be kept in mind when trying to compare 
fields computed by a deterministic-type model (with limited range of scales) 
with real data (averaged on the same scale, largely above the dissipation scale 
of the process) and may explain most of the usual difficulties encountered: for 
large fluctuations, small scales play a fundamental role. 

To illustrate these ideas, we showed empirical evidence obtained from radar 
yielding a direct estimate of the elliptical dimension characterising the degree 
of stratification the rain field: del -~ 2.22 + 0.07. We also determine empirical co- 
dimension functions that were described by two-parameter universality classes. 
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