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SUMMARY

Scaling models of geofields attempt to capture the strong and wide-range variability
ubiquitous in geosystems. Unfortunately, they are generally both isotropic (self-similar)
and monofractal (non-intermittent, quasi-Gaussian). In this first paper of a two-paper
series, we lift the first of these restrictions, arguing that anisotropic scaling is essential
for taking into account the stratification of the Earth and its consequences. In particular,
at horizontal scales below several thousand kilometres we model the thin or Curie-
depth-limited crustal magnetization and the corresponding surface magnetic field (B) by
using anisotropic scaling. We show that it generically gives rise to a new intermediate
scaling (‘red noise’) surface B field regime quantitatively very close to that observed
on two sets of regional surface B field surveys. This scaling is impossible to explain
using standard self-similar models. Using these data as well as horizontal and vertical
susceptibility data, we estimate the basic model parameters and show that that model is
compatible with the available data. In Paper II we lift the monofractal restriction and
perform multifractal analyses; we then extend the anisotropic scaling model to include
multifractal B and magnetization fields.
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1 I N T R O D U C T I O N

1.1 An anisotropic multiscaling framework

To a first approximation, the Earth’s magnetic field is that of an

effective dipole source at the Earth’s centre superposed on a field

(partially induced by the latter) originating in the magnetized

crust. Compared to the crust, the mantle is generally below

the Curie depth (it is too hot to be magnetized) while simul-

taneously being viscous (hence of low velocity) and of low

electrical conductivity. It is therefore not believed to provide

a significant source or sink for the magnetic field. Since there

is a rapid fall-off in the contribution from a given Fourier

component of the source with depth, the (distant) core only

contributes very low-wavenumber variability (wavelengths of

thousands of kilometres); all the higher frequencies are pre-

sumed to come from a thin layer in the crust (Lowes 1974

estimated that the core dominates for spherical harmonics

<order 11). This picture might lead to the naive expectation

that there would be little spectral energy in the horizontal

surface magnetic field between scales corresponding to the

Curie depth (#10–100 km) and several thousand kilometres.

However, various regional studies (especially over oceans, e.g.

Harrison & Carle 1981; Harrison et al. 1986; Counil et al. 1989)

have found on the contrary significant (‘red noise’-type)

spectral energy in this scale region. [Following Wasilewski &

Mayhew (1992), Maus et al. 1997 made a distinction between

the Curie depth and the more general term ‘depth to the

bottom’ (DTB), which takes into account the possibility that

due to the presence of (mantle-type) ultramafic rocks with very

low magnetizations the magnetization may approach zero even

at temperatures below the Curie temperature. Here we use the

expression ‘Curie depth’ to be synonymous with DTB.]

The main challenge in statistically modelling these ‘inter-

mediate-scale anomalies’ in the magnetization is that in order

to yield the ‘red noise’ spectrum, the model must have long-

range correlations in the horizontal while simultaneously taking

into account the vertical structure. The magnetization—which

includes the obvious stratification of the Earth—is charac-

terized by sudden transitions (occasional large gradients) and

the existence of easily identifiable strata. The obvious geo-

physical models with these properties are the scaling models, in

particular the (anisotropic) multifractal models, which can be

both stratified and involve strong structures (sharp gradients,

‘singularities’) at all scales (see Lovejoy & Schertzer 1995 and

Pecknold et al. 1997 for reviews). Indeed, due to the ubiquity

of fractal structures and multifractal statistics, and to the

existence of stable, attractive multifractal processes, Schertzer
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& Lovejoy (1991) and Lovejoy & Schertzer (1998, 1999) have

argued that anisotropic multifractals can provide a unifying

framework for geophysics. The relevance of scaling models to

solid Earth geophysics has probably been most clearly demon-

strated in topography from planetary scales to 90 m or less

(see e.g. Venig-Meinesz 1951; Bell 1975; Bills & Kobrick

1985; Klinkenberg & Clarke 1992; Lovejoy & Schertzer 1990;

Lavallée et al. 1993; Weissel & Pratson 1994; Lovejoy et al.

1995; Pecknold et al. 1997, 2000).

Direct evidence for the scaling of the crust magnetization

is quite limited, the primary references being the analyses

of the horizontal and vertical susceptibilities by Pilkington &

Todoeschuk (1993, 1995) (as discussed below these are mag-

netization surrogates). However, many other geophysical fields

and processes that are statistically related to magnetization

(notably seismic velocities, gamma emission, rock density) are

known to be scaling (see especially Pilkington & Todoeschuk

1993, 1995; Turcotte 1989; Leary 1997; Shiomi et al. 1997;

Marsan & Bean 1999). It is therefore natural to hypothesize

that crustal magnetization is scale-invariant over wide ranges

in scale; this hypothesis in various forms—including the link

between scaling magnetization and surface magnetic fields—

has indeed already been considered by several authors. In

particular, Gregotski et al. (1991), Pilkington & Todoeschuk

(1993, 1995), Pilkington et al. (1994), Maus & Dimri (1995, 1996),

Maus et al. (1997), Quarta et al. (2000) and Zhou & Thybo

(1998) assumed generally non-trivial scaling (fractal) mag-

netization fields, whereas Fedi et al. (1997) used white noise

(‘trivial’ scaling) source distributions.

These pioneering attempts to place the relation between

volume magnetization and (crustal) surface magnetic fields

into a statistical scaling framework represent a major advance.

Several of them (especially Pilkington et al. 1994 and Maus

et al. 1997) go well beyond attempts to refine Spector & Grant

(1970) type one-to-one (deterministic) relations between spectral

magnetic anomalies and spatially localized magnetization

sources; they have made first steps towards an understanding of

the overall statistical relations between the fields. Unfortunately,

they have generally shared two simplistic assumptions that

have hampered progress. The first is the restriction to scaling

isotropy (equivalently, ‘self-similarity’); the second is the

restriction to fractal geometry in which the statistics are described

by a single scaling exponent such as the fractal dimension or—

in this case equivalently—the spectral exponent. [Note that the

use of spectral analysis for estimating fractal dimensions is only

valid for monofractal systems. Neglect of this fact has led to

sterile debates about the value of supposedly unique fractal

dimensions; see the discussion in Lavallée et al. (1993).]

The main purpose of this series of papers is to show that

the two missing ingredients—anisotropy and multifractality—

are indispensable for realistic models (including numerical

simulations) of magnetization and magnetic field. In Paper I

of this two-paper series, we focus on the issue of anisotropic

scaling, showing that—even at the level of power spectra

(which are simply second-order statistics)—anisotropy is funda-

mental to an understanding of the most basic spectral scaling

properties of the magnetic field. However, unless the fields

are quasi-Gaussian (hence non-intermittent, lacking in strong

structures and significant anomalies) the spectrum does not

adequately characterize the processes; it gives only limited

statistical information (we exclude here the essentially multi-

fractal analysis technique, which consists of systematically

determining all the spectral exponents of all the powers of the

fields). Starting in the early 1980s, it has been increasingly

recognized that a full statistical characterization of a scaling

field is a multi not a monofractal one. In Paper II, we give such

a multifractal characterization of the magnetic field. This,

combined with the stratification (quantified in Paper I) enables

us to construct explicit multifractal simulations—which by

allowing comparison between the simulated and empirical

magnetic field and magnetization statistics can be used to test

the scaling assumptions. Both of these papers are developments

of work described in the PhD thesis of Pecknold (2000).

1.2 Outline of Paper I

In Paper I we use magnetic survey data from two different

regions in Canada involving, respectively, seven and five regional

magnetic surveys at about 800 m resolution. In addition, we

use two borehole (vertical) and two surface in situ (horizontal)

susceptibility spectra. By studying purely second-order statistics

(which are theoretically convenient), the goal is to establish the

anisotropy of the spectral scaling of the magnetization and

show that this is quantitatively compatible with the observed

magnetic field spectra (including spectral breaks). Even at the

level of spectra, the theory involves two basic exponents (Hz, s)

from which we theoretically derive four spectral exponents

(those of the horizontal and vertical magnetizations and of the

high- and intermediate-wavenumber surface magnetic fields).

The reasonable fit of the four empirical exponents with those

predicted from a single (Hz, s) pair is therefore a fairly stringent

test of the theory.

In Section 2 the basic data are described and in Section 3

we give a recap of the basic (classical) potential theory

relating magnetization and magnetic field (nearly the same geo-

potential theory relates rock density and the gravity field).

In Section 4 we outline the theory of scaling anisotropy (GSI)

and in Section 5 we propose a simple spectral model for the

magnetization that incorporates scaling anisotropy. In Section 6

we compare magnetic susceptibility data and surface magnetic

field data with the predictions of the model and in Section 7 we

give our conclusions. Appendix A gives some mathematical

details for the spectral model while Appendix B shows the

effect of scaling horizontal anisotropy on the usual (isotropic)

power spectrum.

2 T H E M A G N E T I C F I E L D S U R V E Y S
A N D T H E I R S P E C T R A L
C H A R A C T E R I S T I C S

The interpretation of aeromagnetic data is complicated notably

since the magnetic field of the Earth is a superposition of the

main (internal) field of the planet, of fields arising from

electrical currents flowing in the ionized upper atmosphere,

and of fields induced by currents flowing within the Earth.

However, sophisticated analysis techniques are available, yielding

surveys of the total magnetic field anomalies (BobservedxB̄),

downward continued to ground level (B̄ is a constant regional

average). The downward continuation error is small; it pre-

sumably leads to a white noise flattening of the spectra

accounting, for example, for the high-wavenumber curvature in

data set #2 (see Fig. 1). The surveys most extensively used here

were the seven aeromagnetic surveys (taken with 300 m of mean
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terrain clearance) from eastern Canada indicated in Table 1,

with a grid spacing of 812.8 m at the survey altitude. The fields

on 256r256 pixel square grids were analysed for both their

power spectra (Paper I) and their multifractal parameters

(Paper II). In addition to this ‘data set #1’, M. Pilkington

also kindly provided us with the spectra of each of five other

regional surveys (also eastern Canada, but generally more

northern) (‘data set #2’) described in Pilkington & Todeschuck

(1993) (at the same spatial resolution but each with 512r512

pixels). All data sets were taken from the Canadian shield.

Spectral analysis is one of the oldest and most familiar

techniques for analysing scaling; it is indeed quite sensitive

to scaling limits and in addition it gives us a useful spectral

exponent. Since it is also theoretically convenient, especially in

geopotential problems, we will use it throughout Paper I; a full

statistical characterization of the fields (involving moments of

all orders) is discussed in Paper II. In Fig. 1, we show the

isotropic power spectrum E(k) of the two data sets (where k is

the wave vector, k=|k|). E(k) is defined as the ensemble average

of the square of the modulus of the Fourier transform of

the data set integrated over all angles in Fourier space. For

isotropic scale invariance, E(k) is a power law,

EðkÞ*k�b , (1)

where b is the spectral exponent. This definition, used in

turbulence, has the advantage that for isotropic processes, the

exponent is the same in all subspaces (e.g. a 1-D spectrum of a

1-D cross-section of an isotropic 3-D process defined this way

is the same as the full 3-D spectrum). It is generally different

from the angle-averaged spectral power density. For example, in

two dimensions there is an extra factor 2pk so that b=xax1,

where a is the angle-averaged exponent used in Pilkington &

Todoeschuk (1995). With this definition, in d dimensions, iso-

tropic Gaussian white noise thus has E(k)#kdx1. As a final

comment, we mention that Maus et al. (1997) advocated a

slightly different definition of the power spectrum: the angular

average of the log of the spectral density. However, this is not

the same as the standard definition used here, and at least

for multifractal processes, the relation between the two is not

known.

As can be seen from the power spectra of both data sets

(Fig. 1), a break in the scaling occurs at about 10 and 80 km

in the data sets #1 and #2, respectively. We see below that it is

likely to be a horizontal manifestation of somewhat deeper Curie

depths (approximately 20–30 km and 80–100 km, respectively;

see however Appendix B). This agrees roughly with esti-

mates obtained from typical values of the Curie temperature

of 800–900 K and vertical thermal gradients of 20 K kmx1 (see

e.g. Stacey 1992). These estimates yield a depth of approxi-

mately 30 km. With the help of an isotropic spectral model,

Maus et al. (1997) found values of Curie depth in the range

10–50 km for South African and Central Asian surveys. Since the

exact estimates depend somewhat on the spectral assumptions,

their (isotropic) values are compatible with our (anisotropic)

values. Also shown for future reference are high- and low-

wavenumber reference lines, with values bh=2 and bi=1

(whose values we explain below by the combined effects of

scaling stratification and Curie depth). For comparison, using

their isotropic model, Maus et al. (1997) found spectral exponents

corresponding to bh in the range 1.5–2 (their parameter

s=bh+2 is in the range 3.5–4), that is, essentially the same

as the high-wavenumber regime values found here (we will

see that the anisotropy does not affect the high-wavenumber

exponent bh).

Finally, in Figs 2 and 3 the spectra from these regional surveys

are compared to the very low-wavenumber (Magsat) results of

Langel & Estes (1982), which also show how our model of the

crust magnetization (discussed in Section 5) can account well

for the entire large-wavenumber part of the spectrum. From

the latter, we see that the very low-wavenumber core region

gives way to a flatter intermediate region at spherical harmonic

n# 20 corresponding to wavenumbers 20/40 000 kmx1=
(2000 km)x1. This flattening suggests that the surface B field

has contributions from the crustal magnetization at wave-

numbers at least this low, hence the intermediate scaling regime

described here has a lower bound kic<(2000 km)x1. As can be

seen from the numerical simulation in Figs 2 and 3, this is

relatively easy to achieve using realistic magnetization para-

meters (as long as the stratification is appropriately taken into

account).

3 C L A S S I C A L T H E O R Y R E L A T I N G M
A N D S U R F A C E B S T A T I S T I C S

Before considering the measurement of anisotropy in the

horizontal plane, we first wish to determine the possible effects

of anisotropy in the vertical plane as well as the effects of a low-

wavenumber cut-off such as the Curie depth. We start with the

convolution formula for the scalar magnetic potential V(r) due
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-1

0

1

-6 -5,5 -5 -4,5 -4 -3,5 -3

lo
g 10

E(
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log
10 
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Figure 1. Power spectra of aeromagnetic anomaly fields from two

regional surveys, shown as triangles and circles, data sets #1, #2,

respectively. Superimposed for reference are line segments with the

theoretical high- and low-wavenumber exponents, bh=2 and bi=1

(see Section 6). The spectra have been normalized so that the

high-wavenumber regions roughly coincide.

Table 1. Location of data set #1. In all cases, resolution was 812.8 m.

Data set Longitude Latitude

east 87 50

west 87 50

meg3 66 49

nm151 94 49

nn151 94 53

nn151 100 57

no141 100 53
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to a magnetization density M(r),

VðrÞ ¼ CM

ð
Mðr0Þ . +

1

jr� r0j dr0 , (2)

where CM=m0/4p in SI units, equal to 1 in cgs units (since we

are interested only in the scaling, we set CM=1). The scalar

magnetic potential exists whenever +rB=0, i.e. in a non-

magnetic material, where there are no currents (air is a good

approximation to this). We can then calculate the total field

anomaly, which is considered to be the component of B along

the direction of the (roughly constant) regional mean f̂,

fŒ . B ¼ �fŒ . +V : (3)

Adapting a standard result (see e.g. Blakely 1995), we have

the following contribution to the horizontal Fourier transform

of the surface field due to the magnetization at depth z of a

layer of thickness dz:

dBðK , hÞ ¼½ fz þ iF cosðh � hFÞ	½MzðK , h, zÞ

þ iMðK , h, zÞ cosðh � hMÞ	Ke�Kzdz , z§0 , (4a)

where K, h are the horizontal polar Fourier coordinates, hF, hM

are the horizontal polar angles of M and f̂, and F2=fx
2+fy

2,

K2=kx
2+ky

2 and M2=Mx
2+My

2, with M(K, h, z) the horizontal

Fourier transform of the magnetization layer at depth z and

dB(K, h) the infinitesimal contribution to the transform of the

magnetic field at the surface (z=0) due to the layer at depth z,

thickness dz. The main simplifying choices are those about M.

Naidu (1968) took an example where the cross-correlations

between the components of M were zero and PMz
=PMx

=PMy

[P is a spectral density, e.g. PMz
(k)=n|Mz(k)|2m, where Mz(k) is

the Fourier transform of the z-component of M and n e m
indicates statistical averaging], whereas Pilkington & Todeschuck

(1995) assumed that M has a constant direction throughout,

and only the magnitude varies with position. This constant

direction approximation corresponds to the case where M is

entirely induced by the Earth’s field, with the latter being

roughly constant over the region of interest. This is probably a

reasonable approximation for the B field in the limited regions

studied here. For our purposes, we will therefore assume that

M only has a z-component and also take anomalies in the

z direction ( f̂=fzẑ; the survey regions were in fact not too

far from the magnetic North Pole). Since the critical factor

[K2/(K2+kz
2); see below] is the same for all the terms, the

scaling results will probably not be sensitive to this choice.

With these simplifications in eq. (4a), we obtain

dBzðK , hÞ ¼ MzðK , h, zÞKe�Kzdz : (4b)

Due to the exponential fall-off (and since Spector & Grant

1970), this formula has been widely used as the basis for

interpreting horizontal B anomalies in terms of depths to

sources. In Appendix A, we derive a statistical variant of this

interpretation (valid only for distances smaller than the Curie

depth).

If we now express Mz in terms of its Fourier transform,

Mzðkx, ky, zÞ ¼
ð?
�?

eikzzMzðkx, ky, kzÞdkz : (5)

We can then insert this into eq. (4b) with f̂ eB=Bz and

integrate the result over z. We obtain (Naidu 1968)

BzðK , hÞ ¼
ð?
�?

MzðK , h, kzÞ
Kdkz

K þ ikz
: (6)

This is the equation we use in Paper II for simulating Bz

given Mz. It is now straightforward to determine the relation-

ship between the spectral density of Bz and Mz; we merely

multiply the above by Bz*(Kk, hk) (where the asterisk represents

the complex conjugate) and take ensemble averages using the

fact that Mz is assumed statistically translationally invariant

for z<0. We thereby obtain the standard result (Naidu 1968)

PBz
ðK , hÞ ¼

ð
K2

K2 þ k2
z

SjMzðK, h, kzÞj2Tdkz

¼
ð

K2

K2 þ k2
z

PMz
ðK , h, kzÞdkz , (7)
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log10 E(k)

Figure 2. Theoretical and experimental energy spectra of surface

magnetic fields. The high-wavenumber data points are from data set #2

while the low-wavenumber points are from the global (Magsat) Langel

& Estes (1982) spherical harmonics (n=1 was taken as 40 000 kmx1).

Also shown is the theory [the smooth curve, which was calculated with

parameters Hz=2, ks=10x7.6 mx1 (spheroscale# size of the Earth);

s=4.4, kc=10x5 mx1; Curie depth approximately 100 km; see Section 6].

These parameters imply bx=sxHzx1=1.4, bz=1.2 for the mag-

netization, which are close to those found. The lower limit to the

intermediate range (eq. 22b) is approximately (2000 km)x1. The theory is

adjusted up and down for superposition, i.e. E(k) is in arbitrary units.
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Figure 3. Theoretical and experimental energy spectra of surface

magnetic fields. The high-wavenumber data points are from data set #1

while the low-wavenumber points are from the global (Magsat) Langel

& Estes (1982) spherical harmonics (n=1 was taken as 40 000 kmx1).

Also shown is the theory [the smooth curve was calculated with para-

meters Hz=2, ks=10x7.6 mx1 (spheroscale# size of the Earth); s=3.6,

kc=10x4.5 mx1; i.e. Curie depth #30 km, hence kic#(1000 km)x1]).

The result is not very sensitive to the values of ks, Hz. E(k) is again in

arbitrary units.
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where we have expressed the 2-D horizontal spectral density of

the surface magnetic field (PBz
) in terms of the 3-D spectral

density of the magnetization (PMz
).

Dropping (here and below) explicit reference to the

z-component, assuming that B is horizontally isotropic [i.e.

PB(K, h)=PB(K)], then the isotropic horizontal spectrum of B

at z=0 is thus

EBðKÞ ¼
ð2n

0

KPBðKÞdh ¼ 2nKPBðKÞ ; (8)

the spectral exponents of E(K) and P(K) thus differ by 1. Note

that in the following we will once again ignore constant factors

since we are interested in the scaling.

4 A N I S O T R O P Y A N D G E N E R A L I Z E D
S C A L E I N V A R I A N C E

4.1 The GSI framework

Although the anisotropy of the Earth in the vertical plane is

quite evident, the horizontal plane also displays strong scale-

dependent anisotropy. Perhaps the most obvious example of

the latter is that associated with the mid-ocean ridges, which

display large-scale structures oriented roughly perpendicular to

the small-scale ridges. Another example of anisotropy is the

atmosphere, whose stratification of the vertical with respect to

the horizontal gives it an elliptical dimension of 23/9=2.55 . . .

rather than the spatial dimension 3 (see Lazarev et al. 1994 for

recent work). Until recently, scaling models and analyses have

avoided dealing with such anisotropy because scale invariance

has traditionally been associated with self-similarity—and con-

versely, an absence of self-similarity has been associated with

characteristic scales/breaks in the scaling. However, with the

advent of the general formalism for scale invariance, ‘generalized

scale invariance’ or GSI (Schertzer & Lovejoy 1985a), this

identification is quite outdated because isotropic scaling is

neither expected nor required. In fact, the use of isotropic scaling

statistics such as the usual energy spectrum will generally lead

to spurious scaling breaks if anisotropies are present (see

Appendix B). On the other hand, the presence of anomalous

scale breaks in the energy spectrum of a field can, as we see

in the case of the magnetic data, be evidence of the presence

of anisotropy in the underlying source, in this case the crust’s

magnetization. In a recent paper, Lovejoy et al. (2001) have

shown how very similar anisotropic scaling in the closely

analogous potential problem of rock density can explain the

medium- and high-wavenumber surface gravity statistics. The

assumption of isotropy is often made implicitly, justified only

by its theoretical simplicity. The assumption is all the more

pervasive since the anisotropic nature of most geophysical

systems is usually hidden through the use of isotropic analysis

techniques. Nevertheless, as we show below (see Paper II for

analyses and models of horizontal anisotropy), these aniso-

tropies do play an important part in determining the texture

and morphology of the fields.

Outside the GSI framework, with the exception of the special

case of self-affinity, there have been only a few attempts to deal

with scaling anisotropy. The most common approach is the

ad hoc introduction of scaling exponents varying as functions

of direction. This method of handling scaling anisotropy has

been independently proposed by several authors (Fox & Hayes

1985; Van Zandt et al. 1990; Pilkington & Todoeschuk 1993).

Although at first sight this is appealing, it turns out to be

incompatible with scaling—it necessarily involves absolute,

rather than relative, notions of scale: any underlying dynamics

will be fundamentally scale-dependent, rather than independent

of size.

To develop the framework of GSI, we need several

components. The first, most basic of these is the scale-changing

operator, Tl. Scale invariance demands that the statistical

properties only depend on the scale ratio l and not actual sizes.

This implies that a scale change l1 followed by l2 must be

equivalent to a single change of l=l1l2, i.e. Tl=Tl1Tl2=
Tl2Tl1 if and only if l=l1l2. Tl must therefore have group

properties; in particular it admits a generator G such that

Tj ¼ jG : (9)

[A linear GSI system can be defined either in Fourier space or

in real space, the only differences being the sign in the exponent

and the fact that the real space generator is the adjoint (matrix

transpose here) of the Fourier space generator.]

The second element is a reference (unit) ball (B1) whose

boundary defines the unit vectors; Tl generates all the other

balls by enlargements of B1: Bl=TlB1. They need merely

define a series of strictly increasing balls, i.e. if Bl=TlB1

then lk>lFBl5Blk . . . . A final element is a definition of the

measure of each of the elementary balls; these elementary

measures can then be used to define the measures of arbitrary

sets of points in the usual way (yielding for example anisotropic

Hausdorff measures and dimensions; this is described in detail

in Schertzer & Lovejoy 1985b). In the anisotropic case, if a

scale exists at which the system is isotropic, we call this scale

the spheroscale (more generally, even if there is no scale of per-

fect isotropy, there will generally be a scale where the sizes of

structures in the horizontal and vertical directions are the same);

use of this ball to define the unit scale is quite convenient.

In the case of linear GSI, G is a matrix; the l factor enlarge-

ment of a vector k1=(kx1, ky1, kz1) (for the 3-D Fourier space

used below) is thus given by kl=lGk1; the exponentiation of

G can be performed using a series expansion. When G is the

identity matrix we have the isotropic case and when G is

diagonal, the standard self-affine case. When G has off-diagonal

elements, structures will generally change orientation with scale.

4.2 Anisotropy in the horizontal plane: differential
rotation

For simplicity, we consider the case where the overall strati-

fication is perpendicular to gravity. In 3-D linear GSI, this

implies a matrix

G ¼
Gh 0

0 Hz

 !
, (10a)

where Gh is a 2r2 matrix (generating the horizontal anisotropy).

The off-diagonal elements indicated by zeroes are a simpli-

fication that disallows rotation of structures in the vertical

plane. Hz then characterizes the degree of this stratification in

the vertical plane.

Let us first consider the simpler (2-D) Gh that acts only in

the horizontal plane. We may decompose Gh into pseudo-

quaternion generators (Schertzer & Lovejoy 1985b; Lovejoy &
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Schertzer 1985),

Gh ¼ d1þ eIþ f Jþ cK , (10b)

where

1 ¼
1 0

0 1

 !
, I ¼

0 �1

1 0

 !
,

J ¼
0 1

1 0

 !
, K ¼

1 0

0 �1

 !
:

(10c)

A fundamental parameter for the description of the overall

type of anisotropy present in the system will be given by the

eigenvalues (ta) of the traceless part of Gh,

a2 ¼ c2 þ f 2 � e2 : (11)

In the case where a2<0, we say that the system is rotation-

dominant: as the scale changes, the balls rotate through an

infinite angle of rotation (although for a finite total scale ratio,

only a finite amount of rotation is possible). If a2>0 we

call the system stratification-dominant: in a similar manner,

an indefinitely large ‘stretching’ of the unit ball occurs, but

the total amount of rotation never exceeds p/2. Note that in the

case where a spheroscale exists, all the balls are ellipses, and

the strictly increasing (non-crossing) condition mentioned

above required to guarantee uniqueness reduces to d2>c2+f 2.

An analysis of the anisotropies of our system thus involves

determining the parameters c, d, f and e, along with the unit

ball. This completely determines the scaling anisotropy in

linear GSI. For cases involving position-dependent anisotropy,

non-linear GSI must be used or alternatively the linear GSI

approximation may be made over subregions of the system.

We now turn our attention to the full 3-D vertically stratified

generator G (eq. 10a). A convenient measure of the overall

stratification is given by the ‘elliptical’ dimension, del, defined as

del ¼ TraceðGÞ : (12)

del quantifies the rate at which the volume (‘vol’) of the

balls changes with scale: vol(Bl)=ldel vol(B1). With the above

(eqs 10a and b) 3r3 matrix for G, we have del=2d+Hz.

Assuming that there is no overall stratification in the horizontal

plane, Trace(Gh)=2 so that d=1 in eq. (10b) and del=2+Hz.

Hz thus characterizes the overall degree of stratification, with

Hz=1 corresponding to isotropy (in three dimensions) and

Hz=0 to completely flat 2-D structures. If Hz<1, the hori-

zontal stratification becomes stronger and stronger at larger

scales (this is the case of the atmosphere, where Hz#5/9; see

Schertzer & Lovejoy 1985a; Lazarev et al. 1994). When Hz>1

(as is found here), then instead the horizontal stratification

becomes stronger at the smaller scales. Recently, Lovejoy et al.

(in preparation) has shown theoretically that Hz=3 in the

temperature, velocity and density field in mantle convection.

In this case, it may be advantageous to use the fact that a

GSI system is non-unique; in particular, we may choose to

measure scale by the vertical (rather than horizontal) extent

of a structure; this is equivalent to using the following new

(primed) scale ratios and generators:

j0 ¼ jHz , (13a)

G0 ¼
Gh=Hz 0

0 1

 !
, (13b)

which clearly defines the same GSI system since Tlk=lkGk=Tl.

With this choice (which is equivalent to using the vertical rather

than the horizontal extent of structures to measure their scale),

we have dkel=Trace Gk=2/Hz+1, hence for Hzi1, 2jdkelj3,

which restores the intuitive interpretation of del as quantifying

the stratification between the isotropic 2- and 3-D limits. In

this paper, we retain the horizontal size of a structure as the

definition of scale, finding empirically that del>3.

5 A S I M P L E S P E C T R A L M O D E L W I T H
V E R T I C A L S T R A T I F I C A T I O N O N L Y

In this section, we present a spectral model that is symmetric

with respect to generalized scale changes. Non-dimensional

spectral densities P(k) respecting GSI satisfy

PðTjkÞ ¼ j�sPðkÞ , (14)

where s is a scaling exponent; determination of the full GSI

system involves the determination of G (or at least a linear

approximation to G as here) as well as s. The spectral density P

can be non-dimensionalized by using the dimensional spectral

density at a convenient reference wavenumber; below, this will

be taken as the spheroscale. In order to understand (and solve)

this equation, it is helpful to introduce the ‘scale function’

d(K, kz)d (Marsan et al. 1996; Pecknold et al. 1996). The scale

function tells us how much we must zoom in (or out) of a

unit vector (i.e. from the boundary of the unit ball) in order to

reach the vector k=(K, kz). If k1=(K1, kz,1)=(kx,1, ky,1, kz,1) is

a unit vector (i.e. k1shB1, where hB1 is the boundary of the

unit ball B1), then by definition

EðK1, kz,1ÞE ¼ 1 : (15a)

The scale function for other vectors is defined by

EðK, kzÞE ¼ juðK, kzÞ ¼ TjðK1, kk,1Þ : (15b)

From this definition, we see that for all vectors and all scale

ratios lk, the scale function satisfies

ETj0 ðK, kzÞE ¼ j0EðK, kzÞE : (15c)

The scale function is analogous to a norm, but need not respect

the triangle inequality (it needs merely to define a series of

decreasing balls, i.e. if Bl=TlB1 then lk>lFBlk5Bl). For

a vector (K, kz), the corresponding l is the ratio of the

spheroscale to the scale of d(K, kz)d. With the scale function,

eq. (14) is satisfied for

PðK, kzÞ ¼ EðK, kzÞE�s : (16a)

Equivalently—as recently advocated by Maus (1999)—we can

express the statistics in real space. To do this, first define the

qth-order anisotropic structure function,

Sj*Mð*rÞjqT ¼ E*rEmðqÞ ; *Mð*rÞ ¼ Mðrþ *rÞ � MðrÞ ,

(16b)

Stratified multifractal magnetization—I 117

# 2001 RAS, GJI 145, 112–126



where Dr=(Dx, Dy, Dz) and M is a non-dimensional mag-

netization vector component. Due to the (generalized, aniso-

tropic) Tauberian theorem relating real space and Fourier

space scaling (Pflug et al. 1991), when q=2 the spectral scaling

(eq. 16a) corresponds to the real space variogramme/structure

function statistics (eq. 16b) with exponent

mð2Þ ¼ s � del : (16c)

To consider only the effect of vertical stratification, we restrict

ourselves to a spectral density P that is symmetric with respect

to the generator,

G ¼

1 0 0

0 1 0

0 0 Hz

0
BBB@

1
CCCA (17)

(i.e. it satisfies eq. 14 for P with this generator). A convenient,

but not unique, choice of d(K, kz)d compatible with the linear

generator given in eq. (17) is

EðK, kzÞE ¼ K

ks


 �2

þ kz

ks


 �2=Hz

" #1=2

, (18)

where as above K=(kx, ky) and we have introduced a ‘sphero-

scale’ at corresponding wavenumber ks. At the spheroscale,

P(ks, 0, 0)=P(0, ks, 0)=P(0, 0, ks)=1, i.e. P is roughly con-

stant over a sphere (horizontal and vertical fluctuations have

the same variance, d(ks, 0, 0)d=d(0, ks, 0)d=d(0, 0, ks)d=1);

this corresponds to non-dimensionalizing P using the value at

the spheroscale. Other choices of d(K, kz)d that are symmetric

with respect to the generator in eq. (17) correspond to changing

the unit ball. Since we are only interested in the resulting scaling

(of the power spectrum), this is not too important.

Let us now take the spectral density defined by eqs (16) and

(18) as a model for the M spectrum,

PMðK, kzÞ ¼ EðK, kzÞE�s ¼ K

ks


 �2

þ kz

ks


 �2=Hz

" #�s=2

, (19)

Fig. 4 shows an example of the typical real space structures

implied by such a spectrum (that is, those that give the

dominant contribution to the second-order statistical moment;

the structures are those of the isolines of the second-order

structure function; see eq. 16b). We now note that the 1-D

horizontal and 1-D vertical spectra [obtained by integrating

PM given by eq. (19) over, respectively, the vertical and hori-

zontal wavenumbers] are each (scaling) power laws with the

horizontal spectrum

EMðKÞ&k2
s

K

ks


 ��bx

; bx ¼ ðs � Hz � 1Þ ðif s > HzÞ (20a)

(if s<Hz then there is a high-frequency divergence; for finite

high-wavenumber cut-off, bx=x1). The corresponding vertical

spectrum is

EMðkzÞ&k2
s

kz

ks


 ��bz

; bz ¼ ðs � 2Þ=Hz ðs > 2Þ (20b)

(if s<2 then there is a high-wavenumber divergence; for finite

high-wavenumber cut-off, bz=0). Note that as required by the

defining property of the spheroscale, the horizontal and vertical

spectra are obviously equal when kz=K=ks. We also note that

here the elliptical dimension (eqs 12 and 17) is del=2+Hz.

We can now calculate the spectrum of the surface magnetic

field by substituting the above PM into eq. (7); we obtain

EBðKÞ ¼ K3

ðki

kc

dkz

jðK, kzÞj2EðK, kzÞEs

¼ K3

ðki

kc

dkz

ðK2 þ k2
z Þ½ðK=ksÞ2 þ ðkz=ksÞ2=Hz 	s=2

, (21)

where the lower limit kc corresponds to the outer scale of the

scaling region (the Curie depth) and ki is the corresponding

large-wavenumber (small, inner scale) cut-off. We note that if

we replace the magnetization by rock density, the K3 term by K

and the magnetic field by the vertical component of gravity, we

obtain the corresponding expression for the surface gravity

spectrum [see Lovejoy et al. (2001), which shows that the theory

presented here is compatible with empirical observations of

surface gravity]. The analogy is particularly close here since

we have essentially reduced the magnetization variability to a

scalar rather than a vector problem (eliminating, for example,

the need for a reduction to the poles). A more realistic scaling

vector M theory is possible but beyond our present scope.

6 E S T I M A T I N G H z , s

6.1 Spectral analysis of susceptibility

The scaling behaviour of the integral (eq. 21) is fairly com-

plicated, with many qualitatively different parameter ranges to

consider (a near-complete analysis is given in Appendix A).

Rather than exhaustively investigate all the different possible

ranges, we therefore first consider how the parameters may be

constrained by other information we have about the system, in

particular by the statistics of magnetization. The data most

Figure 4. Vertical cross-section of isolines of the magnetization field structure function/variogramme in the crust (assuming the Curie

depth #100 km); horizontal and vertical scales are given in km, Hz=2, spheroscale=40 000 km. Scale in km, aspect ratio is 1/4. This is based on

eq. (16b) and shows the typical magnetization structures that dominate the second-order statistics.
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readily available were not the magnetization, but rather the

magnetic susceptibility (that is, we will ignore any remanent

magnetization that may be present). If we assume isotropic

magnetic media, then the magnetic susceptibilities are pro-

portional to the induced magnetization and the latter are

parallel to the inducing B field. Note that this is an assumption

about the type of rock; the susceptibility tensor is assumed to

be a scalar susceptibility multiplied by the identity/unit tensor.

The field defined by the spatial distribution of scalar susceptibility

is on the other hand assumed to be anisotropic and scaling. If

we then ignore remanent magnetization (that is, assume that

there is a low Königberger ratio, typical of continental crust),

then the susceptibility can be used as a magnetization surrogate.

The additional assumption adopted here is that over individual

survey regions (which are all near the magnetic North Pole),

the inducing B is roughly constant in direction (taken as the

z-direction) so that the M, B relationship reduces to the scalar

relation indicated by eq. (6).

With this in mind, we can therefore use the data for the

magnetic susceptibility power spectra (both horizontal and

borehole) from Pilkington & Todoeschuk (1993, 1995), kindly

supplied by the authors to estimate magnetization statistics

(Fig. 5). We see in the figure that for the two sets of horizontal

susceptibility data there is reasonably good agreement with the

statistical fit to the high-wavenumber set, bx=1.4. Although

the lower-wavenumber set is quite noisy, this value is roughly

compatible with Pilkington & Todoeschuck’s (1995) horizontal

spectra. Note that although there is much variability in the

borehole spectra depending on rock type, for igneous-type rock

it is possible that the spheroscale is of the order of 104x105 km

(the location in Fig. 5 where the spectra would cross).

The susceptibility data are so noisy that it would be hazardous

to guess the Hz that are obtained from the ratio of the (small)

differences between the horizontal and vertical bs from the

value Hz= (bxx 1)/(bzx 1) (obtained by eliminating s from

eqs 20a and b; see however the reference lines in Fig. 5). In

order to obtain better estimates and more confidence that

Hz>1, we refer to Leary (1997), who has probably performed

the most extensive analyses using both horizontal and vertical

spectra from similar regions (he studied rock density, sound

velocity and gamma emission). Due to strong (presumably multi-

fractal) intermittency (see Marsan & Bean 1999), individual

boreholes have a fair amount of spectral variability (recall that

the spectrum is an ensemble-averaged quantity; the scaling is

almost surely violated on every individual realization).

The specific difficulty here in estimating Hz (and hence also

the spheroscale) is that Leary’s results were similar to those

here, giving roughly bz#1, bx#1; his more precise analysis of

45 exponents (30 vertical, 15 horizontal) yields bz#1.10t0.12,

bx#1.34t0.12, yielding Hz#3 (to the nearest integer), values

that are roughly the same as the values for the magnetization (the

bs should be equal if Poisson’s relation holds). Furthermore,

elsewhere we analyse the susceptibility spectrum from the much

longer KTB borehole finding, bz#1.25; similarly Shiomi et al.

(1997) obtained bz#1.1–1.3 for susceptibilities of sedimentary

rock and bz#1.3–1.6 for volcanic rock (see also Zhou & Thybo

1998). We also note that Leary gives nearly identical values for

the exponents for rock density, gamma emission and sound

velocity; this supports the idea that the value of Hz (and hence del)

may be the same for different fields and hence supports the

notion that it may be a fundamental characteristic of the geo-

logical stratification. Finally, by comparing rock densities

Figure 5. Power spectra of horizontal and vertical magnetic susceptibilities taken from Pilkington & Todoeschuk (1995) and Pilkington &

Todoeschuk (1993), respectively [a typographic error in the measurement units in Pilkington & Todeschuck (1995) was corrected following a

discussion with M. Pilkington]. The former have been multiplied by 2pk so as to yield angle-integrated rather than angle-averaged spectra. The straight

lines show the reference slopes bx=1.2 (vertical), bx=1.4 (horizontal) with Hz=(1.4–1)/(1.2–1)=2 and spheroscale at 105 km. Note that for the

borehole data there is a large variation in spectral density depending on rock type, but that the vertical igneous and horizontal igneous do indeed show

signs of intersecting at scales of 105 km or so, compatible with the indirect spheroscale estimates given by the stratified scaling model.
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and surface gravity, Lovejoy et al. (2001) found that a similar

value (Hz#3) is compatible with gravity surveys, rock density

statistics and theoretical analysis of density fluctuations in

mantle convection. Although there is no compelling reason why

Hz should be exactly the same for different rock properties,

they are unlikely to be very different. This is because the various

properties are correlated with each other, often assuming ‘typical

values’ associated with different rock types. Since the classical

picture of rock strata tends to identify different strata with

different rock type, the degrees of stratification (Hz) cannot

be too different (at least not for physically significant rock

properties/parameters).

The small difference between the horizontal and vertical

spectral exponents leads to poor estimates of Hz and also

to great uncertainty in estimating the spheroscale. (Since the

spheroscale is simply the scale where the horizontal variability

equals the vertical variability, it is expected to vary greatly from

place to place according to the local rock type; very large

samples may be necessary for reasonable ensemble estimates.)

Using Leary’s spectra, we can attempt to estimate this scale by

extrapolating to where the horizontal and vertical spectra would

cross. Doing this using the above exponents, on Leary’s graphs

we find very rough estimates of #100 km, #1 m, #1 km, for

rock density, gamma emission and velocity, but these are all

quite inaccurate and presumably vary from place to place.

6.2 Spectral predictions of the model and comparison
with magnetic field spectra

We have argued that the physically relevant case is that for

which Hz>1 and the Curie cut-off scale is much smaller than

the spheroscale. Appendix A gives an estimate for the slopes of

the two main spectral regions of EB(k) obtained from eq. (21),

bh ¼ s � 2 , K > kc ,

bi ¼ s � 3 , kc > K > kic , (22a)

where kic is the critical low-wavenumber cut-off for the

intermediate scaling range,

kic ¼ ksðkc=ksÞ1=Hz : (22b)

A third very low-wavenumber regime also theoretically exists,

bi ¼ �3 , K < kic , (22c)

but is probably of sufficiently low wavenumber to be masked

by the spectrum from the core (see below).

As we see, the slopes do not depend on Hz; the latter

determines the width of the intermediate bi=sx3 regime (see

Appendix A for details and see Fig. 6 for a schematic of the

various ranges). From our earlier estimate of the slopes, bh#2

and bi#1 (see Fig. 1), we see that as predicted eq. (22) is

respected (i.e. bhxbh=1), with s#4. Physically, the origin of

the regimes is easy to understand; the following is justified in

detail in Appendix A. At wavenumbers higher than the Curie

wavenumber, we have the usual Spector–Grant type relation

between the horizontal surface B spectrum and M; horizontal

structures of wavenumber K are indeed dominated by vertical

magnetization structures at wavenumber kz=K. However, for

K<kc, this breaks down; Fig. 4 shows the geometrical reason.

For this intermediate range, the horizontal surface B variability

results from the contributions from thicker and thicker structures.

Finally, for horizontal structures corresponding to wavenumber

K=kic, the thickest structures already span the entire mag-

netized region; the variability drops off very rapidly for lower

wavenumbers (bl=x3) since no new structures contribute.

We can now consider the (isotropic) limit Hzp1. We find

that the intermediate (bi) regime disappears and we obtain the

Maus & Dimri (1995) result b=bh=sx2 for K>kc, while for

K<kc, we obtain the bl=x3 exponent. In other words, any

isotropic scaling model will lead to a drastic low-wavenumber

fall-off in the intermediate range spectrum, rather than the

observed slow rise (bi#+1). On the other hand, the existence of

the intermediate spectral regime—which is so difficult to explain

with classical models—is a generic feature of the anisotropic

scaling models.

In order to obtain a value for Hz we now compare the

horizontal and vertical susceptibility spectra in Fig. 5. Since

the data are so sparse (the spectra are quite noisy), rather than

using the best-fit regressions, we plot reference lines that are

compatible with both Pilkington and Todeoschuck’s data and

with Leary’s results, and (via eqs 20a and b) with the value

of s#4 found from the magnetic field data and eq. (21). For

the vertical (borehole) data we have roughly slope bz#1.2

(particularly for the sedimentary rock) and bx#1.4 for the

sedimentary rock with, therefore, Hz#2, s#4.4. However, the

values bx#1.3, bz#1.17 (hence Hz=1.7, s=4) are just as good

a compromise and were used for the simulations in Paper II

(see Table 2 below).

Having an estimate of bz and bx, we may also make a

rough estimate of the size of the spheroscale. At this scale, the

horizontal and vertical spectra should intersect each other.

Using the best spectra (from sedimentary vertical and horizontal

boreholes), we estimate the intersection point at ks#10x5 kmx1,

or a spheroscale of approximately 100 000 km (this would

imply, of course, that it is never attained). Using roughly these

parameters, we can numerically integrate eq. (17) and compare

the resulting theoretically predicted surface magnetic field

spectrum with the data. Figs 2 and 3 show that the result is in

reasonable accord with values obtained from the anomaly spectra.

Clearly, in order to make a better estimate of the spheroscale

and s, Hz, susceptibility data from vertical and horizontal

boreholes in the same region should be examined. Note that

logK

logE(K)

+3

-(s-3)

-(s-2)

kckic = ks kc / ks( )1/ Hz

low
intermediate high

Figure 6. Schematic spectrum showing the scaling regimes in the case

Hz>1, kc>ks. As long as kic is less than about (2000 km)x1, the

low-wavenumber regime would be masked by the core contribution.
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Table 2. A comparison of various theoretical and empirical constraints on the model parameters.

Hz s bx bz bi bh kc ks

Description degree of

stratification

exponent of

spectral density

of M

horizontal spectral

exponent of M

vertical spectral

exponent of M

intermediate-wavenumber

surface B

spectral exponent

high-wavenumber

surface B

spectral exponent

Curie wavenumber

(inverse Curie depth)

sphero-wavenumber

(inverse spheroscale)

Theory fundamental fundamental sxHzx1 (sx2)/Hz sx3 (1) sx2 ks<kc

Leary (1997) (2) 3 5.3 1.34t0.12 1.10t0.12

Lovejoy et al. (2001) (3) 3 5.3

data set # 1 (4) 2 3.6 0.6 0.8 0.6 1.6 (30 km)x1 <(104 km)x1 (5)

data set #2 (4) 2 4.4 1.4 1.2 1.4 2.4 (100 km)x1 <(104 km)x1 (5)

Other information 2 (6) 3.5–4. (7) (10 km)x1–(100 km)x1 (8)

Spectral model 1.7 4 1.30 1.17 1 2 (10 km)x1–(100 km)x1 (104.5 km)x1

(1) This intermediate-wavenumber regime extends down to kic=ks(kc/ks)
1/Hz; there is then a very low-wavenumber regime with b=x3, which is probably swamped by the core contribution.

(2) These values for gamma emission, seismic velocity and rock density are given for comparison only. Hz is estimated from Hz=(bxx1)/(bzx1).
(3) Exponents for rock density estimated from gravity surveys, rock density, theory of mantle convection; for comparison only.
(4) These were from roughly fitting numerical spectra; see Figs 2 and 3. The Hz dependence of the spectrum is only at all noticeable near the low-wavenumber end of the data; the fit is quite insensitive to this and to ks as
long as the critical wavenumber kic=ks(kc/ks)

1/Hz is <(2000 km)x1 (see Section 2).
(5) With Hz=2, the requirement that the low-wavenumber regime extends to kic=(2000 km)x1 implies ks<(105 km)x1, ks<(104.5 km)x1 for kc=(101.5 km)x1, and kc=(102 km)x1, respectively.
(6) Numerical simulations in Paper II show that the ratio of the high- and low-wavenumber regime-B scaling exponents for low-order moments is Hz; the surface B data can then be used to estimate Hz, giving the value
shown.
(7) Maus et al. (1997) obtained s in the range 3.5–4 for South African and Central Asian surface B spectra.
(8) Rough geothermal estimates assuming 20 K kmx1 of vertical temperature gradient and a Curie temperature of 600 uC yields 30 km for the Curie depth. Due to local variations, the range indicated is more
appropriate.
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taking ks=(105 km)x1, kc=(30 km)x1, Hz=2, we estimate

the low-wavenumber end of the sx3 (intermediate) range

(kic; eq. 22b) to occur at #(2000 km)x1, which is roughly

the high-wavenumber limit of the core contribution (see Figs 2

and 3). This would explain why the bl=x3 crust regime is

never observed; it would be negligible with respect to the core

contribution.

6.3 Discussion of parameters and model/data
comparison

At various points in this paper, we have appealed to theoretical

considerations, and where possible, to empirical evidence to

support our admittedly simple spectral model of crust mag-

netization, the key parameters being Hz, which controls the

degree of stratification, and s, the exponent of spectral density

P. In addition, there are two auxiliary model parameters (the

size of the spheroscale, ks
x1 and the Curie depth, kc

x1) but these

are not very demanding on the model; the former need only be

sufficiently large (see footnotes 4 and 5 to Table 2 below), while

the latter need only be compatible with the geothermal profiles

in the regions considered. The most stringent test of the model,

therefore, derives from the fact that starting with the (Hz, s)

pair, four other spectral exponents are derived: the horizontal

and vertical magnetization exponents along with the high- and

low-wavenumber surface B exponents. Since the best-quality

data is that of the surface B field, probably the most convincing

support for the model therefore comes from the fact that the

theoretically predicted difference bhxbi=1 is reasonably well

respected in Fig. 1 for both data sets #1, #2; this permits

reasonable estimates of s, although even here the regional

variations in s led to s=4t0.4 (that is, there is still substantial

uncertainty, although the value s=4, hence bi=1, bh=2 is

quite reasonable for both; see Fig. 1). The main difficulty is in

obtaining a reasonable estimate of Hz, so the value 2 (used

for example in Figs 2 and 3) is fairly ad hoc. In addition, the

susceptibility data (used as a proxy for M) are extremely sparse,

yielding exponents with large uncertainties. They are also

uncomfortably close to the critical value 1 so that the estimate

Hz=(bxx1)/(bzx1) is particularly uncertain. Indeed, purely

from the information discussed so far, perhaps the most con-

vincing argument for an Hz in the vicinity of the value cited

(Hz#1.7) is the fact that other related fields (including rock

density) appear to have similar values of Hz. In the end, the

most persuasive argument comes from the numerical multi-

fractal simulations in Paper II, which enable us to compare

all the statistical moments of the surface B field with the

predictions of the model.

It is for these reasons that we have not attempted rigorous

statistical parameter estimates, but rather tested for the com-

patibility of model parameters with the data. In order to help

summarize the various empirical and theoretical constraints,

we have constructed Table 2. The final line ‘Spectral model’ is

an admittedly somewhat subjective selection of most plausible

all-round values.

7 C O N C L U S I O N S

The existence of fractal structures and scaling statistics can

be understood as a natural consequence of scale-invariant

geodynamical processes; their ubiquity has inspired numerous

investigations into the scaling properties of the corresponding

geophysical fields. This includes surface magnetism (B) and

rock susceptibility (a surrogate for crustal magnetization, which

is the source field for B at scales less than several thousand

kilometres). However, still by far the most widespread frame-

work for such scaling models and analyses is that of self-

similar (isotropic) fields with unique fractal dimensions. These

restrictions are serious obstacles to realistic theories and models

of geofields. Self-similarity is unrealistic most notably because

it ignores the fundamental role of stratification, while mono-

fractality is simplistic because it ignores the role of inter-

mittency (strong variability, the presence of anomalies). In this

paper, we argue that the failure to account for stratification

leads directly to a paradox for the surface B field: the inability

to account simply and convincingly for the strong inter-

mediate- range (#2000 km to #100 km) ‘red noise’ variability

in the surface B field. In comparison, a necessary consequence

of the thinness of the magnetized crustal layer and of the large

distance to the core is that self-similar models have a rapid

(b=x3) low-wavenumber fall-off below the Curie wavenumber.

Classical potential theory shows that the surface B field is

linearly determined by the volume M field, hence the latter is the

physically more fundamental starting point for models; it also

has the mathematical advantage of allowing for a unique deter-

mination of the surface B given the volume M. In addition, the

second-order statistics (e.g. spectra) are particularly simply

(linearly) related; we therefore restrict ourselves in Paper I to

second-order statistical modelling. The basic assumption of the

model is that the spectral density of the magnetization is scaling

but anisotropic in the vertical plane, that is, the dynamical

mechanism generating the magnetization distribution is scale-

invariant but stratified. Additional (but secondary) assumptions

are (a) that there exists a reference isoline of energy density

whose shape is roughly spherical (at a Fourier space radius ks,

the spheroscale), and (b) that the (ensemble) spectral statistics

are translationally invariant throughout the magnetized region

(this is still compatible with enormous statistical variation from

place to place on a single realization of the process). These

assumptions determine the shape of the spectrum. Two addi-

tional simplifying assumptions were also made: (a) that the

direction of the magnetization was constant over the region

of interest, and (b) that the finite thickness of the magnetized

layer (due to the Curie depth) can be approximated by a sharp

Fourier space cut-off at the corresponding wavenumber kc.

These last two assumptions could be made more realistic, but

would make only minor changes to the results.

The fundamental—and at first sight surprising—generic

feature of the model is that the sharp Curie depth cut-off in the

vertical M field does not lead to a cut-off in the horizontal

spectrum of B spectra until (possibly) much, much lower wave-

numbers. Instead, it produces a new intermediate scaling range

‘red noise’ spectrum whose exponent is one less than that of the

high-wavenumber range. Although we exert a certain effort

to obtain quantitative empirical estimates of the relevant para-

meters (notably the basic stratification parameter Hz and spectral

scaling exponent s), because of the poverty of the magnetization

surrogate (susceptibility) data, the most convincing vindication

of the model is the excellent fit of the surface B spectra to the

form predicted by the model (especially the change in slope of 1).

Systematic studies of magnetization statistics (in both hori-

zontal and vertical directions) will clearly be needed to test the

model further and provide more reliable parameter estimates

(although see Table 2). However, even without waiting for this,
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two further tests of the anisotropic scaling are possible using

the more abundant surface B data. The first is to go beyond

second-order statistics and investigate the scaling of the statistics

of all orders using multifractal analysis. The second is to make

a multifractal model of M and to compare the surface B

statistics with data. This is the subject of Paper II.
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A P P E N D I X A : S C A L I N G R E G I M E S F O R
T H E S U R F A C E B F I E L D

In Section 5 (eq. 21), the energy spectrum of the z-component

of the surface B field (EB(K)) was given under the assumption

that the magnetization has only a z-component and has scaling

stratification,

EBðKÞ ¼ K3

ðki

kc

dkz

ðK2 þ k2
z Þ½ðK=ksÞ2 þ ðkz=ksÞ2=Hz 	s=2

, (A1)

where K is the modulus of the horizontal wavenumber, Hz

characterizes the degree of stratification and ks is the scale

where the magnetization has the same variance in both the

horizontal and the vertical directions (the ‘spheroscale’). The

upper limit of integration ki (corresponding in physical space to

the inner scale of the vertical scaling of the magnetization)

turns out not to be important for the parameters of interest here.

However, we will see that the lower limit (kc, corresponding to

the outer limit of vertical scaling in physical space, the Curie

wavenumber) is very important. This abrupt Fourier space

cut-off (corresponding to a ‘sinc’ function real-space cut-off) is

an admittedly crude approximation to what is presumably a

fractal bottom cut-off of the magnetized region associated with

the Curie temperature/depth.

Although Table A1 covers the complete parameter range,

the detailed derivations in the following are for the physically

relevant case Hz>1 (corresponding to horizontal stratification

increasing towards smaller scales). The evidence for Hz>1

comes from various horizontal and vertical data sets (see the

discussion in Section 6, including the susceptibility spectra

shown in Fig. 5, especially Table 2). An additional fairly general

argument can be made simply from the observation that the

spectral energy at scales of kilometres is apparently larger in the

vertical direction than in the horizontal at the same scales. This

means that the smaller and smaller scales will be increasingly

stratified only if Hz>1. Less directly, Lovejoy et al. (2001)

showed that a rock density field (presumably related to

the magnetization, e.g. by Poisson’s relation) with Hz>1 can

explain the surface gravity spectrum. In addition, the success of

spectral modelling the surface B field with this assumption

(Figs 2 and 3) or multifractal simulations (Section 6) gives this

assumption a posteriori justification.

Given Hz>1, the two main cases to consider depend on

whether or not the Curie depth is relevant.

(1) The Curie depth is unimportant: kc%ks

This is the simplest case where the Curie depth is effectively

infinite and allows us to understand more easily the case where

the finite Curie depth is taken into account.

(i) High-wavenumber end: K>ks

In this spectral domain, since Hz>1, we have K<ks(K/ks)
Hz so

that we obtain from eq. (A1)

EBðKÞ&
ðK

kc

K�sþ1ks
sdkz þ

ðksðK=ksÞHz

K

K3�sks
sk

�2
z dkz

þ
ð?

ksðK=ksÞHz

K3ks=Hz
s k�2�s=Hz

z dkz (A2a)

with the restriction s>xHz (otherwise there is a high-

wavenumber divergence). This yields two dominant terms of

the form

k2
s

K

ks


 �2�s

, k2
s

K

ks


 �3�s�Hz

(A2b)

for the low-kz and high-kz regions, respectively. Recalling that

in this regime K>ks, the term with the largest exponent will

dominate; since we have also assumed Hz>1, the first term

dominates. This implies that bh=sx2 and most of the

dominant contribution to the high-wavenumber EB(K) comes

from kz#K.

(ii) Low-wavenumber end: K<ks

Here we have K>ks(K/ks)
Hz so that we obtain

EBðKÞ&
ðksðK=ksÞHz

kc

K�sþ1ks
sdkz þ

ðK

ksðK=ksÞHz

K1ks=Hz
s k�s=Hz

z dkz

þ
ð?

K

K3ks=Hz
s k�2�s=Hz

z dkz (A3)

Table A1. The various high- and low-wavenumber exponents for

s>xHz, Hz>0. The case of interest here is the first column.

bi sx1xHz

s

Hz
� 2


 �
(sx2)

s>Hz>1 Hz>s>1 Hz<1

bh (sx2) sx3+Hz

s

Hz
� 2


 �
Hz>1 s>Hz; Hz<1 s<Hz<1
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with the same restriction s>xHz. We obtain terms with the

following scaling:

k2
s

K

ks


 �2�s=Hz

, k2
s

K

ks


 �1þHz�s

: (A4)

Recalling that K<ks, the dominant term now has the smallest

exponent and we find that the first term dominates for s<Hz,

whereas the second term dominates for s>Hz; the latter is the

relevant case here. Note that in the case s>Hz, this implies that

the dominant contribution to the low-wavenumber horizontal

spectrum comes from kz#ks(K/ks)
Hz.

In summary, if kc is small enough, since we will see that

typical values of empirical bs easily satisfy s>Hzx1, we are

interested in the formulae

bi ¼ s � Hz � 1 , bh ¼ s � 2 :

We see that both the high- and low-kz cut-offs are unimportant.

Convenient formulae for Hz, s are therefore

Hz ¼ bh � bi þ 1 ,

s ¼ bh þ 2 :

Taking the (isotropic) limit Hzp1, we obtain bi=bh=sx2,

which is a result derived in Maus & Dimri (1995).

Finally, we found that the integrals are dominated by

the contribution at kz=K for K>ks, but for K<ks they are

dominated by K=ks(K/ks)
Hz. This is a statistical one–one

relation between horizontal statistics and vertical statistics, a

generalization of the deterministic-type relations sought by

Spector & Grant (1970) (and used for determining depths of

sources in prospecting). Translated into real space terms, it

means that

*z&ls
*x

ls


 �Hz

*x > ls ,

*z&*x *x < ls , (A5)

where ls=1/ks is the spheroscale and Dz is the thickness of the

layer in the vertical contributing to the horizontal structures in

the magnetic map of scale Dx. Note that since the contribution

from a layer at depth z decreases exponentially (as exK|z|; see

eq. 4b), it would appear to be legitimate to consider that the

dominant structure of vertical extent Dz is in fact roughly

situated between the surface and depth z. Hence, this analysis

gives support to the existence of relations between horizontal

extent and depth, except that (a) the relationship is only statistical

and (b) it is based on the non-standard two scaling regime

formula above. In fact, we find that for the low-wavenumber

regime, the Curie depth is dominant (the low-wavenumber

regime is apparently not physically relevant), so that these

conclusions only hold for the high-wavenumber regime.

(2) Curie depth is important, kc>ks

In this (physically relevant) case, we can use the same approxi-

mations as before (breaking the integral into three zones

depending on kz as before). The interesting case is K>ks and

we obtain three zones,

EBðKÞ&
ðK

kc

K�sþ1ks
sdkz&K2�sks

s , K > kc ,

EBðKÞ&
ðksðK=ksÞHz

kc

K3�sks
sk

�2
z dkz

&K3�sks
sk

�1
c , kc > K > ksðkc=ksÞ1=Hz , (A6)

EBðKÞ&
ð?

kc

K3ks=Hz
s k�2�s=Hz

z dkz

&K3ks=Hz
s k�1�s=Hz

c , K < ksðkc=ksÞ1=Hz :

These are the low-, intermediate- and high-wavenumber regimes,

bi ¼ �3, bi ¼ s � 3 , bh ¼ s � 2 : (A7)

It is only the last two that are physically significant. A

numerical evaluation is shown in Fig. A1.

The important point to note is that the existence of

anisotropic scaling manifests itself as a change in slope of 1

between the high and intermediate regions. Only the length of

the region depends on the value of Hz, not the slopes. The

maximum occurs at roughly ks(kc/ks)
1/Hz.

We now examine the relation between the high- and low-

wavenumber magnetization and magnetic field statistics. We

note that in eq. (A6) for K>kc, the dominant contribution to

EB(K) comes from kz#K, whereas for K<kc it comes from

kz#kc, implying that for B anomalies with Dx>kc
x1 all vertical

scales in M are important and a Spector–Grant type identi-

fication of horizontal B anomalies with sources at specific

depths is no longer possible (the corresponding B anomalies

will also be sensitive to variations in the core depth). To better

understand the statistical relations between B and M, we may

use these approximations to rewrite eq. (A6) as follows:

PBðKÞ&K2PMðK , 0Þ , K > kc ,

PBðKÞ&KPMðK , 0Þ, K < kc : (A8)

Since P is quadratic in Fourier transforms, this implies—at

least as far as the spectra are concerned—that the surface B

field has the same statistical properties as the vertically

integrated magnetization (M(K, 0)) filtered by K and K1/2 for

-5 -4
log10K

-18

-17
log10EHKL(K)

Figure A1. Numerical integration of eq. (A1) with parameters

ks=10x7, s=4, Hz=3 showing the effect of varying the Curie depth

kc=10x4, 10x4.5, 10x5 (bottom to top). The three regimes are clearly

shown with bl=x3, bi=1, bh=2.
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the high- and low-wavenumber regimes, respectively. This

corresponds to fractional differentiation of order 1 and 1/2,

respectively.

Since bh=sx2, bi=sx3, a change in slope of 1 at the

Curie/cut-off depth is thus a fundamental prediction and

the reasonable empirical support for this prediction is in itself

strong support for the model. This special intermediate-

wavenumber scaling regime—which is a unique prediction of

the anisotropic scaling model—explains in a simple way the

‘intermediate range’ of magnetic anomalies (those shorter than

the core contribution (approximately 2000 km) but longer

than the Curie depth (approximately 10–100 km).

A P P E N D I X B : H O R I Z O N T A L
A N I S O T R O P Y A N D S P U R I O U S S C A L I N G
B R E A K S

If the magnetic anomaly field is scaling but non-self-similar

then the use of isotropic analysis techniques (such as isotropic

energy spectra or isotropic trace moments; see Paper II) will

generally lead to spurious breaks in the scaling. We examine

here the magnitude of such effects and demonstrate that they

are not responsible for the break in Fig. 1.

First consider the general form of a scaling spectral density

P(k) given by eq. (14). To quantify the effect of overall

stratification on the isotropic spectrum, consider the simple

self-affine case where the stratification occurs in orthogonal

directions; take G as a diagonal matrix with d=1 and e=f=0.

(The rotation dominance case involves sinusoidal modulations

of the spectrum with a constant logarithmic period equal to

2p/|a| so that there is no overall break of the sort observed in

Fig. 1.) A spectral density respecting this anisotropic scaling

(eq. 14) is

Pðkx, kyÞ ¼
kx

ks


 �2=ð1þcÞ
þ ky

ks


 �2=ð1�cÞ
 !�s=2

, (B1)

where ks is the wavenumber of the ‘spheroscale’. In two

dimensions, the usual (isotropic) energy spectrum E(k) (where

k2=kx
2+ky

2) is obtained by integrating P over circles,

EðKÞ ¼ K

ð2n

0

dh

½ðK cos h=ksÞ2=ð1þcÞ þ ðK sin h=ksÞ2=ð1�cÞ	s=2
(B2)

(since kx=K cos h, ky=K sin h). In self-similar systems (eq. B2

with c=0), we recover the usual result: the spectral exponent

b=sx1. In D dimensions, the relation is b=sxD+1.

We may now consider E(k) for cl0; in this case, it is not

hard to show that we obtain two different asymptotic scaling

regimes (for k%ks, k&ks). Denoting the corresponding spectral

exponents by bl, bh, we obtain the cases listed in Table B1.

The extension of this result to the general stratification

dominance case (i.e. a2>0 but fl0, el0) is straightforward

since the stratification is generally along (non-orthogonal)

directions (the eigenvectors of G). We can therefore choose the

same form for P except that kx, ky refer to non-orthogonal

coordinates and we simply replace c by a (since ta are the

eigenvalues of the traceless part of G). With these changes, we

recover the same asymptotic scaling regimes as those shown in

Table B1.

In order to explain the break in Fig. 1 by invoking scaling

anisotropy in the horizontal magnetic anomaly field, we could

use estimates of bl and bh to invert the two above equations to

determine s and a. Direct estimates of a, given in Paper II,

indicates fairly small values of a, at most 0.24. This would yield

a break of at most about Db#0.5, smaller than observed by a

factor of 2. Additionally, in most cases the (horizontal) sphero-

scale is quite small; thus, this effect would not be observed at all

in the data sets used for Fig. 1.

Table B1. The various high- and low-wavenumber scaling isotropic

spectral exponents for the spectral density [E(K), eq. (B1)]. For more

general linear GSI it suffices to replace c by a.

s<1x|c| 1x|c|<s<1+|c| s>1+|c|

bh (k&ks) �1 þ s

1 � jcj 1 þ s � 2

1 þ jcj 1 þ s � 2

1 þ jcj

bl (k%ks) �1 þ s

1 þ jcj �1 þ s

1 þ jcj 1 þ s � 2

1 � jcj
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