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UNIVERSAL MULTIFRACTAL INDICES FOR TIlE OCEAN SURFACE AT FAR RED WAVELENGTHS 
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Abstrac..t. For some time, ocean wave sea surface following a statistical geometry 
breaking has been conceptualized as a cascade approach used in strange attractor studies. This 
process in which the large scale wind energy paper amplifies preliminary analyses of 
flux driving the system is dissipated by wave Laval16e et al (1991) showing with the help of 
breaking at small scales, the two seperated by a turbulent multifractal formalism that the 
tile "equilibrium" scaling range. Cascades are surface radiances the are indeed multifractals 
now known to generically lead tO multifractals; of a specific "universal" form predicted by 
with special "universal" multifractals theory. 
theoretically predicted. In this paper we use There are specific reasons connected with 
far red (0.951•m) radiances at lm resolution dynamical cascade processes why multifractals 
obtained from aircraft to test the multifractal may be expected to arise in ocean waves. 
behavior of the ocean surface and estimate the Cascades ideas have been used in the ocean 
corresponding universal multifractal wave "equilibrium range" spectrum (e.g., 
parameters of the radiance field. Zakarov and Filenko 1966, Zakarov and 

Zaslavskii 1982) which separates the large 
Introduction scales wilere waves are generated by wind and 

the small scales where they are dissipated by 
It has long been realized that over ranges breaking. Since many cascade properties are 

spanning centimeters to at least several tens of now known to be generic, this extension to the 
meters (the "spectral peak"), that the ocean ocean is natural. The basic physical ingredients 
surface has scaling (power law) spectra for cascade models are: 
E(k)-k -[•, where k is a wavenumber. Scaling or -The dynamics are scaling over wide ranges 
scale invariance indicates that some in scale: there are significant ranges over 
geometrical and statistical properties are which no strong scale breaking process 
preserved at different length scales. Simple occurs. This may apply over the ocean's 
illustrations of scaling are geometrical sets, "equilibrium" wave range from tens of 
such as the Cantor set, characterized by a meters down to the wave breaking scales of 
unique scaling exponent, its (mono)fractal one centimeter or so. 
dimension (see Mandelbrot, 1983). Several -There are fluxes that are conserved by 
(mono)fractal investigations of wave properties nonlinear dynamics (such as the energy flux). 
have been done (Glazman and Welchman, 1989; For ocean waves, the energy flux is usually 
Glazman, 1991; Stiassnie et al, 1991; Huang et considered to be conserved (e.g. Zakarov and 
al, 1992; Kerman and Szeto, 1993). Following Filenko, 1966). 
the development of cascade ideas in turbulence Although the dynamics of wave interactions 
theory (Mandelbrot, 1974; Frisch et al., 1978; and wave breaking are in many respects 
Schertzer and Lovejoy 1984, 1987, Parisi and different from hydrodynamical turbulence 
Frisch, 1985; Meneveau and Sreenivasan, 1987) (especially due to the nonlocalness of ß 

it woulcl seem much more likely that the ocean interactions), it plausibly respects the above 
surface is multifractal rather than monofractal: properties and thus the general properties of 
regions of the ocean surface exceeding a certain cascade processes may be relevant to the ocean 
elevation threshold are expected to have fractal surface, especially the predictions of 
dimensions decreasing with increasing multi fractal behavior. 
elevation (rather than remaining constant as In the following, we study two aircraft 
innplied in a monofractal model). Kerman photos of the ocean surface at 0.95 gm 
(unpublished, 1993), Kerman and Bernlet wavelength, and with lm resolution, over a 
(1993) performed multifractal analyses of zone 512 x 512m2, obtained using a line 
remotely sensed data of breaking waves on the scanner on board an aircraft operated by the 

Canadian Center of Remote Sensing. These 

•-Now at URA CNRS 1367, Laboratoire de G•ologie Appliqu•e photos were taken near the coast of Nova Scotia 
2Physics Department, McGill University under differing dominant wind conditions. The 
aLaboratoirede M•t•orologie Dyamique (CNRS), Universit• mean wind speed was 12 m/sec for flight 5 
Pierre etMarie Curie and 17m/see for flight 7. We estimated the 
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basic universal multifractal parameters of the 
radiation field reflected from the surface. 

Because of the strong non-linear coupling of the 
far red radiance field with the dynamics (and 
whitecaps), multiscaling in the dynamical field 
will be reflected in the radiance which will also 

be multifractal (although with possibly 
different multifractal parameters). 
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Multifractals and ocean surface radiances and Stewart 1964, Mandelbrot 1974, Frisch et 
al 1978), et = 2 is the lognormal model. The 

In hydrodynamic turbulence, the energy flux parameter C1 is the codimension of the mean of 
density e X. from large to small scales is the process; it quantifies the sparseness of the 
conserved' its ensemble average <e•.> is mean. The third parameter H determines the 
independent of scale. Directly observable fields degree of nonconservation fro nonconserved 
such as the velocity shear (Avjt)for two points fields. 
separated by the adimensionalized distance 
(•. = lo/l, the ratio of the smallest scale of Spectral Analysis 

variability to the external/largest scale, •,>1) 
are related to the energy flux through The limits of the scaling is conveniently 
dimensional arguments: determined by Fourier analysis. Fig. 1 shows 

E(k) for the two pictures analyzed; power laws 
Av•.=•.)•. -J• (1) correspond to scaling regimes. Phillips (1985) 

This corresponds to the celebrated suggested that scaling for gravity waves holds 
Kolmogorov (1941) law for homogeneous for the range between the finest resolution ~0.1 
turbulence (eX=<e>), more genereraly this may and about ~15m. We observed a good power 
correspond to fractionnal integration of order law fit (E(k) ~ k-•) for the range between ~1 m 
1/3 over a highly fluctuating exl/3 (Schertzer and about 50 m which is roughly compatible 
ahd Lovejoy, 1987), i.e. a k-l/3 filter in Fourier with this result. The exponent [• (1.29, 1.39 for 
space'(k is the wavenumber). flights 5 and 7 respectively) is related to the 

The dynamical equations responsible for the parameter H with the help of the following 
distribution of the sea surface radiances are not formula (e.g. Laval16e et al 1992)- 

so well known; we can only speculate on the [•-l+K(2) [1-1 C!(2 a-2) (5) appropriate quantity rp•.analogous to el for the H= 2 = 2 + 2(c•-1) 
radiance fields, having the conservation 
property <q•. > = constant (independent of scale). The Double trace Moment analysis technique 
The observable (non conserved) surface infra 
red reflectivity fluctuations (AI•.) are then The Double Trace Moment (DTM) technique 
given by: (Laval16e et al 1993) directly estimates the 

universality parameters by taking the •1 power AI•=q*•.•- -• (2) of q)^ at the largest available scale ratio A. It 
We lose no generality by taking in the generalize the single trace moment (Schertzer 

following discussion a = 1. The scaling and Lovejoy 1987). The q, q double trace 
parameter H specifies the exponent of the moment at resolutions •, and A is then defined 
power law filter (tlie order of fractional as: 

integration) required to obtain I from q> and how far the measured field I is from the conserved field qo' <1AI•. l> = •.-H . rr• (rp• = rp•dOx • •.•:½•,.•-(•-,•o (6) 
It is now known (Schertzer and Lovejoy 

1984, 1987) that dynamical processes where the sum is over all the sets BX (scale •., 
respecting the cascade properties will dimension D) required to cover the multifractal, 
generically lead to multifractal measures with and the (double) scaling exponent K(q,•l) 
the following multiple scaling property with satisfies the following relation: 
exponent 'K(q): 

K(q, rl) = K(q,•l)-qK(rl,1) ; K(q, 1)= K(q) (7) 

Applying eq. 6 to the field %,, simply consists 
The relations between this turbulent of taking variou's powers •1 of the field at its 
multifractal formalism and the strange highest resolution (A), then degrading the 
attractor formalism (Halsey et al, 1986) is result to a lower resolution (•,), finally 
discussed in Schertzer and Lovejoy (1992). averaging the qth power of the result. If the 

In actual dynamical systems involving 
nonlinear interactions over a continuum of 
scales (and/or involving multiplicative "mixing" 
of different processes) we generally obtain a 
considerable simplification. Schertzer and 
Lovejoy (1987, 1991) and Schertzer et al 
(1991) show that cascade processes admit 
stable (attractive) universal generators: 
irrespective of the details of the nonlinear 
dynamics. The behavior of a conserved process 
will be characterized by only two fundamental 
parameters, (et, C1): 

C,(q* -q) 
- ' ct-1 ' K(q) }C•qLog(q) ct •: 1 (4) 
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c• is the L6vy multifractal index (0 < (x • 2), it Fi•. 1' Power spectrum for both scenes. The top 
quantifies the distance of the process from curve is for flight 7 (log10 E +1) the straight line 
monofractality; (x = 0 is the monofractal as slope [• = 1.39, the bottom curve is for flight 
(dead/alive) [5 model of turbulence (Novikov 5 (1og10. E ), the straight line as slope 13 = 1.29. 



process is non conservative (H • 0) such as 
radiance field examined here, it suffices to 
power law filter it so that the spectrum is fairly 
flat. We use a simpler approach- we analyse 
the modulus of the gradient of the field which 
is roughly equivalent to filtering by a factor k 
(= wavenumber). As an example, in fig. 2, we 
show the above trace moments for q=0.5, and 
•=0.7, 1.2, 1.8 and 2.4. The lines are straight 
over the same range of scales •, for which the 
spectrum (fig. 1) is scaling. By replacing eq. 4 
in eq. 7 we obtain the useful relation' 

0.8 ,,. 

o 1 

Log• o rl 
Fig, 3' This figure shows the results of the 

K(q,11)=11aK(q, 1) (8) double trace moment technique for both photos 
showing that oc and C1 can be estimated from a using q = 0.5, (flight 5: filled circles, flight 7: 
linear regression of log IK(q, •l)l vs. log•l for empty squares). It shows that except for q 
fixed q. Fig. 3 shows the results of such an greater than =3, or less than =0.3, that 
analysis (with q=0.5) comparing the two universal (straight line) behavior is observed. 
different scenes, showing that they have the The fitted straight lines of slope c•=1.14 and 
nearly the same parameters (c•=1.14, 0.99 and c•=0.99 are shown for reference. 
C 1=0.30, 0.22 respectively). A similar study for 
q = 2.0 give estimates of the statistical comparison, we have recently estimated 
variability, we deduce: o• = 1.1 ñ 0.1, C1 • c• = 1.3, 1.5 for wind tunel and atmospheric 
0.25 _ 0.05 and [3 = 1.35 ñ 0.05 and due to turbulence respectively (Schmitt et al 1992a,b), 
eq.5 H = 0.35 ñ 0.05. c• = 1.8 for the earth's surface topography 

The breaks at both ends of fig.3 are not (Layslide et al 1993), c• varies between 1.1 and 
scaling breaks, they indicate that eqs. 4, 8 no 1.4 depending on the wavelength of the sensor 
longer hold. For low values of rl, we.are for cloud radiances (Tesslet et al., 1993), 
analyzing very low values of the field, and the c•-• 1.4 for the spatial distribution of rainfall 
effect of (space filling) noise will be dominant (Tesslet et al 1993), o•- 0.5 for rainfall time 
and leads to a fiat K(q,11). When rl is large, series (Hubert et aI 1993). 
undersampling leads to poor estimates of high 
order moments (q>qs). There is also the Conclusion 
possibility of divergence of high order 
statistical moments (q>qD). These breaks In recent years there has been a growing 
correspond respectively to first order (qD<qs) literature on the dynamics of fraetal surfaces. 
and second order (qs<qD) multifractal phase Surfaces are fields not geometrical sets of 
transitions (Schertzer and Lovejoy, 1992, points, the natural and general framework is 
unpublished 1993) and K(q,11) becomes thus multifractals. We found that ocean 
constant for max(q11,11)>min(qs,qD). The break surface far red rdaianees have multifractal 
in the Iogl K(q,11)l vs. log 11 curve for values of •1 properties over the range of lm to 50m with 
=3 seems to correspond to a first order universal parameters o• = 1.1 ñ 0.1, C1 = 0.25 
multifractal phase transitions, since Kerman +__ 0.05 and H = 0.35 ñ 0.05. Presumably this 
and Szeto (1993) find qD=3 using probability scaling should hold down to centimeter scales. 
distributions on the same data sets; whereas Up until now such strong intermittency has, 
we can estimate qs=10 by applying the been impossible to deal with using closures 
procedure outlined in Schertzer and Lovejoy techniques (which typically assume non- 
(1991) to the above estimates of C1, c•. intermittent quasi-gaussian statistics). It also 

Our moderate value of o•, (recall 0_<•_<2) implies that standard numerical modelling 
shows that the radiance field is nearly halfway techniques must involve a wide range of sea!es 
between a lognormal and a [3-model. For other,vise the cascade process will be badly 

truncated. 
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The multifractal nature of the ocean surface 

may have important implications for studying 
the ocean. For example, (G!azman, 1990) 
suggested a reinterpretation of radar altimeter 
returns due to the fractal nature of the ocean 
surface. Universal multifracta! formalism will 

allow to extend this reinterpretation to 
multifractal surfaces. Other oceanic fields such 

as the surface temperature and the salinity 
could also benefit from such a characterization. 

It might also help in linking the wind and wave 
fields. 
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