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Abstract. Based on a multifractal structure hypothesis for 
temporal rainfall processes, a general formula relating 
maximum possible point rainfall accumulations is derived as a 
function of the duration and sample size. This formula 
appears to be in agreement with empirical observations. Such 
a result may reconcile some opposite points of view regarding 
extreme rainfall events, and suggests new ways of exploiting 
the scaling properties of rain processes. 

From fractal sets to multifractal fields: 

Fractals were first seen from a purely geometrical point of 
view [Mandelbrot, 1975, 1982]. Applied to rainfall time 
series studies this approach only enabled us to cope with 
occurrence or non-occurrence [Hubert and Carbonnel, 1989] 
of rainfall or monofractal functions whose fractal dimension 

was independent of the intensity threshold [Lovejoy, 1981; 
Lovejoy and Mandelbrot, 1985; Lovejoy and Schertzer, 
1985]. The occurrences must be carefully defined according 
to some kind of rainfall intensity threshold. The observed 
dependence of the fractal dimension upon the value of this 
threshold then yields an infinite hierarchy of dimensions 
[Schertzer and Lovejoy, 1985, 1991; Lovejoy et al, 1987; 
Lovejoy and Schertzer, 1990]. At first sight, we have lost the 

1Now at URA CNRS 1367, Laboratoire de G6ologie Appliqute, 
Universit6 Pierre et Marie Curie, Paris 

Copyright 1993 by the American Geophysical Union. 

Paper number 93GL01245 
0094-8534/93/93GL-01245503.00 

simplicity of a unique fractal descriptor, but this problem can 
be overcome by using (universal) multifractal fields rather than 
fractal sets. The basic equation of multifractal fields, derived 
from the theory of multiplicative cascades, is the following 
[Schertzer and Lovejoy, 1987a,b, 1989]' 

Pr(R•, > ;C r) = ;C -c(r) (1) 

Where • is the scale ratio and is T/x in time series of length 
T divided in elementary time-periods x, R;• is the intensity of 
the field at scale ratio •, 7 is an order of singularity. This 
equation states how the probability distribution of singularities 
of order higher than a value ¾ is related to the fraction of the 
space they occupy as determined by the codimension c(7). The 
"=" sign in the right side of equation (1) indicates equality to 
within slowly varying (e.g. log) functions of •. For some 
results on multifractals and rain (including a review) see 
Schertzer and Lovejoy (1987a, 1989), Lovejoy and Schertzer, 
(1992). 

Scaling laws for extreme rainfalls 

We may now consider extreme rainfall events occurring 
within a duration x. Whenever there is a maximum order of 

singularity Ymax, then the maximum accumulation A• will be: 

A• = •-IR• T • • 'Ymax-1 oc •.l-rmax (2) 

As predicted by eq. 2, the maximum recorded point rainfall 
depths for different durations (from minutes to several years), 
as presented in most hydrological or meteorological textbooks 
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and encyclopedia [Gilman, 1964; Rtmtnieras, 1965; 
Raudviki, 1979] exhibit more or less the same algebraic 
behavior (figure 1). On a log-log diagram, the slope is found 
to be about 0.5 (•/max_ = 0.5). 

There are many mechanisms which can give rise to finite 
7max. In multifractal processes, the highest possible order of 
singularities can be artificially restricted by construction (e.g. 
"geometric" or "microcanonical" processes [Schertzer and 
Lovejoy, 1992]). However, such a maximum is naturally 
produced by a large class of universal processes [Schertzer 
Lovejoy, 1987a,b, 1991; Schertzer et al, 1991; Brax et 
Pechanski, 1991; Schmitt et al, 1992]. In this paper, we don't 
discuss the various issues related to universality in 
multifractals, i.e. existence of attractive and stable processes 
which are scaling nonlinear analogues of the gaussian noises 
that often arise in linear processes. We rather concentrate on 
the exploitation of their codimension function below which 
depends only on two fundamental parameters C I and o• (for 
non conservative process, a third parameter (H) is necessary): 

c(•/) = C1 exp(•l 1 -1) o•=1 (3) 

where o•'-1+o•-1=1. CI measures the departure from homo- 
geneity (C 1=0) and o• is the Ltvy index bounded between 0 
and 2, which measures the departure from monofractality 

For o•>1, the orders of singularity are unbounded, on the 
contrary when 0<o•<1, a finite maximum order of singularity 
• does exist: 

C1 (4) 70=1_ a 

Sampling dimension to quantify limited information 

We must now consider a complication which arises because 
of the finite size of the data sets. A finite sample will miss 
extreme events which are sufficiently rare: the empirical sin- 
gularities will be bounded by an effective maximum •/s smaller 
than the theoretical •/0. Indeed, if we have Ns independent 
series, each with range of scales •,, then we may introduce the 
"sampling dimension" [Schertzer and Lovejoy, 1989, 1991; 
Lavalite, 1991; Lavallte et al., 1991] (Ds) to quantify the 
fraction of the (infinite) dimensional probability space actually 
explored: 

Ds = log Ns (5) 
log),, 

The actual total dimension is D+Ds, where D is the dimen- 
sion of each sample, D=I for time series. We now use the 
geometric interpretation of c(•/) as a codimension: whenever 
the observing space D+Ds>c('g), the set of singularities of 
order •/will be a fractal set of dimension D+Ds-c(•/). The 
maximum attainable •/yielding a nonnegative dimension (see 
figure 2), is Ts = c-l(D+Ds) = •/011- o•(CI/(D+Ds)) 'l/øc] which 
satisfies (for or<l, ot'<O): 

Y0 1-a -< Yo (6) 

with upper bound corresponding to an infinite sample size 
(Ds•,), the lower bound to a single sample (Ds=O). 

Confrontation with empirical observations 

Glancing at the empirical values gathered in table 1, it is 
noteworthy that a is quite consistently in the vicinity of 0.5 
and certainly bounded by 0 and 1. As a consequence, in the 
framework of universal multifractals, rainfall time series 
should have a maximum order of singularities. Averaging 
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Fig. 1: The world's record point rainfall values, reproduced 
from Raudkivi (1979). 1 - Cherrapunji, India; 2 - Silver Hill 
Plantation, Jamaica; 3 - Funkiko, Taiwan; 4- Baguio, 
Philippine Is.; 5 - Thrall, Texas; 6 - Smethport, Pa; 7 - 
D'Hani, Texas; 8 - Rockport, W.Va; 9- Holt, Mo.; 10- Cutea 

de Arges, Romania; 11 - Plumb Point, Jamaica; 12 - Fussen, 
Bavaria; 13 - Unionville, Md.; values from Jennings Jenning, 
(1950). (+) La Reunion, France; (o) Paishih, Taiwan; values 
from Paulhus (1965). 
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Fig. 2: The c(¾) curve corresponding to the estimated 
parameters ct = 0.51+0.05, C1 =0.44_+0.16, with ¾s for 
Ns--3• Ds samples (Ns--3• Ds, 3• being the scale ratio and Ds the 
sampling dimension), and T0 (=% for an infinite number of 
samples; Ds= Ns=oO). 

over all the analyzed series we obtain ot=0.51+__0.05, 
C1=0.44-+0.16. In the following we will assume that the 
embedding space dimension D is equal to 1 and that the 
sampling dimension Ds is equal to zero (i.e. considering a 
unique sample). Due to the nonlinearity of eqs. 4 and 6, there 
are two direct ways of obtaining the statistically best estimate 
of T0 and )s, yielding different results. On the one hand, as 
displayed in table 1, we can compute estimates of T0 and )s 
from each estimate of ct and C1, then average. On the other 
hand, we can compute estimates of T0 and )s from averaged 
values of or and C1. However, it turns out that the differences 
between the two results are not so important: T0 =- 0.88 and 
)s = 0.66 with the first method; T0 -= 0.90 and )s --- 0.69 with 
the second method. We actually prefer the first method 

because it readily yields a confidence interval: )0---0.88_+0.31; 
)s=0.66+0.20. 

The observed slope of figure 1 (=0.5), is compatible within 
one standard deviation with that estimated from )s values 
(1-)s---0.34_+0.20) and quite compatible within this deviation 
from that estimated from T0 values. More refined theories 
could take into account a possible degree of non conservation 
of the rain cascade, as well as the observed breaks in the 
scaling. Other improvements could include new estimation 
algorithms as well as the processing of larger data sets and 
may lead to even closer theoretical and empirical agreement. 

Conclusions and perspectives 

There exist presently two rather opposite views on extreme 
precipitation. One school of thought relies deeply on the 
notion of the "possible maximum precipitation" (PMP) 
considered as a physically based notion. In order to estimate 
the possible maximum precipitation at a given location (and 
implicitly at a given scale) a sophisticated analysis of the 
rainfall process in an attempt to address all its relevant and 
physical aspects (meteorology, orography, etc.) is required. 
However, such an approach is often considered as remaining 
t6o speculative or qualitative, especially with respect to 
engineering needs. 

On the other hand, supporters of statistical analysis 
consider rainfall rate as a random variable and time series as a 

stochastic process. Statistical approaches lead to rainfall m. te 
probabilities useful in engineering designs. However, without 
any reference to any physical processes, the role of 
hydrologists could easily be reduced to fitting empirical data to 
ad hoc statistical laws. 

These early results may help to reconcile the two points of 
view since they are based on both physics and statistics. 
Indeed, in our approach the multiplicative cascade accounts for 
turbulent processes resulting from nonlinear interactions 
between different scales and fields and leads to the statistical 

Table 1; A comparison of various gage estimates of o•, C1, T0, )s over various time scales. 
Parameters were mostly estimated from PDMS (probability Distribution/Multiple Scaling) the DTM 
(Double Trace Moment) techniques [Laval16e, 1991; Laval16e et al, 1991; Lovejoy and Schertzer, 
1991; Schertzer and Lovejoy, 1991]. (*Private communications; +Ladoy et al., submitted to C. 
R. Acad. Sci. Paris, 1992). 

Data Type 

reference 

Gage, daily Gage, 6 Gage, daily Gage, daily Gage, 15 Mean and 
accumulation minutes accumulation accumulation minutes standart 

resolution resolution deviation 
, 

Alps 
(France) 

Location Global Rtunion N•mes Dt:lougou 
Network Islands (France) (Burkina 

(France) Faso) 
Stations 4000 1 1 1 

Duration 1 year 1 year 40 years 45 years 
(scaling (scaling (scaling 
regime up to regime up to regime up to 
16 days 30 days 16 days 
0.5 0.5 0.45 0.59 0.50 
0.6 0.20 0.6 0.32 0.47 
1.20 0.40 1.09 0.78 0.94 
0.84 0.36 0.83 0.57 0.72 

Tessier et al, Hubert et al* Ladoy et Hubert et al* Desurosne 
1992 al + et al* 

., . 

28 

4 years 

0.51_+0.05 

o. 44_+0.16 

0.88+0.30 

0.66+0.18 
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description of rainfall (eqs. 1, 3). We are thus able to give a 
precise (statistical) definition of the possible maximum 
precipitation at a given scale: we not only clarify the role of 
scales for the definition of the PMP, but also the role of the 
limited size of samples used for its estimation. We furthermore 
showed that the two basic multifractal exponents (C l, 
determine the maximum attainable singularities (TO and •/s) and 
hence the possible maximum precipitation at a given scale and 
on a given sample. 
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