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[1] Magma under pressure rises in conduits, depressurizes,
forms bubbles by the exsolution of gas and – at void
fractions (P) typically of the order of 0.7 – can fragment and
explode. The study of overlapping geometrical units –
percolation theory – predicts that at a critical volume
fraction Pc the size of the largest simply connected
region becomes infinite. We apply percolation theory to
overlapping bubbles arguing that this geometric singularity
at Pc implies a physical singularity in the magma rheology.
This would imply that if the magma is under stress, - whether
it is ductile or brittle - this rapid development of a network of
infinitely long ‘‘bubbles’’ triggers fragmentation and
explosion. Classical monodisperse (equal size) continuum
percolation theory predicts Pc = 0.2985 ± 0.005 which is far
from the observed values. However, it has recently been
shown that the bubble distribution is a power law associated
with a huge range of bubble sizes. Using Monte Carlo
percolation simulations, we show that distributions
exhibiting the empirical exponents are very efficient at
‘‘packing’’ the bubbles, drastically raising Pc to the value =
0.70 ± 0.05. Explosive volcanism is thus explained by
singular rheology at Pc. INDEX TERMS: 3220 Mathematical

Geophysics: Nonlinear dynamics; 8414 Volcanology: Eruption

mechanisms; 8429 Volcanology: Lava rheology and morphology.
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1. Introduction

[2] Due to it’s role in triggering volcanic eruptions, the
problem of vesiculation and fragmentation of magmas has
long challenged geologists [e.g., Sparks, 1978;Gardneret al.,
1996; Kaminski and Jaupart, 1998; Sahagian, 1999; Papale,
1999].As themagma rises toward the surface it reaches a level
where bubble nucleation starts. Small bubbles grow by
diffusion and decompressive expansion; however for large
enough vesicles [Gaonac’h et al., 1996a] coalescence is more
rapid and candominate diffusion.At around 10MPa these and
other processes [Papale, 1999] trigger an explosive Plinian
eruption. Although pure coalescence does not increase the
vesicularity, even binary coalescence can generate bubbles far
larger than those possible by diffusion and expansion alone
[Gaonac’h et al., 2003;Lovejoy et al., 2003]. Its exact role has
recently been hotly debated [Klug andCashman, 1994, 1996;
Gaonac’h et al., 1996a, 1996b; Herd and Pinkerton, 1997;
Gaonac’h et al., 2003; Blower et al., 2001; Lovejoy et al.,

2003]. In this paper, we consider multibubble coalescence
which we argue can - via the percolation mechanism dis-
cussed below - create infinite simply connected regions near
the observed critical P (the volume fraction of the gas phase).
We propose that the resulting networks of infinite ‘‘bubbles’’
must criticallyweaken themagma so that if under stress it will
fragment provoking an explosion.
[3] The classical explosive eruptive models fall into two

classes: the first assumes that fragmentation is the conse-
quence of brittle magmas exceeding a critical stress [e.g.
Zhang, 1999] or critical strain [e.g. Papale, 1999]; in the
second class the magma is modeled as a foam whose ductile
fragmentation is controlled by bubble surface tension [e.g.,
Mader et al., 1996; Proussevitch et al., 1993]. Both classes
require high densities of nonoverlapping (noncoalescing)
bubbles, and the critical properties are modeled by purely
local (single bubble scale) stresses and strains. In both
classes, fragmentation is a consequence rather than a cause
of stress induced rheological changes.
[4] Explosive fragmentation often occurs around vesicul-

arity P � 70%, (e.g. Sparks [1978] suggests 75%, Gardner
et al. [1996] 64%). However, when the bubble fraction gets
that high very extensive bubble overlap is inevitable. In
statistical physics, the general problem of connected geo-
metric elements has been intensively studied; a highly
developed ‘‘percolation’’ theory is now available [see e.g.
Stauffer and Aharony, 1992]. We expect – with the mod-
ifications discussed below – at least near the critical
‘‘percolation threshold’’ Pc, that the basic results of ‘‘con-
tinuum percolation’’ are directly applicable to magmas. If
the shapes are monodisperse spherical bubbles, percolation
theory shows that under very general circumstances (inde-
pendent of many of the details) that as P approaches Pc

there is a mathematical singularity, the size of the largest
simply connected region diverges: this ‘‘bubble’’ will span
the entire system no matter how large (Figure 1a). Under
stress, the corresponding ductile or brittle magma will
rapidly disintegrate, triggering an explosion.
[5] Percolation is considered here as a critical state

resulting from a many-body coalescence process, with its
singular onset and potentially drastic rheological conse-
quences. The principle problem in applying it to real
magmas is that in classical (monodisperse) percolation Pc

is much too low; the most recent estimates for spheres in
three dimensions (3-D) gives P3,c = 0.2895 ± 0.0005
[Rintoul and Torquato, 1997]; in 2-D, P2,c = 0.312 ±
0.005 [Vicsek and Kertesz, 1981]. How can we postpone
percolation to much larger P values? The key is scaling.

2. Scaling Bubble Distributions

[6] One key prediction of binary coalescence models is
that the number-size distribution of bubbles is a power law
[Gaonac’h et al., 1996a; Gaonac’h et al., 2003; Lovejoy et
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al., 2003]. Such statistics have recently been verified by
several independent groups [Simakin et al., 1999; Klug et
al., 2002]. In a such scaling regime, the number density
n(V) of the bubbles follows:

n Vð Þ ¼ dN3

dV

����
���� ¼ 1

V

dP

dV

����
���� / V

V*

� ��B3�1

ð1Þ

where V is the volume of the gas vesicle, N3 is the 3-D
cumulative number distribution, B3 the volumetric scale
invariant exponent. For B3 < 1 finite vesicularity requires a
largest vesicle volume V* [Gaonac’h et al., 1996a, 1996b].
Here and elsewhere the number subscripts indicate the
dimension of space.
[7] Since empirically, it is easier to study vesicle area

distributions from sample cross-sections rather than from
volumes it is convenient to use the ‘‘naı̈ve’’ formula
B3 ¼ 2

3
B2 þ 1

3
for the dimensional conversion [Gaonac’h

et al., 1996a]. Strictly speaking, this relationship is only
valid for convex bubbles. This restriction is necessary to
guarantee that when 2-D cross-sections are taken, that a
single simply connected 3-D bubble gets mapped onto a
single simply connected cross-section. The more sophisti-
cated methods outlined in Sahagian and Proussevitch
[1998] still require the convexity assumption and yield the
same exponent relation. Near the percolation threshold,
when bubbles are frequently very far from convex, two
apparently distinct bubbles in a 2-D cross-section have a
reasonable probability of ultimately proving to be part of the
same complex 3-D bubble - the above relationship breaks
down. However, even for pure percolation, this effect is not
so large: below we see that the naı̈ve exponent is in error by
15%.
[8] Pumice samples commonly have bubble volumes

ranging over a factor of 106 in size; this single fact virtually
mandates the use of power laws since standard exponential
tailed distributions can only account for a narrow range. In
(explosive) Plinian pumice,Gaonac’h et al. [2003] find B2 =
0.75; extrapolating this to 3-D gives (to the nearest 0.05),
B3 � 0.85 - indistinguishable from the nonexplosive basal-
tic lava value Gaonac’h et al. [1996a] - and also that of the
pumice distributions in Simakin et al. [1999] (see Gaonac’h

et al. [2003] for discussion). The universality of the expo-
nents between very different volcanic products can be
explained by the binary coalescence-expansion equation
results of Lovejoy et al. [2003]. However, in a recent paper
on explosive volcanic products Klug et al. [2002] also finds
power law distributions, but with a slightly larger exponent
(B3 = 1.1 ± 0.1 compared to our B3 estimate of 0.85).
Below, we show how this too can be explained; here via
multibody coalescence. Hence independent of the character-
istics of the magma and eruption style, decompression-
coalescence may be the dominant process of vesicle size
increase through scaling processes identified by B3 � 0.85
from a few microns to at least a few centimeters in diameter.

3. Percolation

[9] The bulk of the percolation literature considers regular
grids with connectedness defined by nearest neighbors. Also
classical is ‘‘continuum percolation’’ where the centers of
circles/spheres are uniformly randomly distributed and con-
nectedness is defined by overlap (Figure 1a). Theory shows
that, as P increases, the volume V*per of the largest connected
region (‘‘bubble’’) diverges as V*per / P� P3;c

�� ���3n3 with
n3 = 0.88 ± 0.02 [3-D;Grassberger, 1983]; in 2-D the largest
area diverges as A*per / P � P2;c

�� ���2 n2
with n2 ¼ 4

3
[Den

Nijs, 1979]. At the percolation threshold Pc a single con-
tinuous bubble crosses an infinite system; beyond Pc, the
probability of a given bubble being connected to the infinite
bubble increases exponentially fast. For the rheology, the 2-
D value P2,c may be more relevant than the slightly smaller
P3,c since for an isotropic process at P3,c there will almost
surely exist an infinitely long bubble while at P2,c bubble
networks will be so extensive that an infinite bubble will
almost surely cleave every planar cross-section.
[10] For P approaching Pc from below the number density

of bubbles is a truncated power law with exponents B3,per =
1.186 ± 0.002 [Jan and Stauffer, 1998], B2;per ¼ 96

91
¼ 1:055

[Den Nijs, 1979]. In addition, if the bubble connectivity is
empirically established on 2-D sections (i.e. assuming con-
vexity) and if the distribution is extrapolated to 3-D using the
equations above, we obtain the extrapolated 3-D exponent
B2�3;per ¼ 1þ 2

3
B2;per � 1
� �

¼ 283
273

¼ 1:037; the difference
between B2-3,per and B3,per is purely due to the difference in
the definition of bubbles.
[11] The basic features of percolation theory are

extremely insensitive to the details; indeed, the exponents
(n, Bper, and others) - although for us crucially not the value
of Pc - are believed to be universal; they depend only on the
dimension of space. We therefore anticipate that changing
the basic distribution from the usual monodisperse to power
law will only change Pc. Since a distribution of sizes allows
small bubbles to fit in the interstices of larger ones, using a
wide distribution of sizes necessarily raises Pc; it can more
efficiently ‘‘pack’’ spheres.
[12] However, it is not so easy to pack spheres to the

required density while avoiding percolation. To our knowl-
edge the main relevant studies have been with hard spheres
(i.e. without overlap). For example, using hard spheres with
various volume distributions (including gaussians - and
even using the long tailed lognormal distribution), Soppe
[1990], Konakawa and Ishizaki [1990], were unable to raise
P above 0.65.

Figure 1. (a) A 1024 � 1024 simulation of continuum
percolation with (monodisperse) circles (radius 100 pixels,
placed in a homogeneous random way; P = 0.49); (b)
similar to (a) except that a power law size distribution with
B2 = 0.75 was used with the same external scale (A* =
p1002 pixels). Here, we are slightly above the percolation
threshold, P = 0.78.
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[13] Once we consider power laws, the situation is quite
different: a fractal construction - dubbed the ‘‘Apollonian
gasket’’ by Mandelbrot [1982] - in which the interstices
between 4 neighboring hard spheres (3 neighboring circles
in 2-D) are iteratively filled with the largest possible sphere
can in principle attain P = 1, i.e. packing with 100%
efficiency. In 3D, Anishchik and Medvedev [1995] show
how to use this to produce packings with P > 0.9 with a
range of scales of sphere diameters�102. They also find that
the corresponding sphere volume distribution has B3,appol =
0.82 close to our empirical B3 = 0.85. This means that we
expect our distribution to be very efficient in raising the
percolation vesicularity threshold Pc. The 2-D problem has
been theoretically and numerically investigated by Hermann
et al. [1990]; they find a family of efficient packing algo-
rithms with B2,apoll in the range 0.65–0.75 (close to the
empirical B2 = 0.75). The numerical proximity of these
values was noticed by Blower et al. [2001] who even
suggested that this Apollonian hard sphere packing ulti-
mately explained the observed value (with the help of a
nucleation-diffusion mechanism). Since bubbles are hardly
rigid spheres, and this mechanism is fundamentally a four
body one, it is likely to be inefficient compared to binary
coalescence; as an explanation for the power law exponent
we find this unconvincing.

4. Monte Carlo Simulations

[14] In order to study the effect of power law distributions
on the percolation problem (especially to see whether or not
we could reach Pc’s of the order of 0.7), we performed 2-D
Monte Carlo continuum percolation simulations of a vesicu-
lated magma (Figure 1b). These simulations are nonclassical
since they use a power law bubble size distribution. Simu-

lations showed that Pc was a systematic function of B; for
B2 = 0.75, we obtained Pc = 0.70 ± 0.05. Note that there is
considerable sample to sample variability and that estimates
are biased (in a fairly well understood way) by finite size
effects; the error cited in this estimate is the standard error
estimated from many simulations, attempting to take these
factors into account. This is for Pc in 2-D: every cross-section
will almost surely be cleaved in half. The 3-D value of Pc

must be slightly lower and it is possible that 3-D percolation
could be enough to trigger explosion; this is an interesting
topic for future research. In any case the precise value of the
vesicularity at which explosion occurs clearly depends on the
applied stresses.
[15] It is of interest to study the size distributions of

simply connected bubbles near Pc (see Figure 2). For most
of the size range, the imposed pre-percolation distribution
with exponent B2 = 0.75 dominates the percolation induced
power law with B2,per; this is possible because B2 < B2,per.
However, for large enough bubbles the latter is dominant;
this could explain the recent results of Klug et al. [2002]
who found a mean exponent B3 = 1.1 ± 0.1; close to the
theoretical value B2–3,per = 1.037.
[16] If percolation is indeed the trigger for fragmentation,

then the simulations can be used to determine the distribution
of primary fragments (Figure 3). It is found to be a power

Figure 2. N2(A
0 > A) for bubbles from two simulations

just below the percolation threshold Pc for B2 (0.75 and 0.5
top to bottom, respectively; slopes shown for reference). For
larger bubbles the distribution is governed by the percola-
tion exponent B2,per = 1.05.

Figure 3. N2(A
0 > A) of the fragments (their total area

including their internal vesicles) that would result if the
magma in the simulations (such as Figure 1b) were
ruptured. Three different B2 values were chosen (0.8, 0.6,
0.4 top to bottom respectively); the fragments apparently
have B2,frag = B2/2 as indicated by the reference lines. All
three simulations were made at P = 0.78 (near the
corresponding percolation thresholds).
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law; simulations show the following relation between the
exponents of the fragments and of the bubbles: B2; frag � B2

2
;

the ‘‘naı̈ve’’ transformation from 2-D to 3-D yields
B3;frag ¼ 2B2;frag

3
¼ B2

3
: The implied values for B3,frag are unre-

alistically small: in the same Plinian deposits that Gaonac’h
et al. [2003] found B3 = 0.85 – Kaminski and Jaupart [1998]
obtained B3,frag = 1 to 1.2. However, the deposits are
presumably not of primary fragments. Some – if not most
- fragments continue to expand, coalesce and refragment with
the whole cycle repeating until either the fragments are
quenched or the internal pressure is low enough. However,
due to their scaling nature, it is unlikely that by themselves
the latter processes will modify the Bfrag exponents; our
results give indirect support to the suggestion from Kaminski
and Jaupart [1998] that collisions between fragments are
necessary (collisions are known to be capable of yielding
fragment distributions with B3,frag > 1).

5. Conclusions

[17] At the large vesicularities prevailing near the eruption
point, binary and then multibody coalescence is likely to be a
dominant growth mechanism providing the key to the last
phases of eruption dynamics. This is the justification for our
application of percolation theory to highly vesicular magmas.
At the percolation threshold many singular changes occur in
the geometry of the magma; they imply a catastrophic drop in
the tensile strength. In highly viscous or brittle magmas under
stress they provide the trigger for an explosive release of
pressure. In low enough viscosity basaltic magmas the stress
will most frequently be ‘‘relaxed’’, hence the rheological
consequences of percolation would be minor and would not
affect their effusive character. However in some exceptional
cases there may still be enough stress to cause basaltic Plinian
explosive eruptions.
[18] Contrary to prevailing models in which fragmenta-

tion is the consequence of stress induced rheological
changes, in the present paper the percolation induced
fragmentation is responsible for catastrophic changes in
the rheology. To be realistic such a model requires a Pc of
the order 0.7. We showed that the observed power law
bubble distributions are particularly efficient at bubble
packing. Monte Carlo bubble simulations with B2 = 0.75
numerically yielded Pc = 0.70 ± 0.05. Near Pc, we also
found evidence for the many-body (percolation) exponent
B2,per = 1.05, very close to the value claimed in Klug et al.’s
[2002]. If this unified picture is correct, then a power law
bubble distribution provides: a) an explosive fragmentation
mechanism for stressed highly viscous or brittle magmas; b)
an effusive mechanism in most low viscosity magmas; c) an
explanation of the origin of the critical eruption vesicularity
Pc value near 0.7; d) an explanation of the vesicle size
distributions, - both those dominated by binary collisions
and those directly influenced by the percolation process; e)
an explanation for basaltic Plinian eruptions.
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