370

8. H G. Maas, A high-resolution photogrammetric 3-D particle tracking
velocimeter, Experimental and Numerical Flow Visualization ASME FED, Vol.
128, 79-84, (1991); '

9. B.B. Mandelbrot and Van Ness J.W., Fractional Brownian Motion, Fractional
Noises and Applications, SIAM Rev, 10, 422-437, (1968);

10.B.B. Mandelbrot, Les Objects Fractals: Forme, Hasard et Dimension.
Flammarion, Paris, (1975),

11.B.B. Mandelbrot, The fractal geometry of Nature, Freeman, San Francisco,
(1982),

12. M. Matsushita and S. Ouchi, On the Self-Affinity of Various Curves, Phisica,
No. 38, (1989),

13.1—1.5)8. Peitgen and D. Saupe, The Science of Fractal Images, Springer, Berlin,
(1988);

14.R. G. Racca and J. M. Dewey, A method for automatic particle tracking in a
three-dimensional flow field, Experiments in Fluids 6, 25-32, (1988);

15.P. G. Saffman, On the effect of the molecular diffusivity in turbulent diffusion,
J. Fluid Mech. 8, 273-283 (1959);

16. 8. Saleh, J. F. Thovert and P. M. Adler, Etude des milieux poreux par P.ID.V.,
2éme Congres Francophone de Velocimétrie Laser, Lab. d'Aerothermique du
CNRS, Meudon, (1990); '

. 17.8S. Saleh, J. F. Thovert and P. M. Adler, Flow along porous media by Particle
Image Velocimetry, AIChE Journal, 39 (11), 1765-1776 (1993);

18.S. Saleh, J. F. Thovert and P. M. Adler, Measurement of two-dimensional
velocity fields in porous media by particle image displacement velocimetry,
Experiments in Fluids 12, 210-212 (1992);

19.P. Viotti, Scaling properties of tracer trajectories in a saturated porous medium,
accepted for Transport in porous media, (1996),

20.R.F. Voss, The Science of Fractal Images, HO. Peitgen and D.Saupe eds.
Springer, Betlin, (1988);

21.S.W. Wheatcraft and S.W. Tyler, An Explanation of Scale-dependent
Dispersivity in Heterogeneous Aquifers Using Conceps of Fractal Geometry,
Water Resources Res. 24(4), 566-578, (1988).

SCALING GYROSCOPES CASCADE: UNIVERSAL

MULTIFRACTAL FEATURES OF 2-D AND 3-D TURBULENCE

Y. CHIGIRINSKAYA , D. SCHERTZER

Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie,
Paris, France

S. LOVEJOY

Physics Department, McGill Universitly,
Montreal, Canada

Similarities between the structure of the Navier-Stokes equations of hydrodynamic
turbulence and the Euler equations of a gyroscope lead to the consideration of
a dynamical space-time model, the Scaling Gyroscopes Cascade (SGC), built up
on a certain type of direct interaction closely respecting this analogy. With the
help of this model we investigate the multifractal features of intermittency of the
direct energy cascade in three-dimensional turbulence, and of the inverse energy
cascade in the two-dimensional turbulence. We obtain rather similar universal
multifractal parameters for both cases, whereas the shell-model which is obtained
by an over-simplification of the SGC yields quite different estimates.

1 Introduction

Similarities 12 between the Navier-Stokes equations of hydrodynamic turbu-
lence and the Euler equations of a gyroscope can be traced back to Lamb 3,
However, we show that for three-dimensional (3-D) turbulence as well as for
two-dimensional (2-D) turbulence, direct interactions between eddies yield
much closer analogies than previously considered. The corresponding non-
direct interactions are obtained by coupling an infinite hierarchy of gyroscopes.
This yields a dynamical space-time cascade®, the Scaling Gyroscopes Cascade
(SGC) which should preserve most of the properties of the Navier-Stokes equa-
tions.

The respective analogies for 2-D and 3-D are rather opposite: the analogue
of the angular momentum of a solid body rotation is the vorticity field for 2-
D turbulence, whereas it is the velocity field for 3-D turbulence. However,
the multifractal characteristics of the inverse energy cascade sub-range of the
former are extremely close to those of the direct energy cascade of latter.
We also find a surprisingly close agreement with various empirical studies on
atmospheric turbulence. It is important to note that the SGC yields the direct
enstrophy cascade for the 2-D turbulence as well as the inverse energy cascade.

3n
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2 A first aspect of similarity between hydrodynamic turbulence
and gyroscopes

Consider the Navier-Stokes equations, for the velocity field u(z,t), written
under Bernoulli’s form (a being the kinematic pressure, i.e. for barotropic

2 . . . Sy
flows: a = f ﬁ}% + %, p being the (static) pressure; v is the fluid viscosity):

0
(E - I/A) uw(z,t) = L(z,t) — grad(e) (1)
where L is the Lamb vector and w is the vorticity field:
L(z,t) = u(z,t) Aw(z,1) (2)

w(z,t) = curl(u(z, 1)) 3)

with the associated incompressibility condition:
div(y(z,t)) = 0. (4)

The curl of Bernoulli’s equation (Eq.1) corresponds to the well known vorticity
equation:

0
(57 ~v2) wle ) = bo(e, ), u(e. 1) )
the Lie bracket ([.,.]), i.e. a skew product, being then defined as:

XY= Y- grad(X) - X - grad(¥) (6)

The similarity pointed out by Arnold ! is between the vorticity equation
(Eq.5) and Euler’s gyroscope equation (Eq.27, see Appendix A). In the per-
spective of this similarity, the vorticity and the velocity are respectively the
analogues of the angular momentum (M) and of the rotation (Q), the field
analogue of the inertial tensor, is the curl. However, there is a first funda-
mental difference between their respective Lie algebra. Indeed, while the Lie
algebra corresponding to Euler’s gyroscope (so(3)), associated to the Lie group
of rotations in the three-dimensional space (SO(3)), is finite (since it can be
defined as the set of three dimensional vectors (®3) with the vector product
(see Appendix A)), the Lie algebra corresponding to the vorticity equation (on
a sub-set D of R?) is infinite. Indeed, the latter can be defined as being the set
of divergence-free vector fields and it is associated to the group (being noted
SDiff D by Arnold) of the one-to-one volume preserving transformations of D.
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Both are obviously infinite . The infinite dimensionality is not only related
to the intervention of partial instead of ordinary differentiations, as well as
the field nature of the velocity, but fundamentally to the phenomenology of
fully developed turbulence. Indeed, an infinite number of degrees of freedom
should intervene when considering the singular limit of the viscosity going to
zero (or correspondingly the Reynolds number going to infinity): one expects
the development of a spectrum similar to Kolmogorov-Obukhov spectrum ¢
down to a viscous scale going to zero, i.e. a number of scales® going to infinity.
A linear drag can be introduced into Euler’s gyroscope equation (Eq.27) in
analogy to the viscous term of Navier-Stokes equation (Eq.1). However, the
singular perturbation corresponding to the latter has a global effect by cre-
ating a flow of energy (respectively of enstrophy) down to smaller scales in
3-D turbulence (respectively 2-D turbulence), although it intervenes directly
only in the viscous range. This fundamental scale problem clearly points out
the necessity of dealing with an infinite dimensional Lie algebra. As shown
in the following sections, it rather involves an infinite hierarchy of gyroscopes
than being analogous to one of them. Furthermore, even for a finite number
of modes, the Lie bracket (Eq.6) defined by the vorticity equation (Eq.3) does
not correspond to the vector product. It is not dimensionless and introduces
therefore a scale dependency. However, it is relevant for the 2-D turbulence,
but in a new context (Sect.5).

3 Scaling Gyroscopes Cascade for 3-D turbulence

For 3-D turbulence a rather opposite analogy is considered: the velocity, the
vorticity, the energy and the helicity are respectively the analogues of the
angular momentum (M), of the angular velocity (), of the square of the
momentum (M?2) and of the energy (M - Q). This analogy can be better
appreciated when one considers interactions which yield a divergence-less Lamb
vector. Indeed, the pressure gradient does not intervene any longer (since it
is only needed to enforce incompressibility) in the r.h.s. of the Bernoulli’s
equation (Eqgs.1-3) which is therefore analogue to the Euler’s equation (Eq.27):

(% - VA) u(z,t) = u(z,t) Auw(z,t) ™

%It might be important to note that the intrinsic dimensions of the algebra or groups,
are not to be confused with the dimension of one of the space on which act one of their
representations. Indeed, the latter could be infinite even in the case of a finite algebra.

*However, as discussed in the next section, the number of degrees of freedom is larger
than the number of scales.



More generally, one may introduce in the Bernoulli’s equation (Eq.1) in-

stead if the pressure gradient the projector P(¥) (resp. E(L) in Fourier space
where 7 denotes the Fourier transform) on divergence-free vector fields : ’

Pij(0) = bij = ViV;AT s Pyj(k) = 80 — kik /& (8)

v&‘rhi'ch ylelds® an expression (either in physical space or in Fourier space) rather
similar to Euler equations of a rigid body motion (Eq.27):

a

(b—t B VA) uz,t) = _g(z) -u(z,t) Aw(z,t) (9)
5 o
(a+uﬁ)ﬂbﬂ:§@ylﬂﬂ@@ﬁAQ@Q@ 10

' The projfector P(k) corresponds to the velocity-vorticity vertex of interac-
txons' ff)r a triad of wave vectors (k,p, ¢) maintaining merely the orthogonality
condition corresponding to incompressibility (Eq.4):

k-u(k,t)=0 (11)

it has. the advantage to be dimensionless. In a general manner, Navier-Stokes
equations (in the Fourier space) correpond to an infinite Sum’ of gyroscope-
ty.pe equations. The (complex) analogues of M and 2 being respectively the
triplet (w(k), u(p),u(g)) and (w(k),w(p),w(g)) of a triad (k+p) + ¢ = 0) of
dlre.ct interaction, the Lie bracket bein_g the vector product_moaulatgd b; the
projector P(k). However, this projector reduces* at first order to the identity
for .nonlocal direct 7 interactions (maz(k,p,q) > Amin(k,p,q), A being the
arbitrary nonlocalness parameter) which s_athfy_some or;hsg:)r;al conditions
({15l < lpl ~ lg] and p Lk} and {[p| < k[ ~ |g| and @(p)[k}). Corre-

;:porll(()iing to Eq.7, it yields the following nonlocal orthogonal approximation of
q.10:

(% + sz) u(k) = /u_uzw u(p) AB(p)d'p + ( /MSA_%l @(e)d"g) AB(E)
(12)

where the overline denotes the complex conjugate.

“Indeed P(V)(u) = » and P(¥)(grad(a)) = 0.

(2;1)
/ \ .
(3;1) (3;2) (3;3) (3;4)
/7 \ / . 7N\
@n (@2 (43) (4.9 (45)  (46)

“
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Figure 1: Scheme of a discrete Scaling Gyroscope Cascade model. In this one dimensional

cut, each eddy is daughter of a larger scale eddy and mother of two smaller scale eddies. The

light thin line indicates interactions for eddy (3;3) in 3-D turbulence, whereas the dashed

line indicates its interactions in 2-D turbulence. The thick line points out one of possible
most energetic paths, therefore a possible reduction to a shell-model.

4 Discrete SGC models

The discretization of Eq.12 poses interesting problems. One very crude way of
doing it corresponds to reduce it to a scalar equation, i.e. to reduce the vector
model to a so-called ”shell-model” 3°, by estimating an averaged characteristic
velocity shear u, (with corresponding vorticity kn u,, ) on shells of wave-vectors
|k] ~ ky, the wave-number kn being the inverse of scale of the correspond-
ing eddies which is dicretized in a exponential way (In = L/A™, L being the
outer scale). Considering only interactions between successive scales, although
considering rather low scale ratio (usually A = 2), one can obtain the following:

d
<gt' + ng) un = knunun—l - kﬂ+1u?l+1 (13)

by an over simplification of a more complete model. The latter is indeed
needed since the space dimension is absent in Eq.13, whereas it is crucial for
the development of intermittency. The relevance of this drastic reduction was
already questionned %19, as well as the relevance of models having a number of
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eddies which do not increase algebraically with the inverse of the scale? (e.g.
a number independent of the scale!!). In order to take into account the space
dimension, while keeping an exponential discretization of scales (which is not
manageable with Fourier transform), it suffices to introduce a tree structure of
eddies: each eddy having N(A) = AP sub-eddies which location is labeled by
(#) (in correspondence to its center zi,, the distance between two neighboring
centers being of the order of I,). This type of space and scale analysis has been
widely used for phenomenological cascade models and is indeed a predecessor
of orthogonal wavelets decomposition !2. To the eddy of size I, and a location
zi, corresponds a velocity field (@) and vorticity field ( &%) Fourier/wavelet
components, as well as the corresponding wave-vector (k},):

G=8(k); @h=ikn ATy k= ki (14)

For simplicity sake of numerical simulations, we will restrict our attention

to one dimensional cuts ¢ of 2-D or 3-D turbulence. In the latter case, the
tree-structure of interactions is based on the fundamental triads of (dlrect)
interactions (ki _,, k2!, k%), between a mother and two daughter eddies (i =
1,27-1), whereas it is more involved for the former (see Fig.1 and Sect.5). For
3-D turbulence, one obtains * the following equation of evolution (omitting

temporarily the interactions outside of the triad (ki_,, k%! k%) as well as

the viscous term) for the analogues of the momentum (M) and of angular
velocity (2):

i .
dA/{it =M, AQLy ;9 =_l_:,_1 M (15)
with the following matrix representations:

a2 ] ul
Upoy | =1 [ 1] =i up_y (16)
21 | u2i-1
G%-1 ] ui-1
0 =[] =ika | O (17)
0% | a2

9Indeed this number N(£) should scale as N (£) ~ £~D, where ¢ is the scale and D is the

dimension of the model. D can be lower than the dimension of the turbulence itself {e.g. for
a D-dimensional cut).

“The wave-vectors [c_' do not need to belong to the axis of the cut.
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and the analogue (J ;_ ,) of the projection of inverse of the inertia tensor on
the triad corresponds to:

001
Lo =kK; [K]=|0 00 (18)
100

The equation of evolution of iijn corresponds therefore to the coupling of
two equations of gyroscope type (Eq.15), therefore to the following (ir} general
complex) scalar equation of evolution for the velocity amplitude u}, of the
wave vector kI, :

((;it + sz) = km+1 [Iurzr{-f-: - m+1| ] +( 1)JLmU U:,Ei)l (19)

a(j) being the location index of its “ancestor” (= E (1)), E(z) being the
integer part of the real z (E(z) <z < E(z)+1).

The SGC model for 3-D turbulence can be reduced to the shell-model
defined by Eq.13, as soon as one observes (as done on a similar model 13) that
at each time there is a most active path on the tree connecting the largest
structures to the smallest ones (with a unique eddy at each level) along which
most of the energy transfer occurs (see Fig.1). This very crude understanding
of intermittency corresponds to eliminate the spatial index j in Eq.19 with the
very unfortunate consequence of eliminating the crucial space dimension, as
discussed above.

5 The very special case of 2-D turbulence

It is well known that 2-D turbulence is rather peculiar, since it has a family of
invariants rather different from the 3-D case (or any extensions for a dimension
d > 2). This is due to the simple fact that the vorticity (w), as well as the
potential vector (¥) of a 2-D flow are orthogonal to the plane of the flow and
its velocity, and are therefore defined by their scalar components along the axis
perpendicular to the flow:

w=wz; ¥=Vz; w=-AV¥ (20)

¥ being the current function. This orthogonality introduces some simplifica-
tions in the vorticity equation (Eq.5) and its corresponding Lie bracket, (Eq.6):

lw(z,t), u(z,t)] = —u(z,t) - grad(w(z, 1)) (21)
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Figure 2: The energy spectrum (averaged over 1024 realizations) of the SGC for 2-D tur-

bulence (forcing at level » = 10) displays an inverse energy cascade for low wave numbers

(levels n < 10) with an algebraic slope close to 8; = 1.67, as well as a direct cascade of

enstrophy for high wave numbers (levels n > 10), with a slope close to 32 = 3.0. Logs are
base 10.

there is only advection, the stretching term (w - grad(u)) being strictly zero.

This introduces the enstrophy (w?) as a second quadratic invariant, whereas
helicity (w - u) is strictly zero. The Fourier transform of the vorticity equation:

0 ~
(3 +7#)own=[ & [vp.e) (22)
pte=k
makes intervene the following Lie bracket ((.,.,.) denoting the mixed product):

[¥(2),(0)] = 5(a.2.2) (¥p)(0) - 5()¥(g)) (2)

and corresponds to an infinite sum of gyroscope-type equations. The (com-
plex) analogues of M and § being respectively the vectors (w(k),w(p),w(q))
and (¥(k), ¥(p), ¥(g)) of a triad (k + p) + ¢ = 0) of direct interaction. The
enstrophy is therefore the anologue of the square of the momentum, whereas
the (turbulent) energy is the analogue of the energy of the gyroscope. The
Laplacian is the analogue of the inverse of the inertial tensor.

The first order approximation used for discretization of the 3-D case can-
cels since the Lie bracket (Eq.23) is strictly zero for any interaction triad having

LogK(q,n)
00

051

-101

2 . . . .
?125 075 025 025 075 125
Log n

Figure 3: Log of the scaling exponent (K(g,7n)) vs. Logn (n € (0.3;3)) of the spatial flux of

energy at medium levels (i.e. 5, 6 and 7) of 2-D SGC (32 levels) and 3-D SGC (19 levels)

with the fixed order of moment ¢ = 1.3. The different curves are indistinguishable and yield

the same estimates: a & 1.4 + 0.05 (the slope of the curves) and C; & 0.25 £ 0.05 (the
intercept with the vertical axis).

two parallel wave-vectors. One has therefore to consider a second order ap-
proximation: instead of considering direct interactions between eddies of two
successive levels (mother and daughters), one has to consider interactions be-
tween three successive levels (mother, daughter and grand-daughter). This
implies (see Fig.1) that direct interactions links a given level (m) of the cas-
cade to the two previous ones (m — 1, m — 2) as well as to the two following
ones (m+ 1, m+2). This yields an algebra more involved than for the case of
3-D turbulence (Eq.19) and which is generated by commutators of ¥ and &:

iif

ot = (€0 B, 2) (¥ (8 ) (g, )

— iY.a(a(j d(5),a(j 24
('aQ{ + Vkrzn) wh, = C;-O-)l,rsza-uz)) + Zd(j)=221'—1,22i(Cm(i)lfzrgzl (24)

d3(5),d(;
+ Ed’(j):z‘i"7,2‘j Cm-g-12),m(]))

The analogues of the energy and of the square of angular momentum are
indeed invariant, since we have the detailed conservation laws (similar to Eq.32)
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for any triad ((k,p,¢); k+p+¢=0):
[¥(p), (D1 ¥ (k) + [¥(g), w(k)]¥(p) + [¥(k), w(p)]¥() =0  (25)

[¥(p), w(@lw(k) + [¥(g), w(k)lw(p) + [¥(k), w(p)lw(g) = 0 (26)

Due to the existence of these two invariants, SGC yields a spectrum sub-
range (with slope —g) which corresponds to an inverse energy cascade as well

as spectrum subrange (with slope —3) which corresponds to a direct enstrophy
cascade (see Fig.2).

6 SGC models and multifractal analysis

SGC models are fundamentally deterministic contrary to the multiplicative
processes 1*~22 (see Appendix B for a summary): only the forcing could be
stochastic. However, it was checked that the SGC is rather independent? of the
type of forcing used. Therefore, we used for simulations a constant unit forcing
which intervenes only at a given level of the cascade (on the level n = 1 and on
the level n = 10 for the 3-D case and the 2-D case respectively). Long runs (e.g.
1024 large eddy turn-over times) are easily performed on work stations, using
nevertheless a fourth-order Runge-Kutta scheme, for large Reynolds numbers:
32 levels of SGC for 2-D turbulence simulations, in order to exhibit clearly the
two scaling subranges; 19 levels of SGC for 3-D turbulence simulations yielding
Re=6-107. .

Spectra of 3-D case simulations display 4 a slope close to the Kolmogorov-
Obukhov *® g = —$ which corresponds to the trivial scaling of Eq.19 when
assuming a constant flux of energy. Spectra of 2-D case simulations (Fig.2)
yield clearly the energy subrange (algebraic slope extremely close to 3; = 1.67)
as well as the enstrophy subrange (slope extremely close to 8, = 3.0).

However, spectra do not give direct insights on intermittency. We char-
acterise this intermittency in the framework of universal multifractals. 3-D
SGC numerical simulations clearly support* strong universality '3 23 (the mis-
named Log-Lévy processes) rather than weak universality (e.g. Log-Poisson
statistics 2*=27), only the former possess 28 attractive and stable properties.
Log-Lévy statistics of (conservative) fluxes are defined by only two parameters
(Appendix B): the mean fractality C; and the Lévy index o of multifractality.
We estimate (Fig.3) them by a Double Trace Moment (DTM) analysis 293°
with an order of moment ¢ = 1.5, starting from the level 7 of 2-D and 3-D
SGC simulations. Similar results were obtained with various values of order
of moments ¢ € (0.8,2). These results, C; &~ 0.25 + 0.05, o &~ 1.4 £ 0.05 are
extremely close to those obtained for atmospheric turbulence 3132 10, 28 (Op
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the contrary, the one-path model or shell model (Eq.13) for 3-D turbulence
yields C, & 0.4 +0.05 and o =~ 0.6 £ 0.05. The latter estimate with o < 1 cor-
responds to qualitative different behavior of multifractality 3> 3*: singularities
are bounded, whereas they are not for a > 1.

Conclusion

The Scaling Gyroscopes Cascade was derived from rather abstract considera-
tions on the structure of the Navier-Stokes equations: its Lie structure. Nev-
ertheless, it yields concrete dynamical models which can be used to investigate
fundamental questions of turbulence. We specifically investigated the questions
of multifractal universality for 3-D and 2-D turbulence. Numerical simulations
of corresponding SGC yield indistinguishable estimates of the universal paraml—
eters (C}, a) of energy fluxes and confirm the theoretical common value H = 3
for the velocity field. Furthermore, these numerical estimates of C) and « are
close to different estimates for atmospheric turbulence, in agreement with the
strong similarities of structure between SGC and Navier-Stokes equations. On
the contrary, we obtained absolutely different class of universality (a < 1) for
the shell-model derived by over-simplifying the SGC.
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Appendix A: Euler’s theorems of a rigid body motion

First Euler’s theorem or Euler’s equation for a rigid body (attached to a fixed
point with no torque), often called the gyroscope equation, is:

W o m0=mng (27)

where M is its angular momentum and Q its rotation (both relative to the
body frame); the Lie bracket being defined by the vector product A. The
(quadratic) non linearity of the (apparently linear) equation results from the
linear relationship between angular momentum and rotation via the (second
order) moment of inertia tensor I or its inverse (J = [ ~1), both being sym-

metric:
M=I1-Q; Q@=J-M (28)
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Therefore, the gyroscope equation is quadratic in the angular momentum. The
equation of motion relative to the body frame (Eq.27) is equivalent to Newton’s
law of the conservation of angular momentum relative to space (M;):

dM, _
=0 (29)

This second Euler’s theorem is in fact a particular case of Noether’s theo-
rem stating that there is an invariant associated with any equation of motion.
There are two associated quadratic invariants to (Eq.27), the first one being

the square of the angular momentum (M?). The second quadratic invariant is
the kinetic energy of the body:

S M-(L-M) (30)

One may note that the Fourier components of the fields require to consider
the rather straightforward extension of complex gyroscopes (complex conju-
gates being denoted by an overbar):

gl
o = M9 ' (31)

The Hermitian extension of the Euclidean structure preserves the quadratic
invariants, since the notion of mixed products (denoted by (+s-5-)) 1s unchanged:

2 4
F=ruan=0; Y_omyom=0 @

Appendix B: Multifractal processes and universality

In a stochastic multiplicative process €(z,t), the successive cascade steps define
the random fraction of the flux transmitted to smaller scales and they create

an infinite hierarchy of singularities v, i.e. at any scale resolution A = L/¢ (L
being the outer scale, £ the scale of observation):

exxA"e;  Pr (v >7) = A~ (33)

where “Pr” indicates “probability”, c(y) is the codimension/Cramer func-
tion 1% 203335 5 > 0 is indeed the algebraic order of divergence of ex(z, t);
A — co. It is equivalent (by the Mellin transform) to consider the scaling of the
different orders (g) of moments with the associated scaling moment functions
K(q):

< (ex)! >~ MK (34)
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where the angle brackets indicate ensemble averages. In fact, ¢(y) and K(q)
are simply related by the Legendre transform . ]

The only general constraints on the two functior}s c(-y).and K (q.) are that
they should be both convex, and c(7) should be an increasing function. How-
ever, due to the existence of stable and attractive multifractal processes under
rather general circumstances, mixing of different multifractal processes may
lead to universal processes '3 which depend on very few aspects of the initial
processes. Indeed - up to a critical order3%33 gp - these universal multifractal
processes have codimension and moments scaling functions ruled by only three
fundamental exponents: .

- The Hurst exponent H measures the degree of non conservation of the
mean field: < €5 >~ A~H. H = 0 for conservative fields (e.g. the energy flux).

- The mean fractality C; measures the fractality/§parseness of ‘the mean
field, it corresponds at the same time to the codimension and the singularity

eld. o
o tlteTrEZaIrjéﬁy index a (a € (0;2]) determines the extent of multifractality, it
is indeed the Lévy index of the generator of the process. o

Double Trace Moment (DTM) analysis 2% is rather convenient in order
to estimate the mean singularity C; and the Lévy index « of a conservatuf
multifractal field. It considers in fact the scaling function K(gq,n) (K(g,1) =

6’7
K(q)) of the normalized n power of the field 3 (es\") = FﬁT) For (strong)
universal multifractals: K(g,n) = n*K(q)
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Characterisation of Strange Attractors in the Self-Ignition of Coal
Stockpiles
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P. L. Maffettone, S. Crescitelli
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Universita di Napoli “Federico II”, Naples, Italy

In previous works, clues of chaotic behaviour were found, by means of numerical
experiments, for two distributed-parameter (one— and two—dimensional) models
of the self-ignition of coal stockpiles, which incorporated heat conduction, mass
diffusion, natural convection, and a one-step Arrhenius exothermic chemical reac-
tion. In this work we characterise quantitatively the strange attractors found. This
aim is reached by estimating for each attractor the power spectrum, the Lyapunov
Characteristic Exponents (LCE) and the fractal dimension. The Lyapunov expo-
nents are computed by discretising the PDE model along the space coordinate(s),
thus generating a model described by a large set of ODEs. The ODEs to be solved
for the computation of only the largest LCE are, respectively, 100 and 1250 for the
one—dimensional and two-dimensional problem. The algorithm was implemented
with MATLAB, SIMULINK, and with a Fortran-C code in the search for the best
computational efficiency. The power spectra and the fractal dimensions are com-
puted a posteriori by taking, as starting point, time—series generated by numerical
simulations. Fractal dimensions are computed using the “Grassberger-Procaccia”
algorithm and power spectra are estimated using an FFT algorithm on prepro-
cessed time—series. As a result of systematic explorations, bifurcations and regions
of chaotic behaviour are identified in a subset of the parameter space. In this
range, even quasi-periodic behaviour has been detected.

1 Introduction

The problem of spontaneous ignition of coal stockpiles is certainly challenging
both for safety and for its theoretical implications. Recently many models have
been proposed to study this phenomenon: Brooks et al. 1,23 and Salinger et
al* determined the static conditions for the beginning of the self-ignition of
coal stockpiles without taking into account dynamical aspects. To this aim,
they neglected coal consumption, that is with no doubts unimportant during
the pre-ignition stage, and used steady-state models without accounting for
the transient of temperature and oxygen concentration. From these models it
is thus impossible to proceed to characterise dynamically the self-ignition.

In previous papers our group 78 has used dynamical models, both one-
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