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In order to facilitate study of very inhomogeneous optical media such as clouds, the difficult angular part of 
radiative transfer calculations is simplified by considering systems in which scattering occurs only in certain 
directions. These directions are selected in such a way that the intensity field decouples into an infinite number 
of independent (e.g., orthogonal) families in direction space, each coupled only within its family. Further 
discretization, this time in space, lends itself readily to both analytical renormalization approaches (part 2) and 
to numerical calculations (part 2). We are particularly interested in scaling systems in which the optical density 
field has no characteristic size over a wide range of scales; these include internally homogeneous media of any 
shape but are more generally internally inhomogeneous and better described as fractals or multifractals. In this 
case, the albedo and transmission obey power laws in the thick cloud limit if scattering is conservative. By 
deriving powerful discrete angle (DA) similarity relations, we show that the scaling exponents that characterize 
these laws are "universal" in the sense that they are independent of the DA phase functions. We argue that these 
universality classes may be generally expected to extend beyond DA to include standard (continuous angle) 
phase functions and transfer equations. By comparing the DA equations with the diffusion equation, we show 
that in general the thick cloud limits of the two will be different: the thick cloud regime will only be "diffusive" 
in very homogeneous clouds, hence the term "universality class" is more appropriate. The DA similarity 
relations indicate that in scaling systems spatial variability is of primary importance, this suggests that far 
more research should be made to realistically model the spatial variability and to investigate its effect on 
radiative response, even if the angular aspect of the transfer process is made much less sophisticated than is 
possible in the classical plane-parallel type medium. 

1. INTRODUCTION 

1.1. Context 

Geophysical and astrophysical systems ranging from terrestrial 
to interstellar clouds involve radiative transfer through extremely 
inhomogeneous optical media. Structures in both the scattering 
media and in the associated radiation field frequently occur over 
wide ranges in scale. The radiative transfer equation implies a 
linear radiative response with respect to the incident radiation or, 
more generally, the source function; however, the response 
relative to the optical properties of the scattering medium (such as 
optical density) is non-linear as soon as the medium is optically 
thick in any of its dimensions. Indeed, from this point of view, 

clouds [Tsay and Jayaweera, 1984]. Real clouds are known to 
be highly chaotic, turbulent structures with large variation of 
liquid water content down to the smallest observable scales. 

The problem of determining the radiative properties of 
inhomogeneous clouds is notoriously difficult and remains an 
active field of research. The term "inhomogeneous clouds" is to 
be taken in a very broad sense: we include cloud fields as well as 
isolated internally homogeneous clouds of finite horizontal 
extent. A better description would be "non-plane-parallel" since 
the common feature (and main source of difficulty) in these 
radiative transfer problems is the presence of non-vanishing 
horizontal gradients in at least one horizontal direction. This 
field of research has become known as "multidimensional" 

radiative transfer and exactly complements the well developed 
the multiple scattering process can be regarded as a kind of non- theory of plane-parallel media where radiation field and/or optical 
linear low-pass spatial filter yielding a smoothed image of the properties vary in the vertical only, see Lenoble [1977] for an 
optical density field. As a result of this smoothing - and the extensive review. However natural this nomenclature may seem, 
difficulty in adequately accounting for the variability- the effects we only retain it for the purpose of cross referencing. We 
of inhomogeneity are often ignored. reserve usage of the word "dimension" for the quantitative 

Geophysical radiative transfer calculations have generally been description of the sparseness' of various of the statistical 
carried out for plane-parallel (i.e., horizontally uniform) media, properties with scale (i.e., its fractal dimensions) but also to 
with vertical inhomogeneities confined to very narrow ranges of indicate the dimension of space in which the scattering occurs 
scale (see however Davis et al 1990 for multifractal plane parallel since by reducing this number from 3 to 2 (even 1) we simplify 
results). In clouds, our prime interest here, this homogeneity the problem at hand without necessarily loosing physical insight. 
assumption has always been ad hoc, lacking both empirical and Moreover, we will argue that the description of the radiation 
theoretical basis at least down to scales of a centimeter or so. field's statistical properties over a range of scales (its extreme, or 
With the advent of modem in situ or remote measurements, it is nonlinear "variability") involves multiple fractal dimensions 
untenable even for the prototypical plane-parallel arctic stratus ("multifractals") hence a possible confusion that we wish to 

avoid. 

1 Now at l•tablissement d'l•tudes et de Recherches M6t6orologiques, In the following discussion we exclude from the outset work 
Centre de Recherches en M6t6orologie Dynamique, M6t6orologie on "inhomogeneous" atmospheres where variability is confined 
Nationale, Paris, France. to the vertical; for the purposes of this study, these stratified 

2 Now at CIRA, Dept. of Atmospheric Science, Colorado State media exhibit plane-parallel (or one-dimensional) behaviour. 
University, Fort Collins. Although the distinction is somewhat arbitrary, horizontally 

inhomogeneous systems can be divided into two categories: (1) 
Copyright 1990 by the American Geophysical Union. those in which the clouds are internally homogeneous but in 

which the boundary conditions impose horizontal gradients in the 
Paper number 89ID02 988. radiation field and (2) those in which the internal optical density 
0148-0227/90/89/1)-02988505.00 field varies in at least one horizontal direction. Arbitrariness 
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comes from the fact that the former can be formally included in 
the latter by allowing discontinuous (step) functions of position 
and null density values. Category 1 has been the most 
extensively studied in the literature: simple geometrical shapes 
(e.g., cubes, cylinders, spheres) have been investigated using 
various methods [e.g., Busygin et al., 1973; McKee and Cox, 
1974; Davies, 1976, 1978; Barkstrom and Arduini, 1977; 
Welch and Zdunkowski, 1981a,b; Preisendorfer and Stephens, 
1984; Stephens and Preisendorfer, 1984]. It has been 
suggested that statistical mixtures of these can model 
(noninteracting) cloud fields [e.g., Mullaama et al., 1975; 
Ronnholm et al., 1980; Welch and Zdunkowski, 1981c]. 
Genuine cloud fields (or extended clouds) modeled by one- and 
two-dimensional arrays of these homogeneous entities have also 
been studied [e.g., van Blerkom, 1971; Busygin et al., 1977; 
Avaste and Vaynikko, 1974; Aida, 1977; Wendling, 1977; 
Glazov and Titov, 1979; Titov, 1979, 1980; Davies, 1984]. 
The much more physically relevant case 2 of internally 
inhomogeneous clouds have attracted somewhat less attention: 
for instance, Giovanelli [1959], Weinman and Swartztrauber 
[ 1968], Romanova [ 1975], Romanova and Tarabukhina [ 1981] 
and Stephens [1986] investigate systems with variability over a 
very narrow range of scales whereas Cahalan [1989] studies 
systems with broad (power law) spectra. All of these authors 
consider spatial variability in one horizontal dimension only, 
whereas Stephens [1988a,b] offers a general formalism and 
discusses arbitrary variability over many scales in connection 
with (two-dimensional) satellite imagery. Radiative transfer with 
variability in both vertical and horizontal direction(s) is more 
involved: see Mosher [1979] and Welch [1983] for 
deterministic (and narrow band) approaches and Welch et al. 
[1980] for white noise (uncorrelated) fields and Gabriel et al. 
[ 1986] for more physically justified fractal structures with spatial 
correlations and power law (scaling, rather than flat) spectra. 

This very succinct review is only concerned with the problem 
of multiple scattering with (usually collimated) external 
illumination. Stellar astrophysicists have generally focussed on 
the spatial variability of internal (thermal) sources and frequency 
redistribution for the continuum and line spectra, respectively, as 
well as the effects of departure form local thermodynamical 
equilibrium [see Jones and Skumanich, 1980, and references 

presented in this paper, allows for arbitrary optical density field 
and boundary conditions and for systems with DA phase 
functions is exact, not approximate. The specific results 
obtained in part 2 [Gabriel et al., this issue] and part 3 [Davis et 
al., this issue] pertain to horizontally finite homogeneous or 
inhomogeneous clouds modelled by fractals. Part 2 focuses on 
an approximate but analytic renormalization approach to DA 
radiative transfer applicable to scaling systems; it is applied to 
homogeneous and deterministic fractal clouds. Part 3 follows up 
on this, using Monte Carlo simulation and extends the study to a 
simple class of random fractal clouds; it also includes a detailed 
discussion of some of the meteorological implications of this 
work. For some preliminary multifractal (rather than 
monofractal) results, see Lovejoy et al 1990 and Davis et al 
1990. 

After some preliminaries about scaling and similarity, the 
formal development proceeds as follows. Starting with the 
continuous angle radiative transfer equation in one two or three 
dimensions, we obtain its DA counterpart which is a finite 
system of coupled linear partial differential equations. By 
making the usual requirement that scattering probabilities only 
depend on relative (discrete) angles, we are able eliminate all but 
a countable infinite number of systems each characterized by 
highly symmetric coupling (matrices). These particularly 
interesting DA systems, in turn, are contrasted with the discrete 
ordinate solution of the standard transfer equation. Among 
these, only a small finite subset can be spatially discretized on a 
(regular) lattice, but DA equations on discrete spaces can also be 
obtained from first principles. The spatially continuous limits of 
the latter are readily compared with the previously obtained DA 
systems; this gives us some insight into potentially powerful 
analytical and numerical approaches. Next, some simple 
examples of DA systems are selected and described in more 
detail. 

The "orthogonal" DA systems are then used to obtain very 
general similarity relations which exactly account for all phase 
functions (within that class) and seem to hold reasonably well for 
continuous angle radiative transfer as well (according to limited 
numerics). We show that diffusion equations can be obtained 
exactly as (non-physical) singular points of the similarity 
relations; hence diffusion and DA radiative transfer will generally 

therein]. Before leaving this topic, we might mention the other be in different universality classes. We argue that, the main 
related problems notably that of inhomogeneous ground 
reflectance under a homogeneous scattering atmosphere, a 
problem with important remote sensing applications (e.g., 
Malkevich [1960], Tanrd et al. [1981, 1987], Diner and 
Martonchik[1984a,b], for different geometries and approaches), 
and the thermal infrared problem for horizontally variable 
atmospheres (finite cuboidal clouds in particular; see, for 
instance, Harshvardan et al. [ 1981], Stephens and Preisendorfer 
[1984], and Stephens [1986]). 

exception is for transfer through internally homogeneous media 
(or smoothly varying density fields) which are "trivially scaling". 
Finally, we examine the close relation between DA photons and 
the so-called "skating termite" Monte Carlo particles used to 
model conducting/superconducting mixtures in lattice statistical 
physics; this analogy proves useful in understanding the radiative 
behavior of media with embedded holes such as those 

investigated in parts 2 and 3. 

1.2. Overview 

In this series, we present some recent work concerning a 
subclass of transfer systems in which the propagation occurs 
only in discrete directions, for example along mutually 
orthogonal directions; hence the generic name discrete angle 

2. PRI•IM1NARY CONSIDERATIONS 

2.1. Asymptotic Thick Cloud Scaling Laws 

Our overall objective is to simplify the radiative transfer 
problem sufficiently, so that it becomes analytically and 
numerically tractable while still remaining relevant to physically 

(DA) radiative transfer (preliminary accounts have appeared in realizable clouds. In the thick cloud limit with conservative 
several places [Gabriel et al., 1986; Lovejoy et al., 1988, 1989; 
Gabriel, 1988; Davis et al., 1989]). These systems can be 
viewed as a limit imposed on the phase functions in which the 
intensity field decouples into an infinite number of families in 
(absolute) direction space; within each family, interaction 
(coupling) only occurs between members. These self contained 
DA systems can then be treated separately, greatly simplifying 
the angular part of the transfer process which is a major source 
of difficulty in the conventional approach. DA formalism, 

scattering, the physical size of the medium is the only relevant 
scale, conveniently measured in terms of optical thickness (x). 
Hence we can further simplify our problem by studying cloud 
geometries that are invariant under simple scale changing 
operations or zooms, i.e., homogeneous or fractal structures 
(more empirical and theoretical motivation for the use of fractals 
as cloud models is postponed until part 3). In these scaling 
systems the transmittance (T) and albedo (R) will exhibit scaling 
(i.e., power law) behavior as x-->o<,: 
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T- T* -- hr(P ) •'v r 

R*- R -- hR(P ) x-vR 

T*, R* are the "fixed points" of the scale-changing operation in 
the thick limit; for internally homogeneous clouds we can 
anticipate T* = 0 and R* = 1 as we have simply reconstructed 
the classical semi-infinite medium. We will prove that, when 
they exist, the scaling exponents vn and vr are "universal" in the 
sense that they are independent of the values taken by the DA 
phase functions, which are conveniently represented by matrix 
elements Pik (for scattering from direction i into direction k). In 
contrast to this, the prefactors hr, hzt are functions of (the matrix) 
P, as indicated explicitly in (1), where signs are chosen so that 
all the variables are positive (in this limit). The notion of 
"universality" is borrowed from nonlinear dynamical systems 
theory and its use is justified by the specific association of the 
thick cloud limit with an attracting (stable) fixed point of a scale 
changing operation as shall be seen in part 2. It is precisely this 
universal DA behavior that gives credence to the conjecture that 
in general, the thick cloud DA scaling exponents are identical 
with the corresponding continuous angle exponents; the results 
from part 3 generally support this idea. 

It is not hard to anticipate how important external boundary 
conditions will be: for example, if these are reflecting (or 
periodic) in the horizontal rather than absorbing (or "open"), 
energy (flux) conservation (T+R=I)implies that vzt= vr, 
h•= hr, T*+R* = 1 whether the medium is internally 

and first coefficients in the Legendre expansion of the phase 
(1) function). It is notable that their analysis does not depend on the 

optical density (r,p) field; the similarity relations hold only when 
•:p is rescaled everywhere. Applications are therefore not limited 
to plane-parallel geometry, see Davis et al. [1989] and part 3 for 
results on horizontally finite media, in two and three dimensions 
that obey (2) very well with •o = 1. These relations in turn 
inspired the •J-Eddington [Joseph et al., 1976] and fi-M 
[Wiscornbe, 1977] approximations; only the former has been 
used outside of plane-parallel geometry by Davies [1978]. 

This distinction is important as the relevant "rescaling" of x for 
conservative scattering (•o--1) is (1-g)x, where the (l-g) can be 
folded into the prefactors of (1). In DA systems, we will show 
that phase function characteristics such as g do not affect the 
scaling exponents of optical thickness x. As previously 
mentioned, in DA radiative transfer a more general version of 
similarity is obeyed exactly; in particular, this guarantees the 
phase function independence (universality) of any scaling 
exponents. Preliminary analyses show that if applied to 
continuous angle systems that it is an improvement to the 
approximate relations (2) above. 

The opposite of the limit considered previously (i.e., optically 
thin clouds) is also interesting. In part 2, we are able to associate 
it with a repelling (unstable) fixed point (namely, R*=O, T*=I) 
and is therefore very sensitive to the choice of DA phase 
function. We also retrieve the usual criterion for the crossover 

from thin to thick regimes, viz. (1-g)x--1. This regime can also 
be described by expressions (1). For example for thin 

homogeneous or not; on the other hand, for open boundary homogeneous systems, vzt and vr are trivially universal being 
conditions, light can "leak" out through the sides and we will see both equal to -1. This reflects the well-known fact that thin 
that vzt < vr which can be interpreted physically since our systems respond linearly to a global change in optical density 
problem is highly up/down asymmetric (in terms of illumination 
at the various boundaries). The degree of internal 
(in)homogeneity is equally important: diffusion-controlled 
(quasi-homogeneous) systems will have (v• <) Vr= 1 which is 
the plane-parallel value; but in highly inhomogeneous fractal 
structures where diffusion is likely to fail as a model for radiative 
transfer, we find (v• <)vr< 1. 

There exists a large body of literature on asymptotics but, as 
far as we are aware of, it is entirely focussed on the subtle 

(since they are dominated by low order scattering). Thus we can 
view the rescaled optical thickness (1-g)x, i.e., the "effective" 
optical thickness (for isotropic conservative scattering), as the 
basic measure of nonlinearity in the transfer system (with respect 
to optical density). 

2.3. Radiative Transfer in Any Number of Spatial Dimensions 

The radiative transfer equation is customarily stated (often 
variations of (continuous) angular distribution of (specific) implicitly) for three spatial dimensions with a two-dimensional 
intensity with phase function, viewing and illumination direction space which is uniquely parameterized by (polar) 
geometry, all restricted to plane-parallel systems [see van de coordinates on the unit sphere. We will however be equally 
Hulst, 1980, and references therein]. With DA radiative interested in systems embedded in only two spatial dimensions 
transfer, we are able to look in the opposite direction: the phase simply because they are easier to analyze yet sophisticated 
function dependence of DA responses being generally confined enough to gain insight into the radiative effects of inhomogeneity 
to the prefactors is quite secondary compared with the effect of in all (available) directions. Let Is(x) be the (specific) intensity, 
cloud geometry on the scaling exponents. i.e., the flux of radiant energy in direction s at position x per unit 

of "solid angle" and unit of "area" perpendicular to s; these last 
2.2. Similarity RelationsandtheNonlinearAspectofRadiative quantities and units must of course be taken in their 
Transfer d-dimensional sense. In d spatial dimensions, the basic radiative 

transfer equation (in absence of internal sources and neglecting 
We use the word "scaling" in the very broad sense accepted in polarization) can be written: 

the physics literature: invariance of various exponents with 

respect to scale changes. As we shall see further on, the concept (s.V) Is(x) =- rso(x){ls(x)- lP(s',s)Is(x)dfls, } (3) it covers is not unrelated to the scaling analysis of the radiative 
transfer equation initiated by van de Hulst and Grossman [1968] •d 
which yields their widely used "similarity relations" originally 
devised to obtain approximate results for anisotropic scattering where we have introduced the following notation: p(s',s) is the 
from known solutions for isotropic scattering by making the phase function for scattering from direction s' into s with its 
following substitutions: usual probabilistic interpretation, Ea is the d-dimensional unit 

x --> x (1-t•og) 

t•o --> t•o(l_t•og) 
where •o designates the single-scattering albedo and g is the 
asymmetry factor (which are related, respectively, to the zeroth 

sphere with dlls representing an element of its surface around s, 
optical density (or total cross-section per unit of d-volume) is 

(2) designated by •cp (to which we confine all spatial variability), 
where p is particle density (by mass or number) and •: the 
extinction coefficient (opacity or total cross-section per particle 
respectively). When appropriate, the definitions and units of 
these quantities must take into account the dimensionality of 
space. We adopt the following normalization conventions: 
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nd = ldgls = 2g (for d=2), 4g (for d=3) (4) 
"'d 

',s)dgls' = •o (for all s e Eat) (5) 

In this case, the integral in (3) reduces to a matrix multiplication 
by a finite scattering matrix Pik (for scattering from direction i to 
k), and Is(x) to a finite (formal) vector li(x). We obtain: 

(k.V)11• =- Ko(x) • (l-P)ki li (6) 
k 

In essence, (3) is a monokinetic transport (Boltzmann) 
equation with its right-hand side describing streaming in phase 
space and its left-hand side a collision integral with a sink term 
(extinction) and a source term (multiple scattering). The absence 
of the external force contribution to the right-hand side makes (3) 
appropriate for the description photon transport [Mihalas, 1979]. 
In the important case of radiative transfer with conservative 
scattering, (3) can be viewed as a detailed balance between 
spatial gradients (left-hand side) and angular anisotropy (right- 
hand side). To see this suppose Is is independent of s (the 
radiation field is locally isotropic), using (5) the right-hand side 
becomes -(1-•o)•:pls = 0 (here); in other words, anisotropy 
drives directional gradients. The converse is easily proven in the 
case of isotropic but not necessarily conservative scattering, i.e., 
take p(s',s) = •o/nd: using (4), we see that vanishing left-hand 
side implies either that •:p = 0 (medium is locally void) or, 
more interestingly, that Is is equal to its average over Ed (Is is 
locally isotropic). This interpretation of (3) takes on all its 
importance in extremely variable optical density fields r•p(x), 
which is bound to influence the spatial variability of Is(x) and in 
view of the highly asymmetric/anisotropic boundary 
(illumination) conditions for the multiple scattering problem. 

We acknowledge the fact that, insofar as r,p is independent of 
! (or any other measure of radiant energy density), (3) is linear in 
I; this fact is used implicitly as soon as we.talk about albedo or 
transmittance. This considerably simplifies the scaling 
(similarity) analysis of (3): an overall change in •:p(x) is 
equivalent to a zoom on x (hence s.V). The basic idea in 
similarity theory is to relate intensity fields in systems identical 
except for phase functions and optical density, hence thicknesses 
(in all directions); this is done using (3). More precisely, the 
two systems will have the same intensity fields if their rescaled 

It is worth noting right away that there is no intrinsic difference 
between the physical definitions of DA intensity I/• which is 
governed by (6) and its continuous angle counterpart which is 
governed by (3): both are conserved quantities along the beam 
(in absence of extinction). On the other hand, we will be 
tempted to associate (and inde• we will compare quantitatively, 
in part 3) - this DA "intensity" (or radiance) with a continuous 
angle "flux" (or irradiance), which is essentially, diluted by space along a bundle of rays, i.e., it obeys the 'l/r d-I" law, which is a 
basic tenet of standard radiative transfer. A corollary of this is 
that in DA radiative transfer one is no longer interested in 
distinguishing between collimated and diffuse illumination 
conditions at boundaries. 

The elements of P/k in (6) can still be interpreted as the relative 
probability of scattering from direction i into k and the finite set 
of selected directions { k} is effectively "decoupled" from the 
continuum of other available directions Ed-{ k}. As usual, when 
dealing with õ-functions, it can helpful to view the DA phase 
function (the matrix P) as the limit of a sequence of continuous 
angle phase functions such that the intensity field decouples 
more-and-more into (infinitely many) finite families of beams. 
However, at this level of generality, the scattering probabilities 
depend in general on the absolute directions i and k, not just on 
the relative scattering directions, implying a strong anisotropy in 
the system possessed by relatively few physically interesting 
systems. A further disadvantage of such general DA systems is 
that the matrix elements Pik give no information about the 
behavior of the system for intensities at directions other than over 
the finite set {k}. 

In the following, we therefore restrict ourselves DA systems in 
which scattering probabilities depend only on the relative 

optical thicknesses and phase functions are the same. The (scattering) angle between i and k; this is the DA version of the 
similarity will only be approximate if the rescaling is performed usual assumption in continuous angle radiative transfer that 
only up to a given order in some expansion of the p(s',s) =p(Os,s')where Os,s'=Cos-l(s's)(necessary in 
scattering/extinction kernel K(s',s) = p(s',s)-õ(s'-s) which can particular for the discrete ordinate method). In the continuous 
be used to regroup the two terms on the right-hand side of (3) 
[McKellar and Box, 1981 ]. 

The first exploitation of angular discretizafion in radiative 
transfer, apart from the original "two-flux" theory by Schuster 
[1905], was Chandrasekhar• [1950] systematic generalization 
of it, known as the discrete ordinate solution of (3) for axially 
symmetric phase functions in plane-parallel geometry where the 
streaming operator (s'V) becomes }xd/dz where I• is the vertical 
direction cosine of s. In its original d=3 setting it proceeds as 
follows: by using N-point Gaussian quadrature (after Fourier 
expansion in azimuth) for the polar part of the solid-angular 
integral, one obtains a solvable "2N-stream" approximation to 
Is(z), the accuracy of which increases with N along with 
computational effort. Our approach is very different, since we 
are interested in systems which obey (3) exactly with DA phase 
functions. 

3. DA RADIATIVE TRANSFER: FUNDAMENTALS 

3.1. DA Radiative Transfer Systems With Phase Functions 
Dependent on Scattering Angle Only 

The basic idea of DA radiative transfer is to choose phase 
functions p(s',s) which are finite sums of (Dirac) b-functions, 
i.e., that describe scattering within a finite number of directions. 

angle case, this implies axial symmetry for the phase function; in 
the DA case, it implies an even higher degree of symmetry, e.g., 
along three mutually orthogonal axes in d = 3. In this case, the 
absolute orientation of any coordinate system introduced to 
describe the transfer process can be arbitrary (even if it is used to 
break the axial symmetry as just mentioned); there are no 
absolute directions, hence the matrix Pik specifies the coupling 
within an infinite number of independent families in direction 
space. 

The requirement that the (finite) matrix Pik depends only on 
i.k greatly restricts the number of possible DA systems. To 
determine those systems which satisfy this requirement, we first 
note that it is equivalent to saying that the set of transformations 
needed to map unit vectors i unto k form a (nondegenerate and 
nontrivial) finite subgroup of the corresponding 
rotation/reflection group O(d). By "nondegenerate", we mean a 
subgroup that cannot be projected unto a finite subgroup of 
O(d-1) and by "nontrivial", we mean a subgroup that does not 
reduce to the identity element (x-->x) of O(d-1). We shall use 
the notation DA(d,n) for n beams in d dimensions. 

Enumeration in d=l. On a line, only two directions are 
possible; hence only one DA system that we shall denote 
DA(1,2) (the "two-flux" model). O(1) is itself finite as it 
contains only the identity and parity (x-->-x) transformations, the 
condition for nondegeneracy is therefore irrelevant. 
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Enumeration in d=2. In the plane, we have a countable infinity 
of acceptable DA systems, each one corresponding to a 
nondegenerate f'mite subgroup of 0(2) generated by a rotation 
through 2n/n for n=3,4,5,... which we shall designate by 
DA(2,n). Notice that the case n=l is trivial and the case n=2 is 
excluded because rotation through •r is equivalent to parity and is 
therefore degenerate. 

Enumeration in d=3. In space, we have but five possibilities 
each corresponding to one of the five Platonic solids (or fully 
regular polyhedra): DA(3,4) for the tetrahedron, DA(3,6) for the 
cube, DA(3,8) for the octahedron, DA(3,12) for the 
dodecahedron, and DA(3,20) for the icosahedron. This indeed 
is the only way to divide the 4•r steradians of •,3 equally while 
maintaining the same (discrete) isotropy around every beam, this 
excludes the 13 semirregular (or Archimedian) solids, their duals 
(or Catalan) solids obtained by truncation or stellation of the 
above; see Smith [1982] for details. 

Notice that the "trivial" (single-beam) DA(d,1) system is 
completely solved by the Bouger-de Beer law of (exponential) 
extinction. In many applications (spatial discretization in 
particular), it is desirable that the DA system allow 
backscattering; this implies that the associated subgroup of O(d) 
contains parity. Eligible DA systems would then be DA(1,2), 
DA(2,n) (with n=4,6,8,...) and DA(3,6), DA(3,8), DA(3,12), 
DA(3,20), since the tetrahedron does not have "opposite" faces. 
The simplest of these are DA(d,2d) will be used extensively in 
the following, they correspond to mutually orthogonal beams 
(when d>l). The dodecahedron approach to radiative transfer 
(DART) [Whitney, 1974] is closely related to the DA(3,12) 
system and has been used primarily to optimize radiative transfer 

} lrna.lmr* t 
" 

Fig. 1. Radia•ve interaction •tween squ•e cells of size l is 
shown. If not absorbed, •ght scatmrs o•y •ong latfi• d•ecfions 
tow•ds newest neighbors scatte•ng elements, •th probab•ifies 
denot• R,T, •d S: F• instance, l+ y(mxl, myl ) = Rl_y(mxl,(my+l) 
l) + Tl+y(mxl,(my-1)l ) + Sl+x((mx-1)l,myl ) + SI tm ,!hl m 1• -X"'-X -'-"'•y-' ' 

codes; along with Chu and Churchill [1955], Siddal and Selguk 
[1979], Mosher [1979], and Cogley [1981], we favor the matrices of transfer coefficients whose existence is assured by 
DA(3,6) model for its conceptual simplicity. the interaction principle itself. In this formulation, li(ml) is a 

single number (neglecting polarization) that characterizes a whole 
3.2. DA Equations on a Lattice and Their Spatially Continuous distribution of intensity along the interface (corresponding to 
Limit direction i) of the cell (positioned at m/). Since (7) expresses the 

fact that output of one cell is input to another, it is desirable to 
Spatially discretized DA radiative transfer equations can be think of all these intensities as uniform along cell interfaces; this 

obtained from first principles by considering a lattice regularly will only be the case in the limit where all the cells are optically 
covering the d-dimensional space of interest. These spatially thin. In other words, in this limit only does c• depends solely on 
discrete equations are interesting for several reasons. First, they the optical properties of the scattering medium filling the cell, 
allow us to establish a relationship between radiative transfer in i.e., it becomes independent of the (normalized) field I as 
inhomogeneous clouds and certain diffusion problems in lattice gradients become negligible along cell interfaces. 
statistical physics, see section 6. Second, they allow us to apply In (7) we have implicitly chosen the DA beam directions { i} as 
approximate real space renormalization (i.e. "doubling") described in the previous subsection. Notice that the cells are 
techniques; see part 2. Third, in media with arbitrary optical dual to these direction sets and their associated solids and recall 
density fields they can be used in straightforward numerical that they must now fill their embedding spaces. 
calculations (i.e., as finite difference equations), if all intensity Enumeration in d=l. On a line, spatial discretization poses no 
fields are desired they can be numerically more efficient than the special problem (the "two-beam" model can even be solved 
alternative Monte Carlo methods; see part 3. For the moment, without recourse to calculus, see Appendices A and C in part 2). 
we are interested in obtaining their spatially continuous limit and Enumeration in d=2. In the plane, we can exploit the three 
comparing it with the corresponding DA radiative transfer well-known regular tesselations of the plane: by squares, by 
equation (6). equilateral triangles (both are used in part 2) or by regular 

Consider a space-filling collection of identical cells in d hexagons; these lattices are associated respectively with a 
dimensions. Denote the fundamental lattice constant by I and the subclass of DA(2,6) (indeed "up" and "down" triangles must be 
vectors joining the neighboring cells by knl. The optical alternated, see below), DA(2,4) and DA(2,6) models. 
properties of each cell are such that scattering can occur only Enumeration in d=2. In space, we are interested in those 
along the lattice directions der'reed by the kn. The "interaction Platonic polyhedra that are also (or can be combined into) 
principle", which is a statement of linearity of radiative response parallelohedra or Fedorov solids, i.e., they fill space: "up" and 
with respect to sources [Preisendorfer, 1965], then yields in "down" tetrahedra and a subclass of DA(3,8), cubes and 
absence of internal sources: DA(3,6), octahedra and DA(3,8); only DA(3,6) is exloited in 

' parts 2 and 3. 
Consider the case of a triangular lattice: the DA(2,6) subclass 

lt(ml)= • c•ik(ml ) lk[(m-k)l ] (7) of interest corresponds to the inhibition of "transmittance" 
k (c•ii=0) since there is no opposite face as well as "scattering" 

through +120 ø. Thus "transfer" of a given beam through a 
where we sum over all the DA scattering directions k (dropping single cell feeds radiant energy into its opposite (at 180 ø) and the 
subscripts); see Figure 1 for an illustration. The c•(ml) are two at +600; of course, the same source of energy will feed the 
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three other beams (including itself) upon crossing a second cell Alternatively, (7) can be re•arded as a finite difference 
(or more). approximation to (6), as long as tis taken small enough (and the 

As usual in radiative transfer problems, (7) can be given a boundary conditions such) that the high order terms in (k'V 
probabilistic interpretation. We simply require particles to move )21k, etc., are small compared with the first order term (k'V)Ik 
along the lattice directions from one cell to the next, changing 
from direction i to k with probability Oik. This general case 
(where o is arbitrary) is called a "correlated random walk" 
[Renshaw and Henderson, 1981]; it is also a first order Markov 
process. When •J is not far from the identity matrix, there is a 
small probability per step of scattering, the single cell equivalent 
optical thickness (in direction i), -logeoii, is small and the 
particles will perform ballistic trajectories over exponentially 
distributed distances. In this case, we recover the standard 
Monte Carlo method for radiative transfer calculations: the 

particles model the behavior of photons (other kinds of Monte 
Carlo particles are discussed in section 6). 

The only direct applications of (7) to inhomogeneous 
(including simply finite) clouds of which we are aware are by 
Mosher [1979], who called a cubic lattice system a "building 
block model", and by Cogley [ 1981], who primarily examined 
quite thin clouds. 

In order to relate (7) to the DA radiative transfer equation (6), 
we now take the small I limit by first expanding Ik into a Taylor 
series around x = ml: 

Ik[(m-k)l] = [1-l (k.V)+ • (k.V)2)-... ] Ik(x) (8) 

Assuming that • 1 exists and letting 1 denote the identity matrix 
(i.e., lik=õik), we obtain by using (7) to eliminate lk[(m-k)l] 
from (8): 

in (9); see Appendix A for necessary and sufficient conditions 
for this to occur. A sufficient condition is that x0<<l, i.e. when 
the diagonal elements of • corresponding to forward scattering 
or direct transmission are dominant. In terms of the particle 
interpretation of (7), this means that the particles will behave as 
photons as long as they have only a low probability of changing 
direction in each cell. However, numerical results to be found in 
part 2, as well as theoretical arguments developed in Appendix 
A, indicate that this condition is unnecessarily restrictive; the 
solutions of (7) will be smooth enough to represent good 
approximations to (6) as long as all the eigenvalues of •2 are 
and vary smoothly. However the latter case involves unphysical 
phase functions, hence meaningful results will always require 
nearly diagonal. Note that the numerical solution of (7) is easily 
obtained by over-relaxation, iteration, or other straightforward 
methods. 

3.3. Some Examples of DA Radiative Transfer Systems 

The simplest examples of DA radiative transfer are the 
"orthogonal" DA(d,2d) systems with d=1,2,3. The discrete 
space approximations corresponding to (7) involve (2d)x(2d) 
transfer matrices •j, 2d is the number of (mutually perpendicular) 
beams (when d>l). Since we are considering only the cases 
where the scattering coefficients depend only on the relative 
angle through which scattering occurs (i.e., 0, x/2, x), we 
obtain the following highly symmetric matrices: 

(k'V)Ik = « •. (1-o-1)ki li +-l 2 [(k'V) 2 -.... ] li 

Furthermore, assuming that the quantities Qki which are defined 
by 

TRSSSS 

TRSS •TSSSS 

isss (I= R T S TR S R T S S 
SRT SSSTR 

SSSRT 

Q= lim 1-•-1 1->0 I (10) in d=l, 2, 3, respectively. The k-sets are { 1,-1 }, in d=l; in 
d=2, 

exist everywhere, then for vanishing l (and increasing tn so that 
x=-ml: remains constant), we obtain 

(15) 

(k'V)li = E Qki (x)li(x) (11) and, finally, in d=3, 
i 

}/i)I ø) Comparing eqs. (11) and (6), we see that the two are identical 0 , 0 , 1 0 0 (16) 
if Q(x)=-•:p(x)(1-P). Recall that the former is valid in the 0 0 0 1 -1 
conditions specified in Appendix A, where the higher order 
terms in (9) are negligible. Hence, in terms of the transfer matrix T is the transmission coefficient of the cell, R is its albedo, and S 
o, we obtain from (10) taken at finite l: represents transfer through a side; these need not correspond to 

• = [1 + (1-P)xo] -1 (12) 

where we have written /•:p(x)as 'co, which is the optical 
thickness of the single cell (at x=ml:) in the spatially discrete 
system (7). As expected, (12) reduces to the single-scattering 
result in the limit of small x0: 

o = 1- (1-P)xo + O(x02) (13) 

In the above (1-x0)l corresponds to zeroth order scattering 
(direct transmission) and x0P to first order scattering. 
Identifying the diagonal elements of (13) with (la), we find 
T*=I, hT=t-l<0 and VT=-I; comparing similarly with (lb), we 
find R*=0, hR=-r<0 and VR=-I. 

single-scattering only. Note that R+T+2(d-1)S+A = 1, where 
1 > A > 0 is the absorption coefficient, which vanishes for 
conservative scattering. A slightly more complex situation arises 
when the lattice cells do not all share the same orientation, such 
as in the case of the plane covered by equilateral triangles, this 
model is described and used in part 2. 

Using eq. (12) and the symmetry of the • matrices, we see that 
the corresponding P matrices are of the same form: 

t rssss 

t rs s srtSss s 
(t•l itss strss P = (17) r s t r s rtss 

s r t sss t r 
sssrt 
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for DA(1,2), DA(2,4), and DA(3,6), respectively. Again liñ=l+iñl-i (20a) 
a = 1-t-r-2(d-1)s is a measure of (local) absorption; in the 1 /} 
terms of Appendix D, we have a = 1-•o. Fission-type fi/-<p(x) •lxi (20b) 
scattering can, of course, be modeled by allowing negative (true) 
absorption a<0 (•o> 1). 
Writing out the DA radiative transfer equation (6) explicitly in where i = 1, 2, 3 for the x, y, z directions, respectively. The 

the DA(3,6) case, we obtain li- terms are the d components of the flux d-vector (at position x) 
in DA radiative transfer; the li+ can be viewed as the 
contribution of radiation flowing along the i-axis to total 

[Ax•x +Ay•+nz•]l r,p(x)(l-P)/ (18) intensity, e.g J= lx++l ++lz+ (in d=3) Rather than =- ., y ß 
expressing the phase function in terms of r,t,, we introduce the 
following equivalent parameterization when and where 

where convenient: 

1 0 0000 000 0 00 

0-1 000g 00000g 0 0 000 001 0 0 

nx= 00000i ny= 000-10! nz= 00000 00000 
0 0 000 000 0 0 

t-1 r s s s s 

t-lssss 

P-l= s t-1 r s s 
s rt-ls s 

ssst-lr 

sss rt-1 

00000 0 
00000 0 
00000 0 
00000 0 
00001 0 
00000-1 

(19) 

a= 1-t-r-2(d-1)s (21a) 
q= 1-t+r (2lb) 
p= 1-t-r (21c) 

where d = 1, 2, 3 is the dimensionality of the space in which 
the scattering occurs. Notice that the relative weights of the Pik 
in (21a)-(21c) are (i.k) n with n = 0,1,2, respectively; the 
above are therefore simply related to the zeroth through second 
Legendre coefficients (l•n) of the phase function; see Appendix 
D. For instance, 

a = 1-too (22a) 

q = 1-•og (22b) 

The DA(2,4) model can be retrieved formally by putting 
l+x = l-x = O, &/•}x = 0 in (18) and, similarily, the DA(1,2) 
model with l+x = l-x = l+y = l_y = O, &/&y = &/•}x = 0. It 
is noteworthy that the latter is equivalent to the popular "two- 
flux" approximation to standard radiative transfer in plane- 
parallel geometry, which is widely used when fluxes rather than 
intensities are desired; it is briefly reviewed in Appendix B. As 
in the equations on a lattice (7), the complete problem is not 
defined until the boundary conditions on the "vector" I are 
specified. Note that although this is a system of linear partial 
differential equations, many standard methods of solution, such 
as characteristics, do not work since Ax, Ay, Az, are singular. 

Except for notation, the full DA radiative transfer system 
described by (18) and (19) is identical to the "six-beam model" 
of Chu and Churchill [1955] or Siddal and Selfuk [1979], who 
seem to have worked independently. The former authors used it 
as an approximation to continuous angle scattering in plane- 
parallel geometry (obtained by taking i)/'Ox = B/i)y = 0 hence 
&/&z = d/dz), the latter (who incorporate internal sources) 
compare its performance with other solutions of the radiative 
transfer problem for enclosures (which is of importance in 
furnace design). Our exploitation of this idea differs 
substantially from theirs: we do not consider the DA case as an 
approximation scheme for continuous angle radiative transfer but 
rather we study it as a theoretically realizable model interesting in 
its own fight; we return to this question in the discussion at the 
end of section 5. 

4. FROM SIMILARITY RELATIONS TO UNIVERSALITY 
CLASSES iN DA RADIATIVE TRANSFER 

4.1. Scattering and/or Absorbing Media 

The simplest DA system of some interest is DA(1,2); its 
symmetry is such that it exactly obeys a one-dimensional steady 
state diffusion equation with internal sinks and yields 
accordingly exponential-type behavior with a characteristic 
optical length scale known as the "diffusion length"; see 
Appendix B. In this section, we study some general properties 

Recall that 1•1/•o = 3g (in d = 3). We have from (21a) and 
(21c), 

p = a+2(d- 1)s (22c) 

this parameter can therefore be viewed as a measure of the 
combined effect of absorption and side scattering; it could be 
used to model Rayleigh-type scattering which has only zeroth 
and second Legendre coefficients. For simplicity, we shall 
assume in the following that the phase functions are constant, 
i.e., only the optical density varies (typically via p(x)). Adding 
and subtracting consecutive pairs of rows in (18), we obtain, 
respectively: 

+ 2s (J- = -15ii- (23a) 

qli- = -bili+ (23b) 

differentiating (23b) and substituting into (23a), we obtain 

(1 •q•J•)li+ 1-alp - =d-1 (J-li+) (24a) 

li-=- •fiili+ (24b) 
Essentially the same equations are obtained and solved 
numerically by Siddal and Selfuk [1979]. 

We observe that these equations naturally separate into two 
groups: the first of which (24a) can be solved independently of 
the second for the li+, from whence the remaining li- can be 
obtained by differentiation using (24b); finally, the various beam 
intensities can be obtained by the linear combinations dictated by 
(24a). Note that the basic character of equation (24a) and its 
solutions is determined by the values of its parameters pq and, 
say, 1-a/p = 2(d-1)s/p. In spite of this separation of 
(dependant) variables, this system is still difficult to handle 
directly, since the d equations in (24a) are still fully coupled (via 
side scattering). This implies that they cannot be combined into a 

of the much more interesting DA(2,4) and DA(3,6) systems. We scalar equation for J. Similarly (24b) is not the usual kind of 
start by introducing the following notation: Fickian law that converts a scalar (measure of the radiation field) 
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into a vector (measure of the flow of radiation). The only can be considered as second order corrections to the similarity 
exception is when p=a (implying s=-0) or d=l (making li+=J) the 
right-hand side of (24a) then vanishes identically, and we 
recover one-dimensional diffusion equations for each of the li+ 
separately; in this case we obtain d noninteracting (s=0) one- 
dimensional diffusion fields. 

An additional complication comes from the boundary 
conditions which are more naturally expressed in terms of the l+i 
•an the li_+. Using 20a, 24b, we obtain: we obtain[I/+ + 
-õili+]x • S=10 where I0 is an (appropriate) external sources 
•ver the boundary S, and the sign + is the same as that of the 
normal vector to S. 

relations (2) which involve only q = 1-g when tilo = 1. 
To see how this works, consider the solutions l?(x;x)for 

phase functions defined by Pl and ql, where, for notational 
convenience, we have replaced the given •:p(x) field by the 
single parameter x. This is possible, since as long as we keep 
the same cloud geometry (only increasing optical densities by 
constant factors), the density can be parameterized by the optical 
thickness across an arbitrary part of the system, call it optical 
"size". Introducing the idea of an "effective" optical size 
Xeff = x/•[•, as long as the boundary conditions on li+ (not on 
l+i or l-i individually; See below) are the same, we obtain 

4.2. Conservatively Scattering Media 

In the rest of this section, we consider only the important but 
special case of conservative scattering where a = 0. The 
DA(1,2) system analyzed in Appendix B now obeys a second 
order ordinary differential equation and yields accordingly 
vr= 1 with v R = v r by conservation of radiant energy (this 
combination of scaling exponents characterizes plane-parallel 
geometry throughout this study). 

In this important case, the basic character of the equations for 
higher dimensional systems (24a) depends only on the sign of 

the product PI• four possibilities exist: _oo<pq < 0, pq = O, oo>pq > 0, q l=o each associated with a different 
universality class, as we shall see. For positive finite (physical) 
phase functions, 1 >p>0, 2>q>0 and l>pq> 0 
since pq = (1-t)2-r 2 and (l-t) > r here. Again, the case 
p = 2(d-1)s = 0 is singular and (24a) reduces to d one- 
dimensional Laplace equations for each of the li+. In terms of 
the discretization (7), the physical regime pq > 0 is obtained 
with T = 1, R = 0 for each cell, and the unphysical regime 
pq < 0 can be numerically simulated using (7) with T = 0, 
R -- 1 for each cell; see At>pendix A. A much more interesting 
case occurs in the limit [Pql- because (24a) reduces to a 
singular matrix equation which implies that all the li+ 
components are equal, each satisfying exact (two or three 
dimensional) diffusion equations. This shows that diffusion is 
not in the same universality class as DA radiative transfer. 

•+2)(x;%ffi = I !l+)(r,•f) (27) 

ai = p(x) 

(Note that the same kind of analysis can be made for cases 
involving a>0; we must then introduce an "effective absorption 
=a/p). Dropping explicit reference to x, and using (26b), we 
obtain 

• = ,•]P2q2 (28b) 
•plql 

a = •x[ p2ql =ql I• (28c) 
•t plq2 q2 

where 13 is the ratio of optical thicknesses required to give 
equivalent effective optical thicknesses. Usingt{•7), i.e. the fact 
thatl?+)(x/I 3) = I •l+)(x), hence õ i•+'(x/13) = õ iPi½•(x), and (26b), 
we obtain 

Concentrating our attention on the set of equations (24) for the Combining this with (28a) and the definitions of the li+, yields 
li+, and taking pq > 0, we introduce the notation 

2) "1: =•(1-{1) + _ we obtain, using (24) 

(30a) 

(3or,) 

'2 

(1- • )li+ = • (J- li+) 

•/P õ'i li+ li---- • 

(26a) The above generalized similarity relations are valid for all 
positions x for all conservative scattering DA(d,2d) phase 
functions (for d > 1). In particular, these relations show that an 

(26b) understanding of the behavior of the system for one phase 
function for increasing optical thicknesses is sufficient. An 
interesting point which could be useful numerically, is that the 

We now remark that the first set (26a) no longer contains any isotropic DA phase function (which yields pq = l-l/d) is not 
explicit reference to the phase functions. In other words, for the the system that will converge fastest to the thick cloud limit, 
li+, changing the phase functions is exactly equivalent to since taking p = q = 1 (the maximum possible: r = t = 0, all 
uniformly rescalin•g the optical density (hence all optical side scattering), yields 13 = x/d/(d-1) > 1. 
thicknesses) by xlpq. (Actually, we may obtain (26) under In practical applications, relations (30) are not immediately 
slightly more general conditions about the constancy of the phase useful, since natural boundary conditions involve specifying l+i, 
functions: all that is required in order to eliminate explicit l-i on various boundaries rather than li+ directly. We now show 
reference to p,q in conservative scattering is that the ratio p/q is how the appropriate boundary conditions can be found in the 
constant everywhere. This is equivalent to the requirement of a latter cases. This result will directly establish universality (DA 
constant side-to-backscattering ratio: s/r = const, which can be phase function independence) for quite general thick cloud 
seen by expressing 1-t in terms of r and s in (2lb) and (21c) scaling exponents. For simplicity, in order to demonstrate the 
using (21 a) with a -- 0.) We will exploit this fact to obtain method, we will also require symmetry of the scattering medium: 
powerful similarity relations which for continuous angle systems either twofold rotational symmetry or reflectional symmetry 
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about a central horizontal plane, although more complex relations With this choice of 7, the bottom boundary conditions will 
can be derived in less symmetric media. For the moment, we automatically be satisfied, since only the signs will change. 
also assume either reflective or cyclic horizontal boundary Applying definitions (32) and boundary conditions (31) to 
conditions. Using the boundary conditions similarity relations (30), we obtain 

J'Lz(tøp)d•+z = 1 l/(fz)dS='•R2-T2) = •l+o0(R1-T1)+ •1-o0 (36a) 
lY(_z2)•= y = •(1-oO(R1-T1)+ •(1+o0 bod/o• +z•m) •-z =0 

(31) 
(36•) 

where the elements dS+• are projections of the surface elements 
of the (upper/lower) boundaries on the y- axis (d=2) or x-y 
planes (d=3). We define the reflection and transmission 
coefficients as 

Taking ratios 

(l+o0(R1-T1)+(1-o0 
(R2-T2) = (37) 

(1-o0(R1-T1)+(l+o0 

R(x)= l+z(top)aS+z 

T('O = bott•J/•(bottom) dS-z 
(32) 

The shape of the top and bottom boundaries can be quite 
arbitrary, we can even use an arbitrary incident (top) intensity 
dislribution (the normalization to 1 is just for convenience). 

We now exploit the linearity of the radiative transfer equation 
which ensures that new solutions can be generated by 
superposition as well as multiplication of old ones by arbitrary 
constants. We must do this in order to ensure that the resulting 

perposed)l•tO p and bottom boundary conditions satisfy 
('r/•) = I •.•Y('r). The appropriate boundary conditions are 

obtained by illuminating the top as above, but by also 
illuminating the bottom with an identical radiation pattern except 
in the +z direction (this is where the symmetry of the the 
scattering medium is required), and with intensities equal to the 
negative of the previous ones. We therefore obtain 

t-tO(to )dS+z u••+z', P = R1-T1 03a) 

f_•)(top)dS+z = 1 (33b) 
hence 

•(top)•+z = I+R1-T1 
On the bottom, we have 

•l)(bo0 = -l•l+)(top) 

Since we have conservative scattering, and the horizontal 
boundary conditions are such that the sides can act neither as net 
sources nor as sinks, we must have R2+T2 = R1 +T1 = 1. 
We therefore obtain 

T2(•) = 1+T1('r)(o•-1) (3ga) 

1 -1=1( 1 -1) (38b) 
T2(x/•) o• Tl('r) 

Note that the factor 7 calculated above is all that is required to 
completely rescale the internal radiation fields in the second 
medium. In this case, we obtain 

(1+o0 IZ)(x,m) +(l-a) I (_•)(x,m) 

•.f)(x,•) = (1-a)(R1-T1)+ (l+a) 0%) 

i(•)(x'• ) = (1-a)(R1-T1)+ (l+a) 09a) 
'(1)ix,X) (1)(x,, 0 (1-o0 t+/, +(1+o0 1 d • 

Deriving similarity relations for less symmetric media with 
more general boundary conditions is possible, although the 
(matrix) manipulations required can be quite tedious; we shall 
give two more examples without detailed derivation. First, if we 
drop the condition of twofold symmetry (but maintain cyclic or 

(33c) reflective horizontal boundary conditions), we must have more 
information about the response of the system in order to obtain a 
similarity relation. Specifically, we require the response of the 
system when illuminated with an arbitrary radiation pattern from 
below, as well as from above. Denoting the corresponding 

(34a) transmission coefficients Tb,Tt for the bottom and top, 
respectively, we obtain 

(34b) 

Tt2(•) = Tt•(x)• (40) (34c) 1+ (Ttl(X)+Tbl(X))(a-1)f2 

In the corresponding medium with the second phase function for 
which we wish to develop similarity relations, we impose 
identica•,[(mdiatij•q patterns, only rescaled by a factor y determined 
so that P•.•"* = I •.•* on the boundaries: 

and similarly for Tb2. As expected, this reduces to (38) when 
Tt= Tb. 

As another example, we can obtain the corresponding 
equations for open horizontal boundary conditions (we still 
require media with 2d-fold symmetry) which yield 

/(z2+)(top)dS =•(1-T2+R2)= l/?+)(top)dS = 1-T1+R1 (35) 
ß •l(X)(x 

Q2( 1+ •1(x)(o•-1) (41a) 
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•) Pl(x)a P2( = 1+ •Pl(x)(a-1) (41b) 
5. DA RADIATIVE TRANSFER AND DIFFUSION PROCESSES 

5.1. Diffusion as an Approximation to DA Radiative Transfer 

where we have used the following definitions 

Q = 1-R+T (42a) 

P = 1-R-T (42.3) 

The equations (38) with cyclic or reflective boundary 
conditions are readily retrieved as the special case of (41) since 
T+R=I :=• P=0, Q=2T, from (42). It is interesting to note that 
although this result is exact only for the DA(2,4) and DA(3,6) 
systems, preliminary numerical evidence indicates that it 
provides a remarkably good approximation in standard 
(continuous angle) radiative transfer at least in plane-parallel 

We now take a different approach in order to explore the thick 
cloud limits of DA radiative transfer, in particular to determine 
under which conditions such limits can be approximated by 
solutions of a diffusion equation. We have clearly seen that two 
diffusion regimes can be obtained exactly: one at pq=O involving 
d independent (uncoupled) one-dimensional diffusion equations 
and the other at I pq I =oo with a single d-dimensional diffusion 
equation. Since both correspond to singular points of the 
similarity transformations for conservatively scattering DA 
systems, we will expect both diffusion regimes to be generally in 
different universality classes than DA transfer. In this section we 
discuss some examples. 

We therefore want to search for circumstances under which we 

geometry. A detailed account of these generalized similarity might expect to obtain approximate d-dimensional diffusion 
relations with their derivations and their implications will be equations for physically relevant DA phase functions. From our 
given elsewhere. analysis of (24) we expect to obtai• a diffusion equation as first 
Except for the symmetry requirements, the above results are order approximation (in (pq)-l) if õ zli+ << pqli+. 

still quite general for conservative DA(d,2d) radiative transfer For simplicity, we shall only consider the DA(2,4) system; 
(d>l). We now consider the thick and thin cloud limits (x-->oo, Appendix C deals with the slightly more complicated DA(3,6) 
x->O, respectively) where we expect the functional forms (1). case. Considering (24a) for xi=y,z (d=2), we can readily obtain 
Combining these with the similarity relations (38a) or (38b), we fourth order equations for ly+,Iz+: obtain 

, aT1 
r2: , (43a) 

1 + (a-1)T 1 

2 2 2 2 = [õzõy-pq(õy+õ3+qa(2p-a)]ly+ 0 
22 2 2 

[õyõz-Pq(õy+õ'z)+q2a(2p-a)] Iz+ = 0 

(45a) 

VT2 = VT1 ( = VT) 

hr2 =hn , ' 
I + (a-1)r 1) 2 

(•3b) 

(43c) 

om (43a) we see that • T 1 = 0 (x•>oo) then T = 0 too and if 
1 = 1 (x-->O) then T 2 = 1 also (i.e., 0 and • are the fixed 

Recall from definition (45b) that/52 and/5.2 do not commute in 
general. When a •: 0, the ratio o• the zeYroth to second order 
term enables us to define a characteristic length L such that 

1 
•:p(x)L = (46) 

•/•1-•) 

since, according to Appendix D, aq = (1-•o)(1-•og), we 
points of th}s similarity transformation for T). Of course, we retrieve the usual "diffusion length" to within a factor 
have here R 2 = 1-T and hR2 = hT2 as expected in this case of (1-a/2p) -1/2 dependent on the second Legendre coefficient; 2 2 

closed horizontal boundary conditions. The exponents vn = vr 
are left unchanged (similar arguments in the more general case standing for d. We expect in this case exponential type behavior; 

however, as a-->0 (conservative scattering), this length scale with open sides where vn• vrshow that vn and vrare 
separately conserved by the similarity transformation). This diverges; we then anticipate algebraic solutions. 

We see immediately from the above, by adding (45a) and establishes that if scaling limits exist, that the exponents are 
universal, i.e., phase function independent. 

Aside from their utility in deducing the complete radiation 
fields for any DA phase function given that of any other, these 
generalized similarity relations are also useful in deducing 
corrections to the standard (approximate) similarity theory. In 
the thick cloud limit (1), optical thicknesses must no longer be 
rescaled by q2 = l-g2 as specified in (2) but by 

(4•b) and u•siI•g J(x):ly++Iz+, that when the highest order terms 
(õv~õ• and õz~•) are (both) negligible, we obtain a bona fide two- 
diinensional aiffusion equation for the scalar quantity J. Using 
definition (20b), it reads 

V. [ D(x) VJ(x) } = a•:p(x) J(x) (47) 

/[3•/1/VT 131-1/VT= q2(VT•-l)/2VT /•11-•vT1)•VT 
where the right-hand side is the rate of destruction of radiant 
energy (at the given wavelength) by true absorption and the 

(44)(local) radiative diffusion constant is given by 

where we have put ql = 1 (gl = 0). This reduces to q2 only 
when vT=l, i.e., the (periodic) medium is homogeneous (hence 
plane-parallel) or at the very least dominated by diffusion, see 
next section. Since (even anomalous) diffusion behavior is 
expected to be different from radiative transfer in the same fractal 
(see section 6), we do not expect the standard similarity relations 
(2) to perform well in this kind of medium. 

1 
D(x) = (48) 

The condition that the high-order derivatives are negligible 
implies a high degree of smoothness in both the density and 
radiation fields; it holds best far from sources (e.g., cloud top) 
and sinks (e.g., cloud sides, especially near the top). 
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5.2. Comparison of DA and Diffusion as Approximations to 
Radiative Transfer 

In essence, the Eddington approximation to continuous angle 
radiative transfer in d dimensions is an expansion of the local 
specific intensity field Is(x) into a scalar field (J) that represents 

be explored. Most of all, DA is a particular case of general 
radiative transfer which means that if (broad) continuous angle 
universality classes exist then DA systems are sufficient to study 
their characteristics. 

In conclusion, we see that DA systems are, by consauction, an 
exact description of the radiative transfer process in arbitrary 
optical density fields with DA phase functions, whereas 

its isotropic part and a d-vector field (flux) that models direction diffusion will only be approximate (in d>l). DA systems avoid 
and intensity of the "flow" of radiation. Substitution of this some of the more serious shortcomings of the diffusion 
ansatz into the radiative transfer equation (3) yields a approximation that prohibititsuseinextremelyvariableoptical 
second-order (diffusion) equation in J and a Fickian relation for density fields one expects to find in clouds. In order to allow 
obtaining the flux, given J [Giovanelli, 1959]. A &Eddington spatial gradients of any degree in any (discrete) direction detailed 
approach is also possible [Davies, 1978]; apart from this angular information is sacrificed; in part 3, we will see that in 
rescaling, the phase function must be limited to a two-term many applications this information is not as precious as that 
Legendre expansion within this approximation. In short we have gained by leaving the realm of plane-parallel geometry. 
d+l functions of x to be determined, but one obeys a In terms of general (mass or radiative) transport theory, the 
second-order partial differential equation and constrains all the 
others, two parameters are available to describe the 
scattering/absorption process (typically t•o and g). It is 
well-known that this approximation fails near boundaries: it is 
intrinsically incapable of adjusting to the prevailing highly 
anisotropic (boundary) conditions. For the multiple scattering 
problem, the boundary conditions must indeed be modified 
yielding the "mixed" or "radiative" boundary conditions for the 
diffusion equation in J. As mentioned in subsection 2.3 in the 
case of conservative scattering, anisotropy of Is(x) with respect 
to s means strong gradients in Is(x) with respect to x, implying 
that higher order terms are at work as in (45a). 

In summary, we see that diffusion is a poor approximation to 
radiative transfer whenever spatial gradients are important or 
(equivalently, in the conservative case) highly anisotropic 
intensity fields prevail. We therefore expect that in general, 
(thick cloud) transfer exponents for both radiative transfer and 
diffusion will be different. It may in some circumstances still be 
possible to use diffusion approximations: as argued above (for 
DA) the best case for this is the internally homogeneous medium 
with or without sides. Unsurprisingly, Davies [1978 and 1976] 
succeeds in reproducing very well his Monte Carlo results for 
horizontally finite clouds of various aspect ratios by using a 
three-dimensional version of the diffusion approximation of 
(continuous angle) radiative transfer. Also, in part 3, we find the 
diffusion (d= 1) value of vr (namely, 1) for d> 1 for both DA and 

Boltzmann equation with no external forces (3) yields the 
diffusion equation (47) and coefficient (48) in its continuum 
limit; the question is whether or not that is as good a model as a 
simplified version of the former, e.g., its DA counterpart (6)? 
The concept of universality allows us to reformulate this question 
in more precise terms, at least in the radiative case: if diffusion 
and (radiative) transfer do not share the same universality classes 
and if DA and (continuous angle) radiative transfer do, then DA 
can be viewed as a better approximation to radiative transfer than 
diffusion. In the following section we will argue (by analogy) 
that the first condition is expected to be generally true and in part 
3 the second condition is shown to be well verified numerically 
in general. Since we have defined universality in terms of 
scaling laws and if the above conjecture proves to be true then, in 
the thick cloud limit, errors due to the diffusion approximation 
will diverge whereas those introduced by using DA phase 
functions will approach a constant factor. 

6. • R•ATION BETWEEN (DA) RADIATIVE TRANSFER 
AND LATTICE STATISTICAL MECHANICS: 

PHOTONS AS "BL• TERMITES" 

A problem in statistical physics that has received'considerable 
attention in the last few years, is the study of the electrical 
conductivity properties of random media. The prototypical case 

continuous angle calculations on media horizontally finite or not is of two materials (A,B) with different conductance properties, 
but only when they are internally homogeneous. Finally we note distributed on lattice sites with probabilities p and (l-p) 
that (even for plane-parallel media) diffusion poorly models the respectively. The two extreme cases of interest are (1) A is an 
angular distribution of the diffusely reflected intensity largely insulator, B a conductor (the random resistor network, or RRN 
because of low order scattering. Diffusion theory can be limit) and (2) A is a superconductor, B a normal conductor (the 
combined with single-scattering to improve its performance at random superconducting network, RSN limit). The interesting 
this task as in the Sobolev [1956] approximation, loosing its questions that arise in these limits concern the properties of the 
conceptual simplicity in the process. macroscopic conductance (Z) of a large system, and how this 

In contrast to this DA(d,2d) radiative transfer models the conductance varies as P->Pc where Pc is the percolation 
intensity field with 2d functions of position that are fully coupled threshold for the system. Recall that as P->Pc, the size of the 
within a system of first order partial differential equations that connected A regions grow until (at P=Pc) the largest is infinite in 
can be combined into fourth order partial differential equations extent, the system said to "percolate", i.e., in RRNs (or RSNs) a 
(d=2; see above)or integro-differential equations (d=3; see path exists connecting opposite sides of the system with 
Appendix C). Moreover, they call for three parameters to conducting (respectively superconducting)materials. At this 
describe the corresponding phase function (say, t,r,s) when d>l. point, the A material is distributed over a fractal; see Stauffer 
Notice that 2d>d+l except for d=l, where again only two phase [ 1985] for an excellent review. In particular, as p approaches Pc 
function parameters need to be specified; another indication that from below, we obtain in the RRN and RSN limits respectively, 
we are retrieving a system that obeys diffusion exactly, namely • -- (p-pc)• and • -- (p-pc) -s where Ix and s are the RRN and 
the "two-flux" model. Boundary conditions for DA radiative RSN exponents. Although the values of pc depend on the lattice 
transfer are the same as those of continuous angle theory. There type, the exponents Ix and s are "universal" (as is the fractal 
are no a priori restrictions on the gradients of the density and/or dimension of the percolating network); they are found to only 
intensity fields nor on the anisotropy of the latter which makes depend on the dimension of space. In parts 2 and 3, we employ 
DA radiative transfer an ideal tool for investigating the most the same type of universality argument in DA and continuous 
inhomogeneous media. Still DA systems are quite simple, angle radiative transfer, respectively. 
greatly facilitating numerical calculation and, in some nontrivial The macroscopic conductance involves solving Kirchoff's 
cases, are sufficiently tractable to allow analytical approaches to (electrical circuit) laws on the lattice. When the lattice size b->O, 
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we obtain a diffusion equation with local diffusion constant 
proportional to the local conductance. In a steady state, the 
voltage V(x) obeys an equation identical to (47) with the 
diffusion coefficient D(x) replaced by the local conductance. 
Since eq. (48) shows that the diffusion constant in the diffusion 
limit of DA radiative transfer is proportional to (Kp) -1, we have a 
formal analogy between the diffusion regime of DA radiative 
transfer and the conduction problem, as long as we can ignore 
the high order terms in eqs. (45a) and (45b). This analogy is 
easily generalized from DA to the standard diffusion 
approximation in continuous angle radiative transfer. The RRN 
case corresponds to a cloud with Pt, = const • oo, p• = oo and 
the RSN limit to Pt, = 0, ps = const • oo. Although not 
relevant to the following discussion, we note that in the 
conduction problem the boundary conditions are either Dirichlet 
(given voltage) or von Neumann (given current) whereas in the 
problem of radiative diffusion they are always mixed, as 
previously mentioned. 

De Gennes [1976] was the first to point out the diffusive 
nature of the conduction problem; he also suggested numerically 
solving the problem using random walk (Monte Carlo) methods. 
In the RRN limit, the diffusing particle called an "ant" diffuses in 
the conducting material (the "labyrinth") constrained by the 
insulator which act as walls. The ant is either "blind" or 

"myopic". In the former case, it selects a lattice direction at 
random and each time step, moves ahead one lattice unit in the 
corresponding direction. If there is a wall, it stops and waits for 
the next time step. In the myopic case, the ant selects directions 
only among those available which it chooses uniformly at 
random. As expected, the large scale properties (e.g., the 
exponents), are found to be the same in both cases: the myopic 
and blind ants belong to the same universality class. 

The RSN limit is of more interest to us here, since it is the 
analogue of a cloud made up of uniform optical density with 
"holes". Unfortunately, it proves to be more complex to 
analyze. The primary problem is to develop rules that govern the 
behavior of the particle in the superconducting material. Where 
the conductance is zero, a particle should travel infinitely fast 
(D(x) = o•) slowing down only to "burrow" through regions of 
finite D(x). Hence De Gennes [1979] coined the term "termite" 
for such particles; see Figure 2. Bunde et al. [1985] describe a 
number of attempts to define appropriate rules so that the termite 
would model diffusion in the RSN limit. One early attempt that 
failed to reproduce singular behavior at p = Pc (and hence was 
not a good model of diffusion) involves "skating termites" which 
perform (isotropic) random walks on the ordinary conductor and 
ballistic (photon-like) trajectories in the superconductor. It is 
clearly the ballistic trajectories that lead to its nondiffusive 
behavior. 

It is not hard to see that the "skating" termite is identical to the 
Monte Carlo particle used in (7) with regions of isotropic transfer 
coefficients (all elements of • are equal) mixed with regions with 
holes (i.e., • = 1). Since we have shown that when • is 
dominated by forward transfer, the particles behave as photons, 
we might call our photons "blinkered" termites which tend to 
deviate only with low probability per step from ballistic 
trajectories. 

We conclude that in clouds with embedded holes, the photons 
(blinkered termites) are unlikely to approach diffusion limit 
(v r = 1) for two reasons. First, like the skating termites, they 
follow ballistic trajectories in the holes hence do not follow 
standard (diffusive) random walks; in the case of variable D(x), 
distributed over a fractal, one talks about "generalized" or 
"anomalous" diffusion processes or sometimes even 
"nondiffusive" random walks (see Schlesinger et al. [1986] or 
Havlin and Ben-Avraham [1987] for an extensive review). 
Second, the embedded holes in•ly that gradients in i are likely to 

Fig. 2. Schematic illustration showing the "ants" and "termites" used 
to simulate diffusion in random conductor/insulator mixtures and 
random conductor/superconductor mixtures, respectively. The upper 
left shows the ant in the labyrinth; the mixture of normal conductors 
(whim areas) and insulators (shaded areas), which act as walls, define 
the (RRN) labyrinth. Here the ant is "blind"; "myopic" ants have 
also been considered. Upper fight shows the corresponding termite 
problem (RSN) which is used to simulate conduction in networks 
made of superconductor (white) and normal conductor (shaded) regions. 
The lower figures, fight to left, show a much lower resolution view of 
the RSN problem. On the fight, a possible skating termite path 
which obeys (7) with isotropic transfer coefficients in filled regions 
and ballistic trajectories in holes. The "blinkered" termite (which 
models photon trajectories) also obeys (7), with the same transfer 
coefficients in the hole regions, but with predominantly forward 
transfer in the cloud regions. On the left, we show a "Boston" 
termite, which does a random walk in both conducting and 
superconducting regions speeded up in the superconductor, and with 
special rules for handling the boundaries. Due to its ballistic 
trajectories, the "skating" termite is known to be a poor model for 
diffusion (it does not involve phase transitions in the percolation 
problem), and hence we suspect the blinkered termite will also have 
nondiffusive thick cloud behavior. 

be important everywhere; hence the diffusion equation (47) is 
not likely to be a good approximation to radiative transfer, even 
with a highly variable coefficient D(x). Conversely skating 
termites, like their blinkered cousins, the photons, obey systems 
of partial differential equations such as (18) which are poor 
approximations to the diffusion equation at least in fractal media; 
this explains the failure of that model to reproduce RSN phase 
transitions. 
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7. CONCLUSIONS 

Motivated by a desire to understand radiative transfer in 
inhomogeneous systems, we have investigated a series of 
radiative transfer models involving scattering through discrete 
angles only. These discrete angle (DA) radiative transfer 
systems are special cases of continuous angle radiative transfer, 
involving DA phase functions which effectively decouple the 
intensity field into an infinite number of mutually independent 
families; within each family coupling only occurs among a small 
number of directions. We obtain both systems of first order 
partial differential equations for DA transfer on spatially 
continuous media and systems of linear algebraic equations for 
DA transfer on media spatially discretized on various lattices. 
Upon taking the continuous limit of the latter, conditions for the 
equivalence of the two formulations are given. This will prove 

cloud (DA) limits will generally not be diffusive, even for 

In the following two parts, we will examine a variety of 
scaling media using approximate but analytical methods based on 
renormalization group ideas (part 2) as well as various numerical 
approaches (,part 3); these examples will illustrate the formalism 
outlined here. In part 3, we examine the important question of 
extending DA universality classes to continuous angle radiative 
transfer as well as the meteorological implications of our 
findings. 

APPENDIX A: ON THE SMOOTHNF_3S OFTHE I•rIE•srrY F•.n AND 
THE SPATIAL DISCRETIZATION OF DA RADLnTIVE TRANSFER 

EQUATIONS 

In subsection 3.2 we argued that the spatially discrete DA 
useful as the discrete space equations are exploited analytically equations (7) provided good approximations to the DA radiative 
and numerically in parts 2 and 3. transfer equation (6) provided that the intensity fields I were 

The requirement that DA scattering probabilities depend only sufficiently smooth. A sufficient condition was shown to be that 
on the relative scattering angle considerably restricts the number the dimensionless single cell optical thickness Xo was small 
of interesting DA systems; these are enumerated exhaustively. everywhere. Here, we argue that this condition is somewhat 
Although others are described, we mainly concentrate on more restrictive than necessary, in particular, we seek a condition 
systems with orthogonal axes in two and three dimensions (four relating the variations in the dimensionless transfer matrix o to 
and six beams, respectively). The basic mathematical character variations in the intensity fields. We find that when gradients in 
of these systems is determined by two parameters: one that I imposed by boundary conditions are small, that the eigenvalues 
measures therelative importance of absorption (equivalently, the of o 2 are nearlx unity, and the relative variation of the 
zeroth Legendre coefficient of the DA phase function) and pq, a eigenvalues of o z are small, then the solution of (7) are also 
product of terms dependent on the first and second Legendre likely to be smooth enough. This has been numerically verified 
coefficients). In the case of conservative scattering, there are in certain cases discussed in part 3. 
four regimes of interest: -**<pq < 0 implies unphysical We start by introducing the following f'mite operators: 
(negatively valued) phase functions, pq = 0 is singular (we 
obtain an uninteresting set of independent one-dimensional Ekf=f(x-kl) 
diffusion equations), •.>pq > 0 corresponds to the physically Ak = Ek- 1 
interesting regime and I =,• corresponds to an exact two or 

three dimensional diffusion eqution. V2 ZA k In this case explicit phase function dependence can be entirely = 
removed allowing us to derive powerful DA similarity relations. k 
If the DA radiative transfer equation is solved with given but 
arbitrary boundary conditions and any spatial distribution of where V 2 is a finite difference Laplacian and the sum is over all 
optical density for some (conservative scattering) phase function scattering directions k. To shorten the notation, we write 
then the corresponding solutions for all other phase functions are Eklk = (El)k. Equation (7) can then be written 
obtained by rescaling optical thickness according to these 
relations; in this context "optical thickness" refers to an arbitrary 
cross-section of the medium. The only requirement is that the 
ratio of backward-to-side scattering is everywhere constant. 

We are especially interested in media and regimes in which 
transmittance and albedo are described by power law functions 

(A1) 

(In this appendix, summation is implied over repeated indices.) 
We now use the modulus (squared) of the vector li (noted 

hr •2) to characterize the amplitude of the intensity vector at each 
of optical thickness, i.e., homogeneous clouds of any shape, grid point, and use the finite Laplacian to characterize the 
fractals or multifractals either very thick or very thin. An smoothness of the latter. Bounds on the variation of ) •2 are all 
important consequence of the similarity relations is that the 
scaling exponents are are invariant under the similarity 
transformation and are therefore "universal" (in the language of 
nonlinear dynamics); this means that (DA) phase functions can 
only influence prefactors and are therefore "irrelevant" variables 
(in the same usage). 

We then investigate the relation between DA systems and 

the more restrictive, since the elements of o are positive and with 
the boundary conditions of interest, li is positive everywhere. 

• •Z = liTli = (El)iT(o2)il• (Ei)t• 

V2 •/•2 = 2(El)iT(o2)ik V2(E/)k + (El)iT(V2o2)ik (El)k 
(A3) 

processes satisfying diffusion equations in various dimensions. where we have dropped higher order difference terms and used 
In general, the DA systems will obey diffusion equations as long the fact that due to symmetry oT=o (with the notation superscript as high-order derivatives can be neglected. This will only be 
possible in quasi-homogeneous systems; even there, near 
sources (i.e., cloud tops) they will not be negligible hence the 
transmission and albedo exponents are expected to differ (except 
in plane-parallel geometry where only one exponent arises). 
Finally, we compare DA radiative transfer through fractally 
inhomogeneous media with electrical conduction through 
conductor/superconductor mixtures at percolating threshold; this 
electron diffusion problem has been extensively studied in 
statistical physics. This comparison supports the idea that thick 

"T" designating "transpose"). Diagonalizing the matrix o (and 
introducing primes to indicate the diagonalized intensities), we 
obtain 

V 2 •/12 = 2 •(El•kAk 2 V2(EI•k + •(El')k 2 V2Ak 2 
k k 

V 2 • • = •(El•k[2Ak 2 V2(EI3k + (El')k V2Ak2] 
k 

(A4) 

lk = Oik (E1)k (A2) 
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where Ak designates an eigenvalue of o. In the DA(2,4) case, 
these are T-R (twice), T+R-2S, and l-A; in the DA(3,6) case, 
we find T-R (three times), T+R-4S (twice), and 1-A. 

Equation (A4) shows that the variation in smoothness of I 
arises from two sources, the first being essentially due to the 
gradients imposed by the boundary conditions, while the second 
being due to variations in o. We first consider the case where 

will see that this occurs in all cases except the DA(2,4) model 
applied to the homogeneous square medium. 

APPENDIX B: THE DA(1,2) SYSTEM OR THE "TwO-STREAM" 
APPROXIMATION TO RADIATIVE TRANSFER THROUGH 

the scattering medium is homogeneous (i.e., V2Ak 2 = 0), and Although the results are well known, it is worth showing how 
we imposesome intensity gradientacross our system. We know the DA(I,2) system is strictly equivalent to "two-flux" 
that when 'Co is small enough, • is near13( diagonal and all the approximation (without terms for the direct beam) for radiative 
Ak 2 -- 1, furthermore, in this case, V 2 •r • will be sufficiently 
small that high-order difference terms in the (9) can be neglected. 
Equation (A4) indicates that changing • such that all the Ak 2 
remain •1 will maintain smooth fields. This is important, since 
Ak 2 = 1 holds not only for T-- 1, but also R = 1. 

Now consider introducing spatial variations in •. According 
to (A4), as long as 

(^5) 

transfer in plane-parallel media which was been extensively 
reviewed by Meador and Weaver [1980]. It can of course be 

solved exactly. Putting l+x = I x = I+ = I y = 0 in (18) 
and i}/i}z = d/dz we obtain •ts d = 1 equivalent: 

l+z= - 1 dl+z tO(z) dz + tl+z+ rl-z (Bla) 
Lz= 1 dl-z •p(z) dz + rl+z+ tl-z (Blb) 

for all k, then we do not expect spatial variations in • to 
introduce large inhomogeneities in I. We expect the fields I to 
remain smooth, and hence to continue to yield good estimates of 
the solution of the radiative transfer equation. 

As an example of the relation between o and P, we can 
perform the matrix inversion in (12) explicitly. In the DA(2,4) 
case this yields 

T(T+R)-2S 2 
'Co(t- 1) = 1- (T-R)(T+R-2S)(1-A) (A6a) 

R(T+R)-2S 2 
xor = (T-R)(T+R-2S)(1-A) (A6b) 

S 

'COS= (T+R-2S)(1-A) (Aft:) 
A 

xoa- 1-A (A6d) 

Eliminating l-z and using the usual change of variables 
d'c(z)=r,p(z)dz, we obtain 

d--)( TM •) [(1-t + - -r 2] l+z =0 (B2) 

writing q = 1-t+r and a -' 1-t-r ( = p also, in this d = 1 
case), which have been assumed constant here, we obtain an 
identical diffusion equation for either "flux", actually a DA 
intensity: 

[aq -•2 ] I:• (B3) 

hence a- 0 • A = 0 as expected and as A--> 1, 'coa--> oo. In 
section 4 we showed that the basic character of the solution of a 

DA radiative transfer problem depends on the product of the solution of (B3), for aq > 0 is, say 
fundamental parameters q = 1-t+r and p = 1-t-r. Adding and 

subtracting (A6a) and (A6b), we obtain: Lz('c) = Ioe -'c •] aq + ile+x • 

This makes one-dimensional two beam DA radiative transfer a 

very special case, since we have seen in section 5 that, in the 
corresponding two- or three-dimensional systems (with s = 0), 
diffusion can only be obtained in the bulk of thick quasi- 
homogeneous clouds, far from all boundaries. The general 

(B4) 

2S 

'cc• = (T+R-2S)(1-A ) 
1 

xoq= T_-5-ff - i 

Taking A = 1, the case T=I corresponds to 'Cop > 0, 
ß Coq > 0, whereas the case R--1 implies 'Cop > 0 but 
ß Coq = -2 implying negative values for the DA phase function, 
since q < p implies r < 0; physically realizable values of 
t,r,s,a (between 0 and 1) give 0 < p < 1, 0 _< q < 2. Note 
that if we allow for fission-type scattering in which a < 0 (or 
tilo > 1), but maintaining t,r,s > 0, then p and q can be 
negative but we cannot have p > 0 and q < 0 as required here; 
hence R -- 1, T--0 is not a model of fission. Finally, the 
discretized diffusion equation which is obtained with 
R=T=S=i/4 corresponds to Ipq I =oo as expected 

Equations (45a) and (45b) show that, when both diffusion and 
higher order derivative terms are important everywhere (as in 
fractal clouds), the sign of the product pq is important in 
determining the character of the equations; indeed in 
conservative scattering, it completely determines the character. 
Therefore pq changes sign when we go from T = 1, R = 0 to 
R = 1, T=0, and we expect to change universality classes (as 
defined by the scaling exponents) in the process. In part 3, we 

(A7a) where I0 and I1 are constants determined by the boundary 
conditions Lz(O) = 1, l+z('Cl) = 0, where 'Cl is the total optical 

(A7b) thickness; recall that Lz('C) determines l+z('C) via (Bib). 1/ • 
is the well-known diffusion length scale measured (locally) in 
units of (photon mean free path) 1/•:p(z). When a = 0 
(conservative scattering, infinite diffusion length), we obtain 
either by taking the limit as a-->0 of (B4) or returning to (B3) 
with aq = 0: 

Lz(X) = Io + l•'c (B5) 

Using the above boundary conditions, we obtain I0 = 1, 
I 1 = -r/(l+rx 1); thus transmission (T) and albedo (R) are given 
by 

Lz('Cl) 1 
T-•-• (B6a) 

l-z(0) l+rq 

R - - 1-T (B6b) 
/_z(O) 

Identifying with the asymptotic expansions (1), this yields for 
ß Cl--> oo, v T = v R = 1 with h T = h R = 1/r. Using the results 
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of Appendix D, we see that r = (l-g)/2 for •o = 1 and 
aq = (1-t•o)(1-t•og) in general. 

APPENDIX C: THE DAO,6) RADL•TrVE'I'm•SFER SYSTEM 
CON'IRASTED WITH TtIREE-DIMENSIONAL DIPPIJSION 

As we shall see below, the DA(3,6) model is more complex to 
analyze than its two-dimensional counterpart, although the basic 
conclusions of the section 5 still hold. Introducing the notation 

l _x-+=l+x ñ l-x 
1 • 

r,p(x) 
2 

Dx=p - q-lõ x 

similarly for y and z, with the definitions (21) for p,q and a (with 
d=3). Starting with (18) and (19), some straightforward 
manipulation yields 

-•Ys -2s ! = Dz 
(C2) 

which, by substitution, leads to 

[-• (DzDx-4S2) - (Dz+2S) (Dy+2S)- 1 (Dx+2s) ] Ix+ = 0 (C3) 

with similar equations for I + and lz+ obtained by cyclic Y 
permutation of the subscripts. In the general case where •:p(x) 

Note that, as in the DA(1,2) and DA(2,4) systems, the zeroth 
order term vanishes when a = 0; this leads to scaling rather 
than exponential type behavior. Furthermore, in the thick cloud 
limit, we can again anticipate a diffusion-like transmission law 
and a substantially different albedo law due to the fact that the 
higher order terms in (C7) will be more prominent at the top 
boundary than the lower one. 

APPENDIX D: THE SINGLE-SCA•G ALBEDO AND 
ASYMME'IRY FACTOR OF VARIOUS DA PHASE FUNC•ONS 

When both scattering and (true) absorption can occur, the 
relative probability of scattering or single-scattering albedo is 
denoted "•o". In many applications, the relevant phase 
functions are highly forward scattering. In continuous angle 
radiative transfer, this has been customarily characterized by the 
asymmetry factor, which is the (cosine) weighted moment of the 
phase function denoted "g". In DA radiative transfer models, 
these definitions yield 

•o = Z P i t• (Dla) 
k 

i Z g = • P it• cos 0 i t• (Dlb) 
•o k 

where Pit• is the DA phase function scattering matrix for 
scattering from direction i into direction k, and 0i/• is the angle 
between k and i so that cos Oii•=i.k. The results of the 
summations in (D1) are independent of i in the models studied 
throughout this series. 

is not uniform, the commutators [Dx,Dy] and [Dx,Dz] do not Applying this definition to the DA(d,2d) radiative transfer 
vanish and ordering in (C3) is important. Notice that (C3) is a models used most often in the text (and using cos 0 ø = 1, 
integro-differential equation, since the (D+2s) -1 are integral cos 90 ø = 0, cos 180 ø =-1), we find that for those models 
operators. Although complete analysis of the above is outside 
our present scope, a diffusion approximation to the thick cloud 
limit may be obtained, as well as an exact equation for the 
homogeneous case. 

To obtain a diffusion equation from (C3), we take the limit of 
small gradients, i.e., õ-•0, and expand the integral operator in a 
Taylor series 

1 1 82 õ4 
(D+2s)-1 = p+2s-• -p+2s [ l+p--•--[p+•12 +"'1 (C4) 

After some manipulation we obtain (to second order) the 
following diffusion equation for the total intensity 
J = lx++ly++Iz+: 

whose beams are mutually perpendicular: 

•o = t + r + 2(d-1)s (D2a) 

•og = t- r (D2b) 

The most general DA(2,6) model with beams at 
0o,_+60o,+120 ø, and 180 ø (scattering probabilities t, s, s' and r 
respectively), we obtain 

•o = t + r + 2(s+s') (D3a) 

•og = t- r + s- s' (D3b) 

while for the subclass of DA(2,6) models with (primary) beams 
at 1800,+60 ø (and secondary beams at 0 ø, +120 ø as discussed 

2 2 in subsection 3.2), we need only two parameters (r,s). For •o 
(C5) and g, only first scattering is considered, taking t = s'= 0 in 

(D3a) and (D3b) we find 

which is a diffusion equation as described in section 5, again 
holding when high order derivatives can be neglected (e.g., in 
quasi-homogeneous optical density fields and far from sources). •og = s- r (D4b) 
In the very special homogeneous case where all the Ds commute, 
we obtain directly from (C2): This particular DA system which has no (direct) forward 

scattering can nevertheless be applied to a triangular lattice (with 

[16s3+4s2(Dx+Dy+Dz)-DxDyDz]li=O (C6) both "up" and "down" cells) and investigated using 
renormalization or relaxation methods; see sections 2 and 4 as 

for all i (because of commutation and linearity). Or, when 
written out in full (in terms of optical distances, where r,p=l): 

[ a6 an an a4 i}x2i)•az 2 -Pq(i}x2•2 + i}x2az 2 + i)y23z 2 ) + 

well as Appendix D of part 2. Another two-parameter subclass 
of DA(2,6) is the DA(2,3) model with beams at 0ø,_+120 ø, 
obtained by taking r = s = 0. It is an acceptable DA system 
since it remains decoupled but it is odd (in more sense than one) 
since it has no (direct) backscattering, which means, in 
particular, that it has no spatially discrete counterpart even 
though it has the same symmetries as the (space-filling) /}2 /}2 /}2 1 aq3(a2+2a+Sp•a)] li = 0(C7) equilateral triangle. q2(p2-4s2)( Bx-•2- + • + •-,•) - • 
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In part 2, we show that the regime where (conservative) 
scattering is linearly proportional to x extends up to -- 1/(l-g); 
hence we expect the prefactors of our asymptotic expressions (1) 
to also be proportional to some power of (l-g). This agrees with 
standard continuous angle results in plane-parallel clouds as well 
as the findings of Davis et al. [1989] and part 3 for finite 
homogeneous square and cubic clouds respectively. 

The pair (t•o,g) or, equivalently, the first two Legendre 
coefficients is sufficient in many popular approximate schemes in 
radiative transfer, e.g., "two-flux" theory (Appendix B), 
similarity relations (2), or diffusion (section 5). It is important to 
note that its specification is insufficient to describe completely the 
most interesting DA(d,n) models, i.e., with n_)2d beams. As 
shown in section 4, the value of the second order Legendre 
coefficient is fundamental in the sense that it participates in the 
determination of the basic character of the mathematical problem 
associated with the (orthogonal) DA(d,2d) systems. 
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