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ABSTRACT

We present a new scheme of atmospheric turbulence:
small scales strtures are continuously flattened at
larger and larger scales. This continuous deformation
may be characterised by defining an " elliptical dimen-
sion " D 1 We show both theoretically and empirically
that D = 23/9 &~ 2.56. Atmospheric motioms are
therefdre never " flat " ( D _,=2), nor isotropic ( D .=
3). el el

Intermittency, in the context of this " elliptical
turbulence " is discussed: dimension of the support of
turbulence and divergence of higher statistical moments
of the different fields.

INTRODUCTION

The classical scheme of atmospheric motioms ( e.g.
Monin (1972)), considers the large scale as two-dimen-
sional, and the small scale as three~dimensiomal, a
transition named, for obvious reasons, a " dimensional
transition” by Schertzer and Lovejoy (1983), is expected
to occur in the meso-scale, possibly in association
with a "meso-scale gap" ( Van der Hoven (1957)).

This scheme favours the simplistic idea that at
planetary scales the atmosphere look like a thin enve-
lope, whereas at human scales, it looks more like an
isotropic volume.

A dimensional transition, if it were to occur,
would be likely to have fairly drastic consequences
because of the significant qualitative difference of
turbulence in two and three dimensions (Fjortoft (1953),
KRraichnan (1967), Batchelor (1969)): the all important
streching and folding of vortex tubes, in three dimen-
siomg cannot occurs in two dimension.

Since the 50's, there has been a wide debate over
the effective dimension of atmospheric turbulence, due

in particular to the extension of two-dimensional results
to the case of quasi-geostrophy ( Charney (1971), Herring

(1980)).

Although, a dimensional transition should be readi-

ly observable, experiments over the last 15 years have
failed to detect it (Pinus (1968), Vinnechenko (1969),

Morel and Larchevéque (1974), Macpherson and Issac(1977),

Gage (1979), Gilet et Al. (1980), Lovejoy (1982), Larsen
et Al. (1982), Lilly and Peterson (1983), Nostrum and
Gage (1983)). There is a large body of evidence consis-
tent with a uniform scaling on the horizontal up to, at
least 1500 km.

Schertzer and Lovejoy (1983) have examined the
different theoretical ideas underlying these experi-

mentals resulfs. They pointed out that the prevalence
of this uniform scaling should be connected with the

fact that many non-linear equations do not introduce
a characteristic length, and thus admit scaling solu-

tions.

In principle, this scaling could be broken either
by non-scaling boundary conditionmsor a non-scaling for-
cing. However, Mandelbrot (1982) has found evidence that
the topography is scaling up to plametary scales, and
different analyse@s ( Gautier (1982-personnal communica-
tion), Lovejoy(1982), Schertzer and Simonin (1982), and
Simonin (1982)) of the sources and sinks of diabatic
heating indicate also a scaling behaviour.

Because of the non-linear coupling between the
different meteorological fields, the exisence of a
characteristic length scale in one, is likely to mani-
fest itself in the others. It is therefore likely that
over a given range all fields are scaling.

We may add that our current understanding of inter-
mittency ( e.g. Batchelor (1969) or Curry et Al.{(1982))
as the frequent transitions between quiescence and chaos
leads us to doubt the existence of a well-defined tran-
sition ( such as the " meso-scale gap')).

THE VERTICAL STRUCTURE

Perhaps the most serious objection to the hypothesis
of a scaling behaviour of atmospheric motions arises
from the special E?Ie of the vertical axis. Indeed,there
has been a delugeYpapers based on non-scaling techniques
which reject implicitely a priori any possibility of
vertical scaling ( e.g. " one point closures "). In
what follows, it will be apparent that this rejection
has had unfortunate consequences.

The vertical direction plays a key role for the
following reasons:
i) The gravity field defines a direction at every point.
ii) The atmosphere is globally stratified.
iii) It has a well defined thickness ( exponential
decrease of the mean pressure).
iv) The fundamental sources of disturbances are the
vertical shear and the buoyancy force (e.g. the Kelvin-
Helmotz instability).

In the following, we examine the possibility that
the atmosphere is in fact scaling in the vertical as
well as in the horizontal direction. To do so, we
examine the wind and temperature fields, attempting to
capture two basic and conceptually distinct properties
of these fields:

Scaling: The scaling relation relates the fluctua-
tions A X of a field X for large scalesdpz (W>>1) to
the small scales Az by:

xOAz) ¢ AFaxcaz

where H is the scaling parameter and ndu means equality
in probability distributions. Note that the exponent of
the corresponding power spectrum (-g) is related to H
by P = 2H +1, in the case of finite variance.



Intermitfency: This is directly connected with the
probability law. One is particularly interested in the
tail of this law, since it controls the relative frequen~
cy of the extreme (intermittent) behaviour. For instance,
if the distribution has an algebraic fall~off at large
fluctuations, then the degree of intermittency can be
characterised by the exponent e« (the hyperbolicity):

-
Pr(8X'>AX)~ A X ; AX>>1

where "Pr" denotes 'probability".

This. kind of distributions have been invoked in
other fields of physics (e.g. " Holtsmark distribution",
Feller (1971), see Mandelbrot (1982) for other examples),
and are usualy called " hyperbolic distributions". Beha-
viour of this sort was predicted for the non-linear
flux of energy in turbulence according to a phenomenolo-
gical model of intermittency (Mandelbrot(1974)).

Note that, in the case of hyperbolic distributioms,
all moments of ordere or higher diverge, a fact that that
has important consequences. Levy (1937) and Feller (1971)
are standard texts, in the case «« < 2, (cf. the Levy-
stable laws which form a convolution semi-group).

We shall primarly be interested in the vertical
fluctuations of the horizontal velocity field ( dv) and
in the buoyancy force per unit mass acting across a layer
of thickness dz df = gd Ln &, where © is the potential
temperature, and g the accelaration of gravity. These
quantities are related to two fundamental frequencies:
that of the vertical shear ( s ) and the Brunt-Vaisala
frequency (n ):

s = dv/dz and nz = gdLn® /dz = df/dz

The ratio of the squares of these frequencies

defines the dimensionless Richardson number :
Ri = nz/s2

The shear frequency characterises the dynamical
processes, and the Brunt-Vaisala frequency, the stabili-
ty (and gravity waves). The dominant process has the
highest frequency. To determine their scaling regime,
Fourier analysis could be used. Here, we analyse direct-
ly the scaling of the probability law by measuring
quantities across atmospheric layers of thickness A z.
This has the advantage that it enables the scaling para-
meters (H's) and the hyperbolicities ( &'s) to be
obtained simultaneously. We therefore define:

sZ(Az) = vz(A z)/Azz; nz(Az) = gALne(Dz)/Az
Ri(Az) = n’ (82)/ s2(82)

DATA ANALYSIS

S, n, Ri were evaluated from the high resolution
radiosonde data obtained in the 1975 experiment in
Landes, France. €, v and the humidity were obtained
every second (.w3m in the vertical) and processed to
yield low noise data every 5s ( 15-20m, see Tardieu (1979)
for more details). All estimates of n, s, Ri were made
over layers at least 50m. thick, and from the ground up
to the arbitrary height of 6km. The data examined are
from 80 soundings taken at 3 hour intervals at Landes.

From the Log~Log plots shown in Fig. 1, 2, 3 it
can easily be verified that the probability distributions
of Av, Af and Ri exhibit both scaling and hyperbolic
behaviour. The easiest way to see this, is to recall
that for hyperbolic distributions

«

Pr(AX'>4X) ~ (AX/4X*)" X

AX* is the "width" of the distribution, or the amplitude
of the fluctuations. Scaling implies then that the width
grows with the separation as

AX*(Az) ~ A 28

this is observed by the comstant shift H Log2 for each

doubling of the separation A z. The value
slope of the straight line asymptote.
We obtain:

(-%) is the

Hv‘h 3/5 o« X5
=2 ?/10 ®Ln e"';_“?/3
Hpi Rj

The H's and o's are given rational expressionms,
since, as explained below, they can often be deduced by
dimensional considerations.

Another quantity of interest is the flux of non-
linear transfer of energy (€ ). This is the fundamental
dynamical quantity in a turbulent cascade of energy from
large to small scales. We obtained a probability distri-
bution by reploting Merceret's aircraft data. The result,
see Fig. 4, leads to:

Pr(&>€ )~ € _“;‘ x~5/3 .

Merceret (1976) obtained his value of & by calcu-
lating averaged spectrum of horizontal wind fluctuationms
every second (~ 100m ).

We assume this average to have been taken over an
horizontal straight lime ( the bar notation indicates
a one dimensional spatial average).

THE TURBULENT RICHARDSON NUMBER

The fluctuations fo the Richardson number are very
large, since ™ ], even its mean may not converge ( if
.. & 1 ). ThisTfact seems to have been recognised since
a %éng time if one considers the series of "modified"
Richardson numbers ( based on the ratio of two statistics
and not the ratio ot the random variables s and n), for
instance the Richardson of flux R,.

The erratic nature of Ri is girectly related to the
phenomenon of intermittency, since it controls the onset
of turbulence. Its law can be easily understood since s
and n are weakly correlated (p = .048 - .018) and have
a non-zero probability density at the origin (e.g.

Student's distribution) and thus lead to a Cauchy-type
law.

ELLIPTICAL TURBULENCE

Considering the velocity-field, we find an exponent
of the vertical scaling: H_ =3/5 . This exponent is
confirmed by Adelfang (197Y) up to 14 km, and Endlich et
Al.(1969) found B= 5/2 ( thus , H = 3/4) up to 16 km.
The slight discrepancy of the latter result seems due to
considerable interpolation of the data. In any case, no
evidence of characteristic vertical length scales is
found.

A similar result was predicted almost 25 years ago
for the directionaly averaged spectrum in the so—called
"buoyancy subrange", by Obukhov (1959), and independenly

by Bogliano (1959). The vertical scaling can be thus
deduced by the same derivation or by considering directly
the physically meaningful quantity the flux of buoyan-
cy force variance . The latter derivation has the advan-
tage that it does not depend on the Boussinesq approxi-
mation:

P(az =T (o a2(a2)

where C(Az) is a characteristic time for the transfer
process. Dimensional analysis yields :

Av(az) § Peuy'/5,,3/5 )

While the quite different Koluogorov scaling is supposed
to hold in the horizontal:

£ (hx'ax/? (2)

Av(Ax)g
Objects which scale in the same way in all direc-

tions are calledself-similar fractals because the large
scale can be simply viewed as a magnification of the
small scale. In the atmosphere, we have argued that
scaling, although present in all directions, and over a
wide range of lengths, is quite different in the vertical
and horizontal. Large scale structures can no longer be
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Fig.1 :

The probability distribution of fluctuations

in the quantity A v*(4 2 where v is the horizontal

velocity, for different vertical layers as follows :
O0:4z= 50m, : Az= 100m, V:iaz= 200m ,

¥: Az= 400m, O: paz= 800m, ®W: Az= 1600m ,
X: &az= 3200m.

Fig.2: The probability distribution of fluctuations
of th buoyancy force . Same symbols as in Fig.1.

simply regarded as large~scale copies of smaller ones.

In
addition to magnification, we must also stretch. This
can be expressed as follows :
8v( Gy Ao ¢ Mav(ax (3

(x=(x, vy, 2)), the group (g , XH) is a kind of
renormalization group, and behaves as :

[y 0 ©
o X 0 )
~ ith H = H/H
2)\ 0 o >‘H£ with H, v

It introduces an elliptical geometry, futher exploi-

ted in Schertzer et Al.(1983) with®more general expres-
sion of G . Here, H=1/3/3/525/92D =23/9.

Fig..5 shows hof a small verticS}ly oriented cross-

section of an eddy is transformed at larger scales. The

magnification and stretching process tramsforms the ver-

tically oriented "convective"

type eddy into a large
horizontally oriented

"Hadley'" type eddy. Note that &
transforms the statistical properties of the eddies.

This thransformation increases the volume of an
eddy by the factor
H D
M oy e
A A § Dy = 24H
In an isotropic three dimensional turbulence, H = 1
D = 3, and in the isotropic two-dimensional cise,
H°'= 0 and Del = 2. Writting the above relationship
i the form * D
Det g = X'el
we are lead to the more general definition of Del H
Del = Tr( dgx/dA )k=1
The number N({ ) of eddies of horizontal scale Q may
now be written :

N0y ~ @ e

]

Yartical

Fig.3: The probability distr%Pution qf fluctuations
in the quatity ALn 6(A2 /Av= Rih z Ri being

the Richardson number. Same symbols as in the pre-
vious figures. The curves for 100, 400, 1600m

have been suppressed for clarity of presentationm.
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Fig.5: Isocontours of G , which may be
interpreted as the shapegof the vertical
cross-sectionsof averaged eddies at different
scales. "Hadley cell and "convective cell™
are suggestive labels for very large and
respectively very small structures.



THE SPHERO~SCALE

The distinction between isotropy and anisotropy
is profound. An horizontal cross~section will have
an area proportional to & ~ whereas a vertical cross-
section will have an area proportional to(}' % Their
ratio gives a quantitative measure of the verticalness
of the vortex.

There therefore exist a scale at which this ratio
is 1, the turbulence appears the as Statropic three-
dimensional : the horizontal and vertical fluctuations
have the same amplitude. This scale, that we call
"sphero-scale' for obvious reasons, will depend on the
relative fluctuations of £and ¢ (due to equations 1 and
2) both of which show large fluctuations. The size of
this scale may_vary in an extremely erratic mannmer,
unless § and ¢ are totaly dependent.

STOCHASTIC STRATIFICATION

By the action of G,, stratification may be seen
rather as the result of “a stochastic process, hence a

" stochastic stratification ". Fig. 6a shows an iso-
tropic gaussian field with B = 1/2 and De = 2, Fig.6b
shows the corresponding field for D 3/2 (the

same white noise field was used in bg%h cases to
generate via Fourier transforms, the random fields).

Investigations of this process for the logarithm
of the pressureand the temperature will be pursued
elsewhere. Note that the hydrostatic relation is reco-
vered by assuming that the vertical scaling of Log p
has the parameter: H =1,

v(Log p)

INTERMITTENCY

Intermittency expresses the fact, that , roughly
speaking, the turbulence doesn't fill all the volume
of the space available to it , the "spottiness™ of
turbulence (Batchelor and Townsend(1949), Batchelor
(1953)). This¥related to Leray's (1933) conjecture on
the existence of a set of singularities of the Euler
equations.

Kolmogorov (1962) and Yaglom (1966) presented a
corrected spectrum to take into account intermittency,
by assuming a log-normal distribution of € . Orszag
(1970), Mandelbrot (1974) have pointed out several
theor.atical difficulties with this hypothesis.

In particular, Mandelbrot, building ugvan earlier, expli
cit model for " spottiness " (Novikov and Steward (1964))
showed that log-normality may only be expected under
rather special conditions, whereas hyperbolic behaviour
was likely. This latter possibility was unfortunately
dropped in Kraichnan((1974) and Frisch et Al (1978),
and subsequent works which retained only the notion of
the fractal dimension of the support of turbulence, D .
Mandelbrot's model is in fact quite general and °
can be divided in two cases. The first is "curdling", it
generates eddies strictly into either completely "dead"
or uniformly "active'regions at each stage of the cas-
cade. It is often refered as the "g-model". This is the
only case where no divergence of moments occurs whatever
the dimension of the spatial average. The second
case is "weighted curdling" where active regions nc fongey
havg uniform intensity. Schertzer and Lovejoy (1983,
who extended this model to the case of "elliptical
turbulence", stressed the fact that in this case diver-
gence occurs for any spatial average of dimension DA

such as: Del- DS < DA < Del-D_°

where Dwcharacterises the dimension of the "very active
regions". They proposed that this latter case could be
called "X - model", because of the hyperbolic exponent
it introduces. .

Note that the various dimensions intervening in
the case of the "~ model” may be interpreted in terms
of a "multi~fractal™ (Parisi, private communication,
(1983)) composed of different fractals , on each of
them the velocity field has a certain scaling (i.e. a
certain - singularity type, described by its
scaling parameter).

The experimental results obtained indicate:

23/9 =D ., >D_>D .-1; D >D
e s e

1 1 s oo

Fig.6a : A random isotropic field with H= 1/9, the
intensity of the field is proportional to the shade
of the grey.

Fig.6b : An example of stochastic stratification. This
figure is the same as Fig.6a, except that D = 1.5 ,
instead of 2 ( both figures are obtained by taking
the same gaussian white noise ) . In one direction, H=1
and in the direction perpendicular, H= 1/2 , the
"sphero-scale"” has a value of ~17 of the length of
one side of the figure.

DIVERGENCE OF THE FIFTH MOMENT OF THE VELOCITY

Since we may assume, either on physical arguments
or only dimensional arguments ( see equatiom 2):
By a4 %)/ 4x
hence: °<€ = °(v /3

thus our present results based on radiosonde data and
Mercert's ones confirm : qv‘t‘ 55 N. ®5/3; % . =1
3




This shows also that various fields may be not only
related by simple algebraic equations satisfied by their
scaling exponents the same should be true for their
hyperbolic exponents.

For, instance relation between dynamics and rain-
field is urgently needed , because it is a case where
numerical modeling is notoriously difficult. Indeed ,
Lovejoy (1981) shows thatchanges of the rate of rain
from isolated storms hawe an hyperbolic law (&% = 5/3 ,
but this quantity is a 2-D lagrangian statistic , and
€ is a 1-D eulerian one in our study .

An interegting feature of hyperbolic distributions
is that they are presumably related to the classical
phenomenology of meteorological fields : Mandelbrot and
Wallis (1969 pointed out that they have the effect of
causing that the largest fluctuations have an overwhel~-
ming effect, which they called "Noah effect". This is
inveXigated in detail for the horizontal rain areas
by Lovejoy (1981), Lovejoy and Mandelbrot (1983 .

Fig.7 shows an "hyperbolic fractal animal" obtained
by stochastic simulation in an anisotopic space : one
main "animal dominates the smaller ones. It could
correspond to a vertical section of a rain-field.

HYPERBOLIC RENORMALIZATION AND ELLIPTICAL TURBULENCE

The results obtained here Hiruw juto dcubt.‘, the
renormalization procedures used in turbulence. Usually
called "spectral closures' (e.g. Herring et Al (19832 ),
they have been developed in a quasi-gaussian framework
which is no longer tenable if the hyperbolic behaviour
of the different fields is confirmed.

Conversely, placing renormalization procedures in
an hyperbolic context should be particularly rewarding ,
since renormalization has encountered , in the quasi-
gaussian context, three closely linked fundamental
difficulties : random gallilean invariance , renormali-
zation of the vertex, intermittency. Until now, the
two former have been overcome only by more or less
ad-hoc procedures. By stating the problem of intermit-
tency as the problem of renormalizing in a hyperbolic
context , it suggestgto develop what one might call
"nyperbolic renormalization”.

On the other hand, the "fractally anisotropic"
frame -work of the "elliptical turbulence" (i.e. a
scaling anisotropy)may alsc be essential to overcome
difficulties encountered in anisotropic cases where so
far only formal manipulation of renormalization schemes
have succeded ( e.g. Kraichnan (1964 ) >

CONCLUSION AND COMMENTS
We have investigated the scaling and the hyperbolic

behaviour of the vertical shear, the buoyancy force and
the Richardson number.

We think that the hypothesis of a dimensiomal transi--

tion (2D/3D) between large scales and small scales is no
longer tenable either theoreticallyor empirically.

The observed structure. of the atmosphere can be ex~
plained by a simpler hypothesis; it is anisotropic and
scaling throughout, a fact that can be characterised by
the "elliptical dimension’: D 1° 23/9 = 2.56,

(i.e. "two plus the scaling of Kolmogorov over the one
of Bogliano and Obeukhov ).

On the other hand , intermittency plays a key role
at the different scales, due to the low hyperbolic ex-
ponents observed. In particular as e ,.~5, the fifth
statistical moment of thevelocity field may diverge ,
and as &R}I, even the statistical mean of the Richard-
son number may diverge. This points out that use of
theory based on limited expansions in Ri (e.g. Lilly
(1983) ) are to be understood in a widely intermittent
context : there is no uniform separation between waves
and turbulent regimes.

This new scheme of atmospheric turbulence introducss
some new notions which have been briefly discussed
(e.g. the sphero-scale, which is not a characte-
ristic scale), the "'gtochastic stratification" ) ,

, [ )
E ! ‘ X
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Fig. 7@ An example of a hyperbolic fractal animal on
an anisotropic spacg with dimension D_.=1.80. The log
intensities are indicated by the intensities of grey.
This model is on an 800X800 point grid and the sphero-
scale has the value of 30 pixels. The fine structure
is therefore oriented perpendicularly to the overall
shape.

On the other hand, intermittency plays a key role

at the different scales , due to the low hyperbolic ex~
ponents observed. In particular as &£ ~5, the fifth
statistical moment of the velocity field may diverge ,
and asol A1, even the statistical mean of the Richard~
son numter may diverge. This points out that use of
theory based on limited expansions in Ri (e.g. Lilly

(1983) are to be understood in a widely intermittent

context : there is no uniform separation between waves
and turbulent regimes.

This new scheme of atmospheric turbulence introdu-

ces some new notions which have been briefly discussed

(the "sphero-scale ", "stochastic stratification"...)

We questioned the relevance of certain of the usual
assumptions of existing renormalisation methods in

the case of strongly intermittent and anisotropic flows.
It is hoped that the phenomenonology of the different
animals crowding the meteorological zoo (e.g. fronts
bands , dust devils blocks etc.) may be understood

as the result of scaling in an anisotropic hyperbolic~
ally intermittent context (in particular, the "Noah
effect’) . :

Although far more work is needed to provide defin-
ate answers toyaifferenc questions, we may safely
conclude that atmospheric turbulence is fractally
homogeneous (highly intermittent, and fractally
anisotropic (anisotropic scaling .
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