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INTRODUCTION

It has been only rather recently [1-5} recognized that scaling fields involve a whole
hierarchy of (fractal) dimensions (D(Y)) characterizing the sparser and sparser regions of
space occupied by higher and higher orders (y>0) of singularities of densities € of a turbulent

flux T1 (e.g. the energy, scalar variance flux or "density" of points on a strange attractor):
TA) = A{ g ddx : Pr(g,21°1) = KO Dy)=d<cyy; (1)

where [ is the (smaller and smaller) homogeneity scale, in a partial construction of the
process down to scale I, D(y) is the corresponding dimension function to c(y) (itself a co-
dimension) when c(Y)<d, d being the dimension (fractal or otherwise) of the set A on which
the process is observed. In the case of strange attractors where the singularity exponent of
the measure itself corresponding to the flux (not its density) is considered a slightly different
notation is often used; the order of singularity of the measure is denoted a and D(g) is
considered as the "spectrum of singularities" f(a). The two notations are related by the
following:
a=d-y f(o) =d-c(¥) @

which clarifies the dependence of o and f(cr) on the dimension d of the observation set. In
the following, the symbol o will be reserved for the (quite different) Levy index (for the
stable Levy distributions) and the related divergence of statistical moments. Indeed let us
point out, for h2>1 this type of divergence resulting from eq.l (ensemble average denoted
<>)

3

IA> 2 < [ehydhdx > 2 Ny 1Y 10
A

N(y) = ket

for any singularity Y (N(Y) being the nuber of occ

urences of singularities stonger than ), thus:

K(h) = supy{hy <))

[ eh, dhdx = K414
A

which diverges as soon as K(h)>(h-1)d. Note that singularities contributing t
correspond to y>d and c(y)>d (apparent negative D(y)!) and are ex
These wild singularities are miss

surely not present in a realisation.

spectrum of singularities (at, f(ov) are considered as non-negative).

THEORETICAL DEVELOPMENTS

tremely rare,
ed by the formalism of the

“

o divergences,
in fact almost

A-prioris any increasing function c(y) could be suitable for eq.1. However, it can be

demonswrated [6] that:

i) multiplicative processes are generic processes leading to precisely such multifractal
behavior. For example, in the simplest example, the "a-model"; each step of the process
determines the fraction of the flux transmitted to smaller scales and respects a canonical
conservation of the flux [6], i. its ensemble average is scale invariant:
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<I1(A)>= A:\oQCv (5)

this property assures a "weak measurable” convergence {7] of the process.
ii) due to its (semi-) group property, each multiplicative process is fully determined by
its generator I', which (random) values correspond to order of singularities:

m\” OH.N A@v

I’ being the filtered generator at the scale / (i.e. is homogeneous at the scale /). Multiple
scaling introduces the exponent function K(h) of the hth moment of the density respecting:
< gh> = K= ¢-K(h) Log(l) )

(K(h)Log(D/h, h being analogues -in respect to classical thermodynamics- of free energy and
inverse of temperature). As the statistical moments are the Laplace transforms of the
probability distributions, the exponents K(h) and c(y) are related by a Legendre transform:

c(y)=supp {hy -K(h)) K(h)= supy{hy -c(y)} (8)

and are completely monotone functions (hence convex).

iii) the only generators being stable and attractive under addition are Gaussian (Lévy
index o =2) or Lévy-stables (0<at<2) "1/f noises" -their (generalized) spectra should be
proportional to the inverse of the frequency or wave-number, The case o=0 corresponds to
the (rather trivial) $-model. o determines the universality classes. Note that we have to
consider only "extreme stable Lévy" generators, i.e. having only negative extremes values
(positive values must be distributed exponentially - non extremally- otherwise we obtain
divergences of all statistical moments of the density, and the process is not normalisable).

The universality classes and corresponding c(y) are fully determined by the
codimension Cj and the Lévy's index «:

1 1 ! h®-h
—+lo cp=Cil—L=+ 3% kmy=c; 2R (o)
a o a'C) « a-1

(note that y=Cj is the order of singularity contributing to the (ensemble) average of the flux
and satisfies: ¢(Cy)=Cy).

PRACTICAL IMPLICATIONS

We discuss the relevance of the preceding developments to geophysical fields either for
stochastic simulations or data analysis. Some theoretical arguments, going back to the
derivations of the Kolmogorov spectrum, indicate that the velocity field (or passive scalar
field) can be obtained by fractional integrations (order H) on (non-integer) powers (P) of the
fluxes. For instance, the passive scalar field [6] can be considered as resulting from a
fractional integration of order H=1/3 on a flux raised to the power P=1/3. Such
transformations are linear with respect to the generator, and hence preserve the general form
of eqs.7 (they modify only the coefficients), hence they lead to a rather general normalized
co-dimension function: .

en(=c(N/cO)=(1+y/y) (10)

For instance, it is possible to check that this index for the rain radar reflectivity is o=2
(cf.Fig.1) in estimating c(y) with the help of the functional box counting algorithm on 10 rain
cases, Y via a least squares regression. The standard error of the fit (of ¢(y)) in all 10 cases,
over the entire range of c(y), was +0.062 which is comparable to the errors in determining
c(y) from the functional box-counting algorithm [8]. We then plot the curves <cn(Y)> vis.
<(1+y/v,)2> in Fig. | (here averaging on all available cases). As predicted, the curves all
closely follow the line x=y (shown for reference). Similar results were obtained in 19} for
satellite and infra red radiances.

In conclusion we stress the fact that the existence of universality classes allows us to
tvoid the complex problem of dealing with high order moments (and/or low observational
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i sion d) which are difficult to empirically estimate since one : :
mmm%mwsooﬁ Mmcn K (h)>(h-1)d) introducing spurious scaling cho 1o the 32_», N\:w” ,U A%M_Mm
' inati res on
H mber law). On the contrary, the determination of o requires only ~ |
rwwm%n”ﬂm (the convexity of K(h) for h =1). It has many practical implications in geophysics

[10,11].
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Fig. 1 i i i he radar data, plotted against
The mean normalized co-dimension, <cn(Y)> for t  radar data, pl 5

::M mean oA:+<\Sv~v showing that c(y) belong to the universality class defined by

a=2. A perfect fit (the line x=y) is shown for reference.
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