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{ Preface }

In the closing months of the first world war, Lewis Fry Richardson made the 
first numerical weather forecast, founding the field of numerical weather predic-
tion (NWP). Today, with the help of computers, this brute-​force approach has 
been wildly successful. It is not only ubiquitous in daily weather forecasts, but 
also has been extended to seasonal predictions through to multidecadal climate 
projections. It is (almost) the unique tool used to inform policymakers about the 
climatological consequences of fossil fuel burning and other human impacts.

Yet Richardson was not only the founder of NWP, he also pioneered the de-
velopment of high-​level turbulent laws. In 1926, he proposed the “Richardson 4/​
3 law” of turbulent diffusion—​a law that wasn’t fully vindicated until 2013. Rather 
than attempting to account for every whirl, cloud, eddy, and structure, the 4/​3 law 
exploits the idea of scaling—​a statistical relation between big and small, between 
fast and slow—​to account for and understand the statistical outcome of billions 
upon billions of structures acting collectively from millimeters up to the size of 
the planet. Just as the diffusion of milk stirred in a cup of coffee doesn’t require 
tracking every molecule, so too can the atmosphere be understood without know-
ledge of every bump and wiggle on every cloud.

The idea that high-​level statistical laws could explain the actions of myriads of 
vortices, cells, and structures was shared by successive generations of turbulence 
scientists. Unfortunately, they faced monumental mathematical difficulties largely 
connected to turbulent intermittency: the fact that most of the activity is inside 
tiny, violently active regions, themselves buried in a hierarchy of structures within 
structures. The application of turbulence theory to the atmosphere encounters an 
additional obstacle: stratification that depends on scale. Although small puffs of 
smoke seem to be roughly roundish—​or even vertically aligned—​on a good day, 
even the naked eye can make out wide horizontal cloud decks that allow us to 
glimpse chunks of giant strata thousands of kilometers across.

The 1980s marked a turning point when Richardson’s deterministic and statis-
tical strands parted company, and when the precarious unity of the atmospheric 
sciences was broken. On the one hand, computers revolutionized NWP, making 
the brute-​force approach increasingly practical and hence prevalent. On the 
other hand, the nonlinear revolution—​itself a tributary of computers—​promised 
to tame chaos itself, including turbulent chaos with its fractal structures within 
structures. Throughout the next decades, scientific societies promoted nonlinear 
science by establishing nonlinear processes divisions and journals. While the non-
linear approaches were advancing understanding, NWPs mushroomed and ex-
tended their number crunching to include oceans and the climate.
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xii	 Preface

This book is an insider’s attempt to reunite the two strands. It contains some 
history and a few human touches, but mostly it explains, as simply as possible, 
how we can understand atmospheric variability that occurs over an astonishing 
range of scales:  from millimeters to the size of the planet, from milliseconds 
to billions of years. The variability is so large that standard ways of dealing 
with it are utterly inadequate. In 2015, it was found that classic approaches had 
underestimated the variability by the astronomical factor of a quadrillion (a mil-
lion billion).

Although familiar treatments focus on a series of “scalebound” mechanisms, 
each operating over a narrow range of scales ranging from meteorological fronts 
to convective cells to storm systems—​or from El Niño to global warming—​in this 
book I take you by the hand and show you the atmosphere in a new light. Helped 
by high-​level scaling laws operating over enormous ranges of scales from small 
to large, from fast to slow, I  explain this new thing called “macroweather” and 
describe how it sits in between the weather and climate, finally settling the ques-
tion: What is climate? I discuss how agriculture—​and hence civilization itself—​
might be a result of freak macroweather.

I answer Richardson’s old question: Does the wind have a velocity? And the 
newer one: How big is a cloud? The answer turns out to explain why the dimen-
sion of atmospheric motions is D = 23/​9 = 2.555..., which is more voluminous than 
theoreticians’ flat value D = 2, yet less space filling than the human-​scale value 
D = 3. I show that Mars is our statistical twin and why this shouldn’t surprise us. 
I explain how the multifractal butterfly effect gives rise to events that are so extreme 
they have been called black swans. I  show how—​even accounting for the black 
swans—​we can close the climate debate by statistically testing and rejecting the 
skeptics’ giant natural fluctuation hypothesis. I explain how the emergent scaling 
laws can make accurate monthly to decadal (macroweather) forecasts by exploiting 
an unsuspected but huge memory in the atmosphere–​ocean system itself. I play-
fully imagine a 1909 International Committee for Projecting the Consequences of 
Coal Consumption to show how a good scenario of economic development might 
have led—​one hundred years in advance—​to accurate projections of our current 
1°C of global warming, and I’ll show how the same scaling approach can help to 
reduce significantly the large uncertainties in our current climate projections to 
2050 and 2100.

This book is aimed at anyone interested in the weather and climate; it assumes 
only some basic mathematics: power laws and their inverse, logarithms. However, 
for those who wish to delve beyond the basic narrative, there are extensive footnotes 
and endnotes. The footnotes are reserved for supplementary—​but nontechnical—​
information, comments, and occasional anecdotes. The endnotes are more tech-
nical in nature, aimed at readers who want to dig deeper. In addition, there are 
also more than a dozen “boxes” that give even more technical information and 
explanations. Although they are placed in the text at advantageous locations, they 
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Preface	 xiii

are designed to be “stand-​alone” and can be either skipped or read in any desired 
order. Overall, there was an attempt to make the book interesting and accessible to 
readers with a wide range of backgrounds.

The book will have achieved its goal if you achieve a new, unified understanding 
of the atmosphere and if it convinces you that the atmosphere is not what you 
thought.
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{ 1 }

 Zooming through scales by the billion

1.1  What is weather? What is climate?

1.1.1  High level or low level?

“The climate is what you expect, the weather is what you get”a: The climate is a kind 
of average weather.1 But is it really? Those of us who have thirty years or more of 
recall are likely aware of subtle but systematic changes between today’s weather 
and the weather of their youth. I  remember Montreal winters with much more 
snow and with longer spells of extreme cold. Did it really change? If so, was it only 
Montreal that changed? Or did all of Quebec change? Or did the whole planet 
warm up? And which is the real climate? Todays’ experience or that of the past?

The key to answering these questions is the notion of scale, both in time (du-
ration) and in space (size). Spatial variability is probably easier to grasp because 
structures of different sizes can be visualized readily (Fig. 1.1). In a puff of cigarette 
smoke, one can casually observe tiny wisps, whirls, and eddies. Looking out the 
window, we may see fluffy cumulus clouds with bumps and wiggles kilometers 
across. With a quick browse on the Internet, we can find satellite images of cloud 
patterns literally the size of the planet. Such visual inspection confirms that 
structures exist over a range of 10 billion or so: from 10,000 km down to less than 
1  mm. At 0.1  mm, the atmosphere is like molasses; friction takes over and any 
whirls are quickly smoothed out. But even at this scale, matter is still “smooth.” To 
discern its granular, molecular nature, we would have to zoom in 1,000 times more 
to reach submicron scales. For weather and climate, the millimetric “dissipation 
scale” is thus a natural place to stop zooming, and the fact that it is still much larger 
than molecular scales indicates that, at this scale, we can safely discuss atmos-
pheric properties without worrying about its molecular substructure.

a Often attributed to Mark Twain, but apparently it originally appeared much more recently in a 
science fiction novel by Heinlein, R. A. Time Enough for Love. (G. P. Putnam’s Sons, 1973).
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2	 Weather, Macroweather, and the Climate

Figure 1.1  (Left) Cigarette smoke showing wisps and filaments smaller than a millimeter 
up to about a meter in overall size. (Upper middle and right) Two cloud photographs taken 
from the roof of the McGill University physics building. Each cloud is several kilometers 
across, with resolutions of a meter or so.2 (Lower right) The global scale arrangement 
of clouds taken from an infrared satellite image of Earth, with a resolution of several 
kilometers.b Taken together, the three images of the clouds and Earth span a range of a factor 
of nearly a billion in spatial scale.

Clouds are highly complex objects. How should we deal with such apparent 
chaos? According to Greek mythology, at first there was only chaos; cosmos 
emerged later. Disorder and order are thus ancient themes of philosophy, physics, 
and  .  .  .  atmospheric science. In the case of clouds, their complex appearances 
are the result of turbulence. Turbulence arises when fluids are sufficiently 
stirred. Large-​scale structures become unstable and break up into smaller ones. 
Neighboring structures can interact in complex ways. We can get a feel for this by 
putting a drop of milk in coffee. If you add the drop gently into a cup of calm black 
coffee, the milk diffuses very slowly. A brief, wide circular motion rapidly creates 
a homogeneous milky brew. Although the stirring only directly created a large 

b The satellite picture was taken at infrared wavelengths. The colors are false. The whiteness depends 
on the coldness (and hence altitude) of the cloud top.
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Zooming through scales by the billion	 3

cup-​size structure or whirl, it breaks up quickly, creating smaller and smaller ones 
that disperse the milk rapidly. When these eddies are a bit smaller than a milli-
meter, molecular diffusion takes over, making the mixture uniform. An important 
aspect of turbulence is that it typically leads to structures over huge ranges of scale, 
yet from the point of understanding the system, most of these structures are unim-
portant details. Rather than acquiring an understanding of each bump and wiggle, 
what we really need to understand are their statistics.

Cloud complexity is analogous to that encountered when considering 
matter at molecular scales. Figure 1.2A (left) shows a few molecules in a box. 
Classically, to understand the system at particle scales requires knowledge of 
the trajectories of each of the molecules.c Using a brute-​force approach called 
molecular dynamics, today’s computers can handle such systems numerically 
with up to about a million molecules (Fig. 1.2A, middle), yet the systems are 
still tiny—​a billionth of a nanogram or so. But describing and modeling matter 
at human scales is not just a question of computing power. It’s a conceptual 
problem. Here’s a mundane example: I heat my coffee and want to know what 
happens. Even if I knew the position and velocity of all of its million, billion, 
billion molecules, it would be mostly useless information. I  would be happy 
with a single number: the temperature. Similarly, even if one could model every 
single eddy and structure in the atmosphere, every bump and wiggle on every 
cloud, it would still not answer the questions: Is it a nice day? Will it rain to-
morrow? We need not only to eliminate the useless information, but also we 
must also use the appropriate concepts.

Fortunately, starting in the nineteenth century, techniques have evolved 
for dealing with huge numbers of molecules:  statistical mechanics based on 
probabilities. If all we want are averages, then we may simplify even further 
and use thermodynamics and continuum mechanics. The latter theories were 
developed before the establishment of the atomic theory of matter and make 
no reference to its particulate nature. Although they treat matter as though it 
was a homogenous “continuum,” this assumption is nevertheless the basis of all 
theories and models of the weather and the climate. In the jargon of complexity 
science, they are emergent laws and their new concepts such as temperature and 
pressure are emergent properties. Figure 1.2A (right) shows a typical continuum 
mechanics simulation of an isolated vortex. Even if scientists could make a (low-​
level) molecular dynamics simulation of this vortex by describing each molecule, 
there would be no point. To understand it, we need a higher level description that 
averages out the unimportant molecular details.3 And although there may be no 
mathematically rigorous proof, it is widely accepted that there is no contradiction 
between the higher level continuum description and the lower level molecular 
one. Both are valid.

c A quantum mechanical description involves corresponding wave functions.
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Figure 1.2  (A, left) A particle (molecule) depiction of a gas at molecular scales 
(nanometers). This is a classic “billiard ball”–​type of description. A quantum description 
involves wave functions that determine the probability of finding the particles in different 
locations. (A, middle) At somewhat larger scales, we have hundreds of thousands of 
particles, and we may start to model the system using use statistical mechanics. (A, right) At 
macroscopic scales, perhaps tens of centimeters or larger, there are so many particles that we 
can average over the molecular fluctuations and use a continuum description. Here, we see a 
vortex.4 This level of description assumes the air is smooth, not granular (i.e., that it ignores 
its molecular nature). (B, top) Many interacting vortices can still be handled computationally 
on the basis of continuum mechanics, but the evolution is complex and becomes difficult to 
understand in a simple mechanistic manner. Each elementary vortex (B, bottom left)5 is a 
bit like the molecules in (A, left). (B, bottom right) In this image, we are nearing the strong 
turbulence limit relevant in the atmosphere. Although this is still a supercomputer simulation, 
we can already see the problem of huge numbers of interacting vortices. As a result of the 
seemingly random collection of long, thin vortices, this turbulent view is sometimes called the 
“spaghetti” picture. This is a direct numerical simulation6 that models the smallest relevant 
scales explicitly. Numerical models of the atmosphere in general are only approximations; their 
smallest scales may be 10 km across. Implicitly, they average over large numbers of structures.
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Zooming through scales by the billion	 5

But the atmosphere is not an isolated single vortex (Fig. 1.2B, bottom left) or 
even a manageably small collection of vortices (Fig. 1.2B, top). Rather, it is more 
like the turbulent “spaghetti plate” picture (Fig. 1.2B, bottom right) composed of 
huge numbers of vortices (eddies, structures). In the atmosphere, typical estimates 
of the number of interacting components—​“degrees of freedom”—​are a billion, 
billion, billion (1027), or about the same as the number of molecules in a cubic 
meter of air. Attempts to understand the corresponding statistics are at the or-
igin of even higher level turbulent laws. Just as statistical mechanics treats large 
numbers of interacting particles and extracts the important aspects in the form 
of statistics, so do turbulent laws, which describe the collective behavior of huge 
numbers of interacting eddies (structures, vortices). Lewis Fry Richardson (1881–​
1953) proposed the first turbulent law during the 1920s. The saga of how it was 
finally vindicated in 2013 is told in Chapter 4. When Richardson’s law and others 
of the same type are suitably generalized, they describe the statistical properties 
of the atmosphere and climate over wide ranges of scales in space and in time. 
Just as continuum mechanics is a high-​level law emergent with respect to the 
low-​level (fundamental) laws of particles and statistical mechanics, the turbu-
lent laws are high-​level laws that are emergent with respect to those of continuum 
mechanics. Once again, the laws at different levels are believed to coexist, to be 
equally valid.d Just as the continuum laws allow new and unprecedented means 
for understanding, modeling, and forecasting a vortex, the same is true of the tur-
bulent laws for large collections of vortices. Notice the alternation in Figure 1.2 as 
one moves up the scale from particle laws (deterministice ) to statistical mechanics 
(statistical), to continuum mechanics (deterministic), to turbulent laws (statistical, 
also called stochasticf).

In practice, one chooses to use one description (level) or another, one model or 
another, depending on the application. The graphs in Figure 1.3 illustrate this. At 
the top, there is an actual wind trace, from measurements taken half a millisecond 
apart, that displays complex variability. This curve is from real-​world data; it is 
neither random nor deterministic. These are attributes of theories and models. 
The scientist’s job is to find the theory and model that best fits reality, and to do 
this without a priori prejudices about whether it ought to be deterministic or sto-
chastic7 (see Box 1.1).

d  I  say “believed” because, although there are many arguments and much evidence, there is no 
mathematical proof of the equivalence.

e This means that its evolution follows a rigid rule. This is the classical description. I could have 
started at the even more fundamental quantum level, which—​being statistical—​again alternates (see 
Box 1.1).

f Usually, the term statistical is used for descriptions of randomness, whereas the term stochastic is 
used for processes and models that incorporate randomness.
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Figure 1.3  (Top) The trace of the wind speed on the roof of the McGill University physics 
building measured at 2 kHz (2,000 points more than the 1 second of record that is shown). 
Note the detailed structure. The signal is still not smooth. (Lower left) Here there are 2,048 
points of a stochastic (random) multifractal simulation with the same fluctuation exponent 
(H = 1/​3) and measured multifractal parameters (see Box 2.2). (Lower right) Here, there 
are 2,048 points of a deterministic fractal model, the “Weierstrass function,”8 with the same 
fluctuation exponent (Section 2.1).

Box 1.1  Which chaos?

Order versus disorder and the scientific worldview

Although gods were traditionally invoked to explain cosmos and chaos (order and 
disorder), their role was drastically diminished with the advent of the Newtonian 
revolution. Sir Isaac Newton himself only required God’s assistance for the 
determination of the initial conditions—​for example, starting the planets off in 
their orbits—​the laws of mechanics and gravity would do the rest. By the middle of 
the nineteenth century, Newtonian laws had become highly abstract, whereas the 
corresponding scientific worldview had become deterministic. The most extreme 
views have been attributed to Pierre-​Simon Laplace (1749–​1827), who went so far as 
to postulate a purely deterministic universe in which “if a sufficiently vast intelligence 
exists,”9 it could solve the equations of motion of all the constituent particles of the 
universe. In this universe, such a divine calculator could determine the past and 
future from the present in an abstract high-​dimensional “phase space” that defines 
precisely the position and velocities of every particle and at all times.

Unfortunately, as part of their imperfect knowledge, mortals are saddled 
with measurement errors that involve notions of chance. The identification of 
chance with human error led to Voltaire’s (1694–​1778) contemptuous: “chance is 
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g  He continues:  “We have invented this word to express the known effect of unknown causes” 
(p. 439). Voltaire. The Ignorant Philosopher. (1766). (in English: Blue Ribbon Books, 1932.)

h Poincaré was a determinist. He was explaining why the weather “seemed” random; he was not 
arguing for a statistical theory of meteorology. Poincaré, H.  Science and Method, p.  296. (Thomas 
Nelson and Sons, 1912).

i Not surprisingly, there have been attempts to explain quantum randomness by deterministic chaos 
acting at a subquantum level.

nothing.” g By this, he meant that chance is purely subjective. As far as the laws 
of nature are concerned, it is beneath consideration. It was a full century later 
that James Clerk Maxwell (1831–​1879) introduced probability explicitly into the 
formulation of physical laws: the distribution of speeds of gas molecules (in 1870). 
This is the origin of classic statistical mechanics—​the idea that the unobserved or 
unknown degrees of freedom (“details”) are the source of random behavior, such 
as fluctuations about a mean temperature. Although highly partial information is 
the rule, human-​size (macroscopic) objects are typically described by parameters 
such as temperature, pressure, and density. Most of the details—​especially particle 
positions and velocities—​are unimportant and can be reduced to various averages 
using statistics, hence the dichotomy of objective deterministic interactions of a 
large number of degrees of freedom coexisting with randomness arising from our 
subjective ignorance of the details.

The identification of statistics with ignorance evolved—​notably thanks to Josiah 
Willard Gibbs (1839–​1903) and Ludwig Boltzmann (1844–​1906)—​to the more 
objective identification of statistics with the irrelevance of most of the details. For 
example, Henri Poincaré (1854–​1912) rejected the notion of chance as ignorance, 
and instead favored the view that chance is appropriate when dealing with complex 
causes. Giving the example of the weather and anticipating Edward Lorenz’s (1917–​
2008) Brazilian butterfly causing a Texas tornado, he stated: “It may happen that small 
differences in the initial conditions produce very great ones in the final phenomena. 
A small error in the former will result in an enormous error in the latter. Prediction 
becomes impossible and we have the fortuitous [chance] phenomenon.”h In Chapter 7, 
we see that this stochastic conclusion was more nuanced than Lorenz’s later 
deterministic one. A little later, Andrey Kolmogorov10 (1903–​1987), perhaps motivated 
by fluid turbulence, “axiomatized” probability theory, proving that chance could be 
purely objective. This lent rigor to the work on Brownian motion initiated during the 
early twentieth century by Louis Bachelier, Albert Einstein, Marian Smoluchowski, and 
Paul Langevin. It laid the mathematical groundwork for dynamical stochastic processes 
that obeyed objective probabilistic laws.

But even these advances did not alter the deeply held prejudice that statistics and 
statistical laws were no more than a feeble substitute for determinism. A corollary to 
this was the hierarchical classification of scientific theories. Fundamental theories 
were deterministic; only the less fundamental ones involved randomness. Although 
this poor man’s view of randomness might have been appropriate to classic statistical 
physics, with its billiard ball atoms and molecules, it is incapable of accounting 
for the fact that the most fundamental physical theory yet devised—​quantum 
mechanics—​which is in fact probabilistic,11 with its fundamental object (the wave 
function) specifying probabilities.i Even today, although numerous developments 
make it obsolete, determinism is entrenched.
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The deterministic chaos revolution: The butterfly effect

Just as biases toward determinism were starting to unravel, the deterministic chaos 
revolution of the 1970s and ʼ80s gave them a new lease on life. The trouble started 
with attempts to solve the equations of motion. Poincaré had already noted that 
three particles are already too many to allow for nice, regular “analytical” solutions. 
However, it was Lorenz, in 1963, who fully recognized the general propensity 
of nonlinear systems to amplify small perturbations (“sensitive dependence on 
initial conditions”)—​a fact that only became widely known during the 1970s as 
the “butterfly effect” (see Chapter 7). Even if Laplace’s calculator had nearly perfect 
initial information and had infinitely precise numerics, the future would not be 
predictable. Randomlike “chaotic” behavior would result instead. During the 1950s, 
Lev Landau had proposed that fluid turbulence arose through an infinite series 
of instabilities. Now, thanks to Lorenz, it became clear—​as the title of a famous 
article proclaimed12—​that “three implies chaos.” However—​and this crucial point 
is often overlooked—​even if only three instabilities are necessary, the state of “fully 
developed fluid turbulence”13 that approximates the atmosphere still depends on a 
huge number of components.

To become a fully fledged revolution, in addition to the butterfly effect, chaos 
theory required two more developments. The first was the reduction of the scope 
of study to systems with a small number of degrees of freedom. The second was 
the discovery that, under quite general circumstances, qualitatively different 
dynamical systems could give rise to quantitatively identical behavior: the celebrated 
“Feigenbaum constant.”14 This “universality”15 finally allowed for quantitative 
empirical tests of the theory. By the early 1980s, these developments had led to what 
could properly be called the chaos revolution.

Later developments and problems

The basic outlook provoked by the developments in chaos—​that randomlike 
behavior is “normal” and not pathological—​is valid regardless of the number of 
degrees of freedom of the system in question. The success of chaos theory on systems 
with a small number of degrees of freedom led to some bold prognostications, such 
as “junk your old equations and look for guidance in clouds’ repeating patterns.”16 
This fervor was unfortunately accompanied by a drastic restriction of the scope of 
chaos itself to meaning precisely deterministic systems with few degrees of freedom. 
The restriction, coupled with the development of new empirical techniques, led to 
a major focus on applications and a number of curious, if not absurd, claims.

A particularly striking example comes from the climate, for which it had always 
been assumed that a large (practically infinite) number of interacting components 
were involved. However, when new chaos tools were applied to paleoclimate data, 
a famous paper even claimed that only four degrees of freedom were required to 
specify the state of the climate.17 It was later pointed out that the conclusion was 
based on empirical analysis involving only 180 data points, and that even within the 
deterministic paradigm, this was far too few to justify the conclusions. It was barely 
noticed that, in any case, stochastic processes with an infinite number of degrees of 
freedom could have easily given the same result.18
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 During the same period, in geoscience and elsewhere, numerous attempts were 
made purely from data analysis to prove that, despite appearances, randomlike 
signals were in fact deterministic in origin.

These attempts were flawed at several levels, the most important of which is 
philosophical: the supposition that nature is (ontologically) either deterministic or 
random. In reality, the best that any empirical analysis could hope to demonstrate 
was that specific deterministic models fit the data better (or worse) than specific 
stochastic ones.

The alternative for large numbers of degrees 
of freedom: Stochastic chaos

By the mid 1980s, the ancient idea of chaos had thus taken on a narrow, restrictive 
meaning that essentially characterized deterministic systems with small numbers of 
interacting components. The philosophy underlying its use as a model for complex 
geophysical, astrophysical, ecological, or sociological systems—​each involving 
nonlinearly interacting spatial structures or fields—​has two related aspects, each 
of which is untenable. The first is the illogical inference that because deterministic 
systems can have randomlike behavior, randomlike systems are best modeled as 
deterministic. The second is that spatial structures that apparently involve huge 
variability and many degrees of freedom spanning wide ranges of scale can in fact be 
effectively reduced to a small number. At a philosophical level, deterministic chaos is 
a rearguard attempt to resurrect Newtonian determinism.j

To overcome the limitations of deterministic modeling, I  propose to make 
systematic use of models with objective randomness:  “stochastic chaos.”19 The 
fundamental characteristic of stochastic theories and models that distinguishes 
them from their deterministic counterparts is that, mathematically, they are defined 
on probability spaces, which implicitly involve huge numbers of components.20 In 
comparison, their deterministic counterparts—​at least when strongly nonlinear—​
are only manageable with small numbers of interacting components (degrees of 
freedom). The stochastic chaos alternative is now easy to state: Contrary to Einstein’s 
injunction that “God does not play dice,” we seek to determine how God plays 
dice with large numbers of interacting components (Fig. 1.4). Deterministic and 
stochastic models of the same physical system can coexist at different levels in a 
hierarchy of scientific theories. One can choose the level that is most convenient for 
the intended application.21

j In a popular book, the father of deterministic chaos, Edward Lorenz, even flirts with teleology—​
the idea that freewill is an illusion: “We must then wholeheartedly believe in free will. If free will is a re-
ality, we shall have made the correct choice. If it is not, we shall still not have made an incorrect choice, 
because we shall not have made any choice at all, not having a free will to do so” (p. 160). Lorenz, E. The 
Essence of Chaos. (UCL Press, 1993).
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10	 Weather, Macroweather, and the Climate

Figure 1.4  God playing dice in geophysics. During the 1930s—​the early days of 
quantum mechanics—​Einstein famously proclaimed, “God does not play dice.” By this, 
he meant that, because of its stochastic nature, quantum mechanics could only be a 
provisional theory, and that it would be replaced eventually by a more fundamental, 
deterministic one. Today, quantum mechanics is still the most fundamental theory 
that we have, and the objective nature of such stochastic theories is much clearer than 
it was in Einstein’s day. Stochastic theories can be just as fundamental as deterministic 
ones. The modern question is: How does God play dice?22

Objections to stochastic chaos

Causality requires determinism
A common misconception is that causality and determinism are essentially identical 
or, equivalently, that indeterminism implies a degree of acausality. As emphasized 
by Bunge,23 causality is nothing more than a specific type of objective determination 
or necessity. It, by no means, exhausts the category of physical determination that 
includes other kinds of lawful production/​interconnection, including statistical 
determination: stochastic causality.

Structures are evidence of determinism
Interesting phenomenologically identified large-​scale structures—​storms, for 
example—​are frequently modeled with mechanistic (and deterministic) models, 
whereas the presence of variability without noteworthy structures is identified with 
noise. The inadequacy of this view of randomness is brought home by the still-​little-​
known fact that stochastic models can, in principle, explain the same phenomena. 
The key is a special kind of “stochastic chaos” involving a scale-​invariant symmetry 
principle in which a basic (stochastic) cascade mechanism repeats scale after scale 
after scale, from large scales to small scales, eventually building up enormous 
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variability: multifractals (Box 2.2). Unlike classic stochastic processes, multifractals 
specifically have extreme events, called singularities, that are strong enough to create 
structures, so they produce potentially large structures that have little in common 
with featureless white noise.

Physical arguments for stochastic chaos: Turbulence
We have already seen that because stochastic processes are defined on infinite 
dimensional probability spaces, stochastic models are a priori the simplest whenever 
the number of degrees of freedom is large. In geoscience, stochastic chaos is 
particularly advantageous when—​as in fluid turbulence—​a nonclassic symmetry is 
present: scale invariance. This is the thesis of this book.
  

Consider the bottom graphs in Figure 1.3. On the left, we see a stochastic 
multifractal model with a basic fluctuation exponent (H; discussed in Chapter 2) 
that is close to the value found in the experimental trace at the top. In this case, 
it is close to a well-​known theoretical turbulence law.24 On the right, we show a 
purely deterministic model with the same parameter, but it is based on a simple 
rule that repeats from large scales to small scales (a fractal). Although the left 
graph obeys high-​level turbulent laws, the right might have comek from a (lower 
level, deterministic) Numerical Weather Model (NWP) or General Circulation 
Model (GCMl). Yet both could be realistic inasmuch as they agree on important 
statistical properties of the data. In this case, all three graphs in Figure 1.3 turn out 
to have the same basic relationship between large and small structures: the rule 
that determines how “fluctuations” change with size. In the data series (Fig. 1.3, 
top), the relationship can be determined by analysis; in the bottom (Fig. 1.3), the 
relationship is specified theoretically by the model. The idea is that the detailed 
wiggles (e.g., the curves in Fig. 1.3) are not of interest, but the way the wiggles typ-
ically differ when we move from small to large is of interest. Even in these model 
series, one may notice that their exact characters seem to be a little different. It 
turns out that the relation between small and large can itself be nontrivial, and a 
single number (in this case, the fluctuation exponent that we revisit in Chapter 2) 
is only part of the story.

Another way of viewing this is to ask: Do all the wiggles in Figure 1.3 (top) re-
quire detailed explanations? Or, when we consider enough wiggles over a wide 
range of scales, is there a simplifying principle that comes into play? If either of 
the bottom curves in Figure 1.3 were realistic wind models, the apparent wind 

k Although, in this case, the finest resolution would be hours, not milliseconds!
l The acronym GCM refers to numerical models of the atmosphere that are adapted to timescales 

longer than the ten-​day weather scale, notably by including a model of the ocean. Increasingly, the 
acronym GCM is alternatively decoded as Global Climate Model. Although GCMs are often distin-
guished from NWPs, their atmospheric components are fundamentally the same, being run on larger 
grids and with lower temporal resolutions. For the purposes of this book, the distinction is not always 
important.
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complexity would become much simpler. The emergent laws thus potentially 
transform the complex into the simple—​or, perhaps more accurately—​from an 
unmanageable low-​level complexity to a simpler, more manageable higher level 
irreducible complexity (more on this later).

1.1.2  Space and time

We can use the visual spatial information in Figure 1.1 to learn something about 
how the atmosphere varies in time. This is because wind—​although being 
far from constant, as Figure 1.3 shows—​typically blows at several meters per 
second. As eddies of all sizes blow past, we feel fluctuations (i.e., variations) 
in the temperature, humidity, pressure, and, indeed, in the wind itself.m At 1 
m/​s, eddies with millimeter-​size temperature variations would cause our ther-
mometer to vary at millisecond scales. Assuming that we had a thermometer 
with a rapid enough response time, we could measure this, but milliseconds are 
not enough (Fig. 1.3, top). To see a smooth dissipation scale response, we need 
a thermometer that measures 10,000 times a second.25 Pursuing the idea of 
blowing structures, a cloud outside our window might cross our line of sight in 
tens of minutes. Structures 10 km in size readily account for fluctuations of this 
duration. Taking this to its extreme—​the size of a planet—​we obtain a typical 
estimate of about ten days for the fluctuations that it implies (corresponding 
to a mean speed of about 10 m/​s). This simple argument already accounts for 
the temporal variability between a thousandth and a million seconds: another 
factor of 1 billion.

We have just described the atmosphere’s weather regime. Ten days is indeed its 
limit, and it corresponds roughly to our subjective experience of changing weather 
and weather patterns, and it is equal to the theoretical limits to which weather 
can be forecast in a deterministic sense (the discussion of the butterfly effect in 
Chapter 7). If this weather variability was all there was, then understanding the 
atmosphere would be much simpler because we could always identify, at least on 
average, fluctuations of a given duration with those of a corresponding size. But 
the variability doesn’t stop at ten days. Even if we ignore the annual cycle, each 
month is different from the previous month, each year from the previous year, and 
this continues through centuries and millennia through to Ice Age scales (tens 
to hundreds of thousands of years), through to geological scales, right up to the 
age of the planet—​indeed, another factor of 1 billion, an overall range of a billion 
billion. Incredibly, it wasn’t until 2015 that this variability was quantified properly, 
and it was discovered that, over the range of one hour to the age of Earth, it had 
been underestimated by a factor of a quadrillion: a one followed by fifteen zeroes26 
(see Chapter 2).

m This is actually the nonlinear origin of the turbulence: the wind transporting itself.
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So at what scale does the climate fit in? It is obviously longer than ten days. 
Indeed, for most of human history, the climate was considered an essentially con-
stant atmospheric state that characterized a given location at a given time of year. 
As Mark Twain famously quipped, “Climate lasts all the time and weather only a 
few days.”27

The idea of climate constancy—​except for geological periods—​was still 
common in 1934, when the newly formed Climate Commission of the International 
Meteorological Organizationn adopted 1901 to 1930 as the “climate-​normal period” 
as a quantitative definition of the climate. Ironically, the idea of climate change was 
already dawning, and—​following a postwar cooling—​climate change was increas-
ingly recognized, leading, for example, to the official American Meteorological 
Society (AMS) glossary28 to define the climate as “the synthesis of the weather” 
and then “the climate of a specified area is represented by the statistical collec-
tive of its weather conditions during a specified interval of time (usually several 
decades).” Not surprisingly, the “climate normal” was shifted shortly thereafter to 
1930 to 1960. Now, it is 1980 to 2010. Looking back from today’s vantage point, 
with climate change threatening our future, the view of climate as constant seems 
quite archaic.o Indeed, the main modern update is the proposal “to expand the 
definition of climate to encompass the oceanic and terrestrial spheres as well as 
chemical components of the atmosphere.”29

If the climate is changing, then it does not “last all the time,” nor can it be “what 
we expect.” So what is it really? And if, as suggested by the AMS glossary—​or by 
fiat from the official duration of climate normals—​it only changes on thirty-​year 
scales or longer, then what is the regime in between the weather (up to ten days) 
and the climate? Incredibly, for an age of supercomputers drowning in petabytes of 
“big data,” the answer has only recently appeared: macroweather, a term that is still 
unfamiliar.30 We see later that macroweather is defined precisely by the property 
that had previously been attributed to the climate: that successive fluctuations tend 
to cancel each other out; that averaging over longer and longer periods reduces 
the fluctuations, making them appear to converge. However; at roughly twenty-​ to 
thirty-​year periods,31 the point of apparent convergence itself starts to vary. The 
successive thirty-​year climate normals are, on the contrary, found (thanks to proxy 
or “paleo” temperature data) to fluctuate almost like the weather all the way to Ice 
Age scales (100,000 years, Box 1.2). In these pages, I thus explain why we should 
not expect the climate. Expect macroweather. But the variability doesn’t stop at 
Ice Age scales, and in Chapter  5 we examine the even longer scale macro-​ and 
megaclimate regimes.

n The precursor of today’s World Meteorological Organization.
o It persists only as part of a religious-​based strand of climate change skepticism. The other strand 

of skepticism is the exact opposite: that the climate is so variable the warming is claimed to be giant 
natural fluctuation (GNF)—​a claim that is debunked statistically in Chapter 6.
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Box 1.2  Zooming through deep time in the Phanerozoic

Every since Earth was formed 4.5 billion years ago, its temperature has varied. Yet, 
over most of this time, our knowledge of its temperature is very sketchy. This changed 
550 million years ago thanks to the appearance of hard-​shelled marine animals at the 
beginning of the current, Phanerozoic, eon, so we’ll concentrate on this.

Figure 1.5A shows reconstructed time sequences of oxygen 18 (18O) isotope 
ratios from calcium carbonate (CaCO3) from paleotemperature ocean floor “stacks.” 
A stack is a collection of cores from different locations in which specific, identifiable 
common layers (such as tree rings) can be used to produce a common sequence 
that can be dated. The series in Figure 1.5A is from collections of ocean cores with 
enough geographical distribution that they are believed to be representative of global 
conditions. To see how these paleoindicators work, recall that the most abundant 
oxygen isotope is 16O. This lighter isotope is evaporated preferentially from the ocean 
surface, leaving behind water that is enriched in 18O. The oxygen from this water 
gets absorbed into the skeletons of tiny creatures (foraminifera, or plankton) and 
when they die, they fall to the ocean floor, where they accumulate as layered benthic 
sediments that are later “cored” by drilling ships.

The top series in Figure 1.5A is an update of a global assemblage32 that covers 
the entire Phanerozoic. Because lifeforms with CaCO3 exoskeletons did not exist 
before this, the series goes as far back as this technique will allow. Although 2,980 
values were used, they are far from uniformly distributed. Figure 1.5A shows a linear 
interpolation so that the exactly straight segments are artifacts; they are space-​fillers 
for presumably highly variable missing data. A warning: As is usual in representations 
of paleodata, the time axis goes from the present at the left to the past at the right. 
When we approach the modern period—​especially when using real (instrumental) 
data—​the axis is reversed so that time increases from left to right.

The vertical axis in Figure 1.5A is 1,000 times the difference in the observed 
18O concentration with respect to a convenient reference concentration, denoted 
δ18O (the “δ” is thus a tenth of a percent). The basic relationship between δ18O 
and temperature is an inverse one. Increasing δ18O is associated with decreasing 
temperatures, although this relationship is complicated by the change in the 
δ18O composition of seawater as a result of the preferential sequestering of light 
seawater in ice caps. There are thus both direct and indirect links to temperature 
via the ice sheets. The temperature range is indicated by the double-​headed arrows 
in the figure. It is based on the “canonical” calibration of –​4.5°C/​δ18O, and may be 
too large by as much as a factor of 3.33 Note the negative sign in the calibration. 
Large δ18O values correspond to low temperatures and vice versa. (This may be 
confusing because, in ice cores, the relationship is opposite, as discussed later.) 
We can see there has been a slow cooling by as much as 40°C during this period. 
Because this corresponds to roughly one tenth of a degree per million years—​
assuming that it continues today—​it will not do much to alleviate global warming, 
which is currently occurring at a rate of about 0.1°C per decade (i.e., 100,000 
times faster!).

The series show no evidence of fluctuating about fixed values. On the contrary, 
they appear to “wander” up and down, frequently displaying numerous consecutive 
fluctuations with the same sign. This is a visual signature of an unstable process. Its 
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Zooming through scales by the billion	 15

p Notably for James Lovelock’s famous “Gaia hypothesis.”

meaning is quantified in Section 2.3, and its implications for the history of Earth are 
discussed in Chapter 5.p

The middle series in Figure 1.5A34 is from an assemblage covering the Cenozoic 
era that started 65 million years ago. It is based on deep-​sea isotope records from 
data compiled from more than forty Deep-​Sea Drilling Project and Ocean Drilling 
Project sites. It has 14,828 values and thus gives much more detail than can even 
be represented visually on the graph. As with the top series in Figure 1.5A, the 
values are not distributed uniformly in time and they are considered to be globally 
representative. Note that there are several rather “spiky” excursions. One of them 
is particularly famous—​the Paleocene–​Eocene Thermal Maximum (PETM), which 
is a downward spike (visible on this isotope plot) that took place 55.8 million years 
ago. Up until the Industrial Revolution, it was the most rapid warming event on 
record. The warming was estimated to be between 5°C and 8°C, and to be caused by 
a massive release of carbon into the atmosphere. Indeed, stratigraphy indicates that 
carbon dioxide (CO2) was released in several geologically short (millennial-​scale) 
pulses. The PETM is thus analogous to today’s industrial epoch release, although 
during the PETM, the planet was nearly ice free and today’s release is faster still.

Although Figure 1.5A (middle) indicates symbolically that it is a factor 8.3 blowup 
of the most recent part of the top series, this is not exactly true because the data are 
from different cores. It does, however, indicate quite well the type of variation that 
would be expected in the top series had higher resolutions been available.

The bottom series35 in Figure 1.5A is a further blowup of a factor of 5.8. It uses 
2,560 data points from twelve benthic and five planktic δ18O records over the 
Quaternary, mostly from high northern latitudes.36 The Quaternary is the recent 
geological period during which (as a result of continental drift) the distribution of 
landmasses near the poles allowed for the buildup of ice sheets. A particularity of this 
current geological era is that it alternates between glacial and interglacial (cold and 
warm, large and small ice caps) periods.

The series has been somewhat smoothed at its smallest scales (this is obvious when 
it is compared to Fig.  1.5B at an even higher resolution), and this makes its rough 
oscillations a little more visible. Indeed, this and the blowup at the top of Figure 
1.5B are the only series for which some obvious regularity exists. It is associated with 
astronomical forcings—​the “Milanković cycles,” named after Serbian geophysicist 
and astronomer Milutin Milanković (1879–​1958), who first proposed them in the 
1930s. Without sophisticated analyses, we can see with the naked eye that the most 
recent 800,000 years or so (in the ellipse in Fig. 1.5, top) have roughly 100,000-​year 
oscillations, whereas the older part of the series has close to 41,000-​year oscillations. 
The latter period is the same as that of small variations in the obliquity (tilt) of Earth’s 
rotational axis, which varies from 22.1° to 24.5° of tilt every 41,000 years. The former is 
close to a small-​amplitude 95,000-​year periodic variation in the eccentricity (ellipticity) 
of Earth’s orbit around the sun. It is still not clear why the timing of the recent eight 
Ice Ages seem to be the result of this small variation, rather than either of the much 
stronger 41,000-​year obliquity or the 413,000-​year eccentricity cycles (see Box 5.4).

Zooming in further by factor of 3.2 (Fig. 1.5B, top), we see the longest ice core 
proxy temperature:  the EPICA (European Project for Ice Coring in Antarctica) 
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16	 Weather, Macroweather, and the Climate

Antarctic core determined using a deuterium-​based paleotemperature.37 Deuterium 
is a heavy isotope of hydrogen (with a proton and neutron in the atomic nucleus); 
deuterated water is heavier than the much more abundant light water and, as a 
consequence, it evaporates less easily. Not only is snow enriched in normal water, the 
amount of enrichment increases with temperature, allowing us to infer roughly the 
temperature from deuterium measurements.

From the series in Figure 1.5B, we note the loss in resolution (the apparent 
increase in smoothness) of the curve as we move into the past (to the right); it is an 
artifact of the compression of the bottom (older) ice in the column and subsequent 
diffusion of the signal. Clearly, the neat classification of the series into eight glacial and 
interglacial epochs (indicated by the braces; Fig. 1.5B, top) is a somewhat subjective 
simplification of the true variability. Up to at least periods of ~100,000  years, we 
see that the temperature seems to “wander” (e.g., as we consider the change in 
temperature for increasingly long time periods, the temperature changes more and 
more). At the same time, we can see that the overall maximum amplitude of the 
temperature changes (at least at this polar latitude) is about 10 to 12°C, although 
“typical” 100,000-​year variations are closer to ±3°C (see Chapter 5).

A further blowup of a factor of 8.8 takes us to the middle series in Figure 1.5B, 
from a high-​resolution GRIP (Greenland Ice Core Project; from Summit, Greenland) 
core. The series has more than 17,000 points (roughly every five years) and clearly 
shows that the variability during the past 91,000 years was far from smooth. One can 
also note a number of narrow spikes, some of which are associated with “Dansgaard–​
Oeschger” events in which temperatures can vary by nearly as much as the glacial–​
interglacial difference, but over time periods as short as fifty years. The mere 
existence of these still poorly understood events underscores the extreme variability 
of the atmosphere, even at a fixed timescale. In Chapter 5, we consider whether these 
are examples of “tipping points” or, rather, “black swans.” q

The current interglacial period is at the far left of the GRIP series, and an ellipse 
indicates the most recent 12,000-​year period. This is the Holocene, the current 
warm interglacial period in which civilization arose. A  blowup by a factor of 91 of 
the GRIP series is displayed in the bottom series of Figure 1.5B, showing the most 
recent millennium. From now on, the direction of time is in the usual left-​to-​right 
direction. This Last Millennium series is an example of a multiproxy temperature 
“reconstruction”38 (Box 5.3). The series is at annual resolution and it uses data from a 
wide northern hemisphere geographical distribution, but also from a variety of different 
paleoindicators (hence the prefix “multi”). Paleoindicators include data from varves 
(lake sediments), ice cores, dendrochronology (tree rings), and pollen, among others. 
At around the year 1600, we notice a cooler period—​the “little Ice Age.” To the right (the 
circle), we notice the industrial epoch and the phenomenon of global warming.

The zoom sequence just discussed is for temperature proxies, and we have seen that 
there are many complex issues of interpretation and calibration. The different series 
are from different locations and often have highly uneven resolutions and sampling 

q Naseem Taleb introduced the term “black swan events.” Black swans are metaphors for the im-
possible. Black swans are discussed in Box 3.1.See Taleb, N. N. The Black Swan: The Impact of the Highly 
Improbable. (Random House, 2010).
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intervals. A  basic problem faced by all temperature proxies is that, over time, the 
basic isotopic signal diffuses—​gets smeared out—​so that the resolution necessarily 
decreases. The EPICA temperature proxy series, for example, has 3,300 points over 
the last 100,000 years, but only 137 from 700,000 to 800,000 before present.

To make the zoom simpler to interpret, we can take advantage of a different 
proxy: estimates of the mass of dust particles deposited per area per unit time, also 
called the “dust flux.” Dust particles are big enough that they don’t diffuse significantly, 
so their resolution can be high even in highly compressed ancient layers of ice. In 
Figure 1.5C, we note dust data from the same EPICA core but at 1-​cm resolution 
(every centimeter for 3 km: a total of 316,000 data points). To my knowledge, this 
is the longest single climate data series analyzed to date. We are able to zoom out by 
a factor of more than 1,000 (upper left to lower right in Fig. 1.5C) with few missing 
data points. The drawback of the dust flux is that, although it is well measured, its 
interpretation in terms of the climate state is currently not very clear. It depends, 
for example, on prevalent wind direction and volcanic eruptions. Although the dust 
flux shows a fairly strong periodicity of about 100,000 years (corresponding to the 
glacial–​interglacial transitions), we clearly see that the strong variability continues at 
all observed scales.
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Figure 1.5  (A) δ18O from assemblies of cores from ocean sediments of benthic 
organisms, as discussed in the text. The resolutions (here, the time intervals between 
successive measurements) are variable, but on average are about 200,000 years (top), 
4,000 years (middle), and 1,000 years (bottom). Large values correspond to colder 
temperatures and vice versa. The ellipses, arrows, and numbers indicate the parts of the 
time axis as well as the zoom factor needed to go from one series to the next. This figure 
continues in (B). Myr BP, million years before present.39
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(B) The top series is the temperature anomaly from the EPICA (European Project for Ice Coring 
in Antarctica) Antarctic core using deuterium-​based paleotemperatures. The anomalies are 
measured in degrees Celsius. The resolution of the top varies from less than one hundred years 
(recent data) to about 1,000 years (oldest). In the middle series, it is (a nearly constant) five 
years; in the bottom series, it is one year. This figure is continued in (D).40 (C) Zooming out of the 
Holocene (upper left) with the longest (nearly) complete atmospheric series: 3.2 km of dust fluxes 
at 1-​cm resolution from the Antarctica (EPICA) ice core—​the same core that was used for the 
paleotemperatures in (B, top). The paleotemperature series rapidly loses its resolution with depth; 
in contrast, the dust flux maintains its high resolution throughout the entire 800,000-​year-​long 
core). I zoom out by factors of 2 in depth (the first few are shown by ellipses and arrows).41 After 
each zoom, the resolution is degraded by the same factor (2) to maintain 290 points at all times. 
We then normalize the result by the average value.42. All the series start at 373 years before present 
(BP), and the numbers indicate the number of years that the series covers. For example, the upper 
left curve covers the period from 373 to 442 BP (moving from left to right).43 (D) The top series 
represents the longest available, instrumentally based global temperature estimates (monthly, land 
only, 3,129 values) for 1753 to 2013. The white line in the middle of the zig-​zagging black line (top) is 
the annual average temperature. All temperatures are measured in degrees Celsius. (Middle) The 
temperature over Montreal at an altitude of about 3 km as determined by the Twentieth-​Century 
Reanalysis (20CR; a data–​model hybrid); the resolution is every six hours from 1871 to 2008. 
We mainly see the annual cycle. (Bottom) The same as the middle series, but with the annual 
cycle removed, displaying the larger residual variability. Also shown for reference is the average 
anthropogenic warming trend over the period.44 (E) The upper left is the same as the lower series 
in (D). We successively take the left half of the series and blow it up by a factor of approximately 
2, retaining 720 points at each step until we get to the six-​hour-​resolution series (bottom left). The 
total length of each series is indicated in red. The bottom right series is from Montreal, but from 
a millimeter-​size thermistor on the roof of the McGill University physics building at 0.067-​second 
resolution. The temperature scale is the same for all series except for the lower right, where it 
has been reduced by a factor of 10. If higher resolution data were available, the variability would 
continue for at least another two orders of magnitude to millisecond scales (see Fig. 1.3 for the 
wind).45
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Figure 1.5  Continued

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   19 29-Dec-18   8:14:15 PM



20	 Weather, Macroweather, and the Climate

x2

x270 days 35 days

8.75 days

2 days

12 hours

0.067 sx 324000

17.5 days

4.25 days

10
(E)

10

10

10

10
1 day

6 hours

100 200 300 400 500 600 700

100 200 300 400 500 600 700

100 200 300 400 500 600 700

100

Te
m

pe
ra

tu
re

 (°
C

)

200 300 400 500 600 700

100 200 300 400 500 600 700

100 200 300 400 500 600 700

100 200 300 400 500 600 700

100 200 300 400 500 600 700

100 200 300 400 500 600 700

100 200 300 400 500 600 700

–10

–10

–10

–10

–10

10

10

10

10

–10

–10

–10

–10

1

–1

1.2  Zooming in time: The age of Earth to milliseconds
1.2.1  Paleoindicators

Variability ranging from milliseconds to billions of years and from millimeters to 
the size of Earth is difficult even to perceive, let alone to analyze and understand. 
Before returning to sizes, let us take a voyage through scales in time. For the vo-
yage, we are fortunate that, at least since the beginning of the Phanerozoic, we 
have useful “paleo” (i.e., proxy, surrogate) temperature data. The Phanerozoic eon 
is the current geological period in which abundant animal life has existed. It goes 
back 550 million years to the time when diverse hard-​shelled marine animals first 
appeared.

Box 1.2 details a series of temperature and paleotemperature data sets that col-
lectively span the Phanerozoic, with resolutions varying from about 200,000 years 
to (Fig. 1.5A, top) down to one year (Fig. 1.5B, bottom). Also shown (Fig. 1.5C) is 
what is probably the longest single atmospheric series—​with 300,000 points—​
from dust accumulated in Antarctic ice cores. Figure 1.5C shows the series at 
eleven different resolutions, each differing by a factor of 2, clearly demonstrating 
the high variability at each octave in resolution. The first set (Fig. 1.5A) is benthic, 
derived from ocean sediments; the second set (Fig. 1.5B) is from ice cores, with 
the bottom one (at one-​year resolution) being a “multiproxy” combination of ice 
cores, tree rings, lake sediments, pollen, and other paleoindicators. As explained 
in Box 1.2, the interpretation of the benthic series is somewhat indirect because 

Figure 1.5  Continued
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the signal (oxygen isotope ratios) depends on both the temperature of the water 
and the amount of water stored in ice sheets (which itself depends on the temper-
ature, but also on geology, especially continental drift). Nevertheless, it is clear 
there is high variability at all observed scales, and the only hint of cyclic regularity 
is in the bottom series of Figure 1.5A, corresponding to an astronomical cycle (the 
obliquity, which goes through a cycle every 41,000 years; Box 5.4). The interpre-
tation of the ice core isotope records in terms of past temperatures (Fig. 1.5B, top 
two series) is more straightforward, although note the apparent smoothing of the 
temperature variations in the more ancient parts of the EPICA series (top). This 
is an artifact resulting from molecular diffusion in the highly compacted bottom 
of the 3.2-​km ice column from which the data were taken. As far as we can tell, 
the real temperature signal has high variability over the entire range. We return 
to examine quantitative statistical characterizations of the variability later in this 
chapter. Also discussed in Box 1.2 is a remarkable paleodata set spanning the past 
800,000 years at near-​annual resolution. Unfortunately, it is for the flux of dust, 
which is not a temperature proxy, but a more complex-​to-​interpret indicator of 
the climate state that—​among other factors—​is affected by humidity and the di-
rection of the dominant winds. Nevertheless, it clearly shows the high variability 
at all observed scales.

1.2.2  Instrumental temperatures

We finally come to real instrumentally based series. Figure 1.5D (top) shows 
3,129 monthly values (from 1753–​2013), but only over land.46 Because the ther-
mometer was only invented in 1638, even by 1753 (when this series starts), 
there were few recorded thermometer readings, and they were concentrated 
in Europe. This relative lack of data explains the amplitude of the tempera-
ture swings to the left of the graph that are much wider than those at the more 
modern right part of the series, for which many more measurements are avail-
able, giving a better estimate of the global-​scale average. To minimize this ef-
fect, a running average at an annual resolution curve is also shown. This series 
covers the period since the Industrial Revolution, which is increasingly known 
as the “Anthropocene,”r the geological epoch strongly influenced by humans. 
Following the curve, we see the systematic rise since roughly the end of the 
nineteenth centurys (we return to this in Chapter  6). Because the land has 

r The term “Anthropocene” denotes the geological era that has been strongly marked by our spe-
cies. The term includes and transcends the duration of anthropogenic climate change. Although it is 
now commonly in use, technically it is a geological term. In a million years, our ancestors will find the 
Anthropocene clearly delineated by a discontinuity in geological strata. The term is currently waiting 
for official approval by the International Union of Geological Sciences. Although humans started 
changing their environment significantly at least since the development of agriculture, by far the most 
important changes have been since the Industrial Revolution, so that—​in this book—​the two terms are 
used interchangeably.

s As far as the human impact on the atmosphere is concerned, the beginning of the Anthropocene 
can be dated with some precision. It is about the year 1750 (see Fig. 6.4A).
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22	 Weather, Macroweather, and the Climate

warmed more than the ocean, in this land-​only series, the magnitude of the 
warming is a little greater than the global average.

The middle series in Figure 1.5D, starting in 1871, is from a localized region 
around Montreal, Quebec, at 2° spatial resolution (about 200 km), averaged over 
six hours and at a pressure level of 700 mbars (~70% of surface pressure, at about 
3 km in altitude). Because there were no thermometer records from this altitude, 
the temperatures were inferred by using surface pressure data, monthly sea surface 
temperature (SST) data, and a meteorological model. This type of data–​model hy-
brid is called a “reanalysis.” This series is part of the Twentieth-​Century Reanalysis 
(20CR).47 For the purposes of this illustration, it has the advantage of being at a 
well-​defined resolution in space and time, and it has no missing data.

In this single series (Fig.  1.5D, middle and bottom), there were more than 
200,000 values, so we cannot display them usefully all at once; therefore, we av-
erage them and display 720 points only, so that the resolution displayed in the 
middle and bottom series of Figure 1.5D is about three months. We return to this 
momentarily. The raw data (Fig. 1.5D, middle series) are totally dominated by the 
annual cycle, which has an amplitude of about ±10°C. Because the annual cycle 
is very regular, to see the underlying natural variability, we remove it, leaving the 
“anomalies”48; the bottom series shows the result. We see that the amplitude of the 
three-​month averaged anomalies is typically about ±2°C. Also shown for com-
parison is the estimated total change in the globally averaged temperature since 
1880: 0.85°C.t We can see that, even after removing the large annual cycle, it is very 
hard to detect such a small change in a local temperature series. To determine the 
anthropogenic signal properly, we need to reduce the local variations (noise) by 
averaging over large areas—​preferably over the entire globe.

Having removed the annual cycle to leave the anomalies, we can follow Figure 
1.5C and make a series of blowups at regular intervals to be able to discern any 
changes in appearance systematically. Figure 1.5E shows the result of successive 
zooms by taking the left half of the series and blowing them up by a factor of about 
2, retaining 720 points at each step, until we get to the six-​hour resolution series 
(bottom left).u The bottom right series in Figure 1.5E is also from Montreal, but 
from a millimeter-​size thermistor on the roof of the McGill University physics 

t We also show for reference an estimate of the amplitude of the anthropogenic change for the global 
change since 1880. It is ~0.85°C [close to the IPCC’s Assessment Report 4 (AR4) 2013 estimate; today, 
it is estimated to be 1°C; see Box 5.1 and Chapter 6]. See Lovejoy, S. Scaling fluctuation analysis and 
statistical hypothesis testing of anthropogenic warming. Climate Dynam. 42, 2339–​2351 (2014). For the 
land only (top series), the estimate is about 1.5K. See Moll, R., Cameron, R. H., & Schussler, M. Vortices 
in simulations of solar surface convection. A&A 533, A126–​A140 (2011). Moll, R., Cameron, R. H., & 
Schussler, M. Vortices, shocks and heating in the solar atmosphere: Effect of a magnetic field. A&A 541, 
A68–​A80 (2012). Twain, M. English as She Is Taught: Genuine Answers to Examination Questions in 
Our Public Schools. Collected by Caroline B. Le Row (Cassell & Co., Ltd. 1887). Lovejoy, S. & Lambert, 
F. High resolution EPICA ice core dust fluxes: Intermittency, extremes and Holocene stability. Climate 
Past (submitted, August 2018). Rohde, R., Muller, R.  A., Jacobsen, R., Muller, E., Perlmutter, S., 
Rosenfeld, A., Wurtele, J., Groom, D., & Wickham, C. A new estimate of the average earth surface land 
temperature spanning 1753 to 2011. Geoinfor. Geostat. An Overview 1 (1), 1–​7 (2013).

u The diurnal cycle was removed.
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building. The data were taken at 0.067-​second resolution (i.e., fifteen times per 
second, at a resolution of a factor of 324,000 times higher). The temperature scale 
is the same for all the series except for the lower right. If higher resolution data 
were available, the variability would continue for at least another factor of 100 (as 
in Fig. 1.3, for the wind). To see the signature of the dissipation scale caused by 
molecular friction—​“viscosity”—​one would have to take data about 10,000 times 
a second (requiring extremely small, delicate devices!).

Starting at the lower right in Figure 1.5E, we see that—​as for the EPICA series 
(Fig. 1.5A, top row)—​the temperature appears to wander randomly, with temper-
ature differences tending to grow with longer time intervals. This characteristic is 
still apparent at the next six-​hour resolution (lower left)—​at least for intervals as 
long as 10% to 20% of the series length (i.e., up to ten to twenty days). As we move 
upward to longer and longer resolutions to the series-​indicated sixteen-​day resolu-
tion, which is 34.5 years long, we may notice that the overall variation of the series 
doesn’t change much (i.e., the rough range between the maximum and minimum 
is nearly independent of the resolution). Also notice that the “wandering” char-
acteristic is gradually lost and that, by the time we reach a sixteen-​day resolution, 
fluctuations are tending to cancel in a fairly systematic manner. A consequence is 
that as we move to even lower resolutions (the upper two series in Fig. 1.5E), the 
amplitude of the fluctuations starts to decrease systematically; we appear to be 
converging slowly to a well-​defined climate state.

1.3  Zooming in space: From the size of the planet and from the 
top to the bottom

1.3.1  Horizontal

Although Figure 1.1 covered visually pretty much the full range of spatial scales, it 
compared smoke (0.1 mm–​1 m), visible cloud imagery (1 m–​10 km), and infrared 
emissions (4 km–​20,000 km). To allow for quantitative comparisons across spa-
tial scales, Figure 1.6 (top) shows an aircraft transect (at about 12 km in altitude) 
of the temperature at 280-​m resolution with 8,192 points, over nearly 3,000 km. 
The transect already displays variability over a range of scale of a factor of nearly 
10,000, but its variability is much more extreme than appears at first sight. To 
bring out this surprisingv but hidden feature, Figure 1.6 (bottom) also shows a 
“spike plot” of the absolute changes in temperature from one 280-​m segment to 
the next (for more spike plots, see Fig. 5.2). The series of changes appear to be a 
hierarchy of spikes, with some being quite extreme; this is an example of turbulent 
“intermittency.” To quantify this, we can normalize the changes by their “typical” 
value: one standard deviation.49 When this is done, Figure 1.6 shows that the ex-
treme temperature change is nearly seventeen times greater. If the changes were 

v It isn’t the spikes themselves that are surprising; rather, it is their occasional, unexpectedly huge 
amplitudes.
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24	 Weather, Macroweather, and the Climate

from the familiar “bell curvew” distribution of errors, then the probability of such 
an event would be one in 1086 (a one followed by eighty-​six zeroes)—​so infinitesi-
mally small as to be all but impossible. These spikes, with their occasional extreme 
values, are thus so far outside the realm of the expected (here, the bell curve), that 
they are examples of black swan events (discussed in Box 3.1). Further zooms into 
aircraft trajectories (including wind and aircraft altitude) are discussed in Box 4.1.

Temperature (°C)–49

–50

–51

–52

–53

500

G
ra

di
en

t

1,000 1,500 2,000

Distance (km)

16.7σ

1 σ

Figure 1.6  (Top) The first 8,192 points of the temperature series measured by a Gulfstream 
4 flight over the Pacific Ocean at 196 mb and at 1-​second resolution, corresponding to a 
spatial resolution of 280 m. Because the aircraft speed is much greater than the wind, this 
can be considered a spatial transect. (Bottom) The change in temperature (gradient) from 
one measurement to the next normalized by dividing by the typical change (the standard 
deviation).50

1.3.2  Vertical

We have seen evidence that the atmosphere displays extreme variability over wide 
ranges of scale in time and in the horizontal direction in space, but what about the 
vertical? It turns out that detailed (high-​resolution) data in the vertical are very 
hard to obtain. For instance, the main source of weather data at different altitudes 
is from radiosondes, which are balloons that are still launched every twelve hours 
from several hundred locations globally. They measure wind, temperature, hu-
midity, and pressure. But, they have low resolutions (they average over layers 

w Gaussian distribution.
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Zooming through scales by the billion	 25

100–​200 m thick) and have interpretation problems resulting, for example, from 
instruments swinging under the balloon.

Instead of lifting instruments upward with balloons, dramatically improved ver-
tical measurements can be obtained by dropping them from aircraft—​otherwise 
known as dropsondes. Dropsondes have small parachutes and fall at 10 m/​s or so. 
Dropped from 10-​ to 12-​km altitudes, and acquiring data every half a second, they 
each yield more than 1,000 measurements of the main atmospheric variables—​
wind, temperature, pressure, and humidity—​corresponding to measurements 
taken roughly every 5 m in the vertical. The only drawback is that they cost sev-
eral thousand dollars apiece . . . and they might hit people! In practice, they are 
dropped over oceans and are lost.

Nevertheless, experimental campaigns involving hundreds of dropsondes 
have revolutionary implications for our understanding of the atmosphere’s 
vertical structure, which is described in more detail in Chapter  3. For the 
moment, let’s focus our attention on the visual appearance of a few profiles. 
To bring out their unusual features clearly, I  present them in the same way 
as the aircraft transect in Figure 1.6. I  took the absolute differences. Figure 
1.7 shows eight variables of fundamental importance to the atmosphere’s dy-
namics: the horizontal wind speed (v), temperature (T), humidity (q), pressure 
(p), logarithm of the potential temperature (θ), and of the equivalent potential 
temperaturex (θE), density of the air (ρ), and vertical wind (w). Only v, T, q, p, 
and w are measured directly; the other quantities are derived from them using 
theoretical relationships. Figure 1.7A shows the overall profiles of the absolute 
changes presented in the usual manner, with the vertical coordinate in the ver-
tical direction on the plot. The actual distance between the raw points where 
the data were taken varies somewhat because the sonde doesn’t fall at a com-
pletely constant rate and, in addition, there were numerous data outages. For 
these reasons, two sondes were dropped 0.3 second apart.y Beyond the gener-
ally high level of intermittency (“spikiness”), one is immediately struck by a 
single enormous spike that occurs at near 600 m in altitude in the humidity (q) 
and (derived) equivalent potential temperature (θE) series. Indeed, if it weren’t 
for the fact that both sondes agree almost perfectly about the spike, it would 
be easy to dismiss this as a data glitch. A blowup (Fig. 1.7B) shows this feature 
quite clearly.

x These are thermodynamic functions depending on the entropy per unit mass for dry air and wet 
air, respectively.

y Corresponding to a separation of about 100 m.
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Figure 1.7  (A) Profiles for the lower 10 km of the atmosphere from two sondes launched 
0.3 second apart over the Pacific Ocean in the US National Oceanic and Atmospheric 
Administration’s Pacific Storm 2004 experiment. The horizontal axis shows the absolute 
normalized changes of the measured and derived quantities; the vertical is the altitude (z). 
(B) A blowup of (A) by a factor of 10, from 100 m to 1 km.51

Figures  1.6 and 1.7 show that the atmosphere is highly variable—​indeed, 
“spiky”—​intermittent over huge ranges of scale in both the horizontal and ver-
tical directions. As a result of gravity, the atmosphere is stratified so that one does 
not expect that transects and profiles should look the same. Indeed, the visual 
appearances of temperature changes in Figures  1.6 and 1.7 are different. To as-
sess the stratification directly, it is best to study vertical sections, which requires 
remote sensing. The data with the greatest range of scales covered—​more than 
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1,000 in both the vertical and the horizontal—​are from airborne lidars.z A lidar is 
a laser that sends short pulses of light (in Figure. 1.8, these are 3 m in length) and 
then—​like a radar—​it measures the distance of the reflection by the time it takes 
for the pulse to return.

1 
km

40 km

100 km

5 
km

Figure 1.8  (Bottom) A vertical section of laser backscatter from aerosols (smog particles) 
taken by an airborne lidar (laser) flying at a 4.5-​km altitude (indicated as a horizontal line 
at that level) over British Columbia near Vancouver (the topography is shown in black; the 
lidar shoots two beams, one up and one down). The resolution is 3 m in the vertical and 
96 m in the horizontal. This view is at a fairly coarse resolution, so we see mostly a layered 
structure. (Top) The black box at the lower left is blown up in the top of the figure, revealing 
the full resolution. We can now start to discern vertically aligned and roundish structures. 
The aspect ratio is about 40:1.52

Figure 1.8 shows another example, this time from an airborne lidar that detects 
aerosol particles (essentially from smog, in this case) and quantifies their back-
scatter, which is related to their concentration in the air. In the low-​resolution 
image (Fig. 1.8, bottom), we see mostly fairly stratified (flat) layers of smog, but 
when we zoom into the section in the box (top), we start to see small roundish 
or even vertically aligned structures, some of which are even wavelike. By 
comparing the shapes before and after the zoom, we see a systematic change in the 
morphologies, in this case from flat to roundish to vertically oriented. As quanti-
tative analysis shows (see Chapter 3), this transformation involves no character-
istic scale. It turns out that, to understand it, rather than imposing a preconceived 

z Analogous to radar, lidar is an acronym for LIght Detection And Ranging.
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28	 Weather, Macroweather, and the Climate

notion of size or scale, we need instead to consider the notion of scale itself to be 
an emergent turbulent property. This is analogous to Einstein’s theory of general 
relativity in which the distribution of energy and mass determines the notion of 
distance (the space–​time “metric”). In the atmosphere, it means we must let the 
turbulent dynamics determine the appropriate notion of size.53 A consequence 
is a revolutionary new theory of atmospheric dynamics:  the 23/​9 dimensional 
(D) model discussed in Chapter 3.

1.4  The unfinished nonlinear revolution: Junk your old 
equations and look for guidance in clouds . . .

 1.4.1  The development of numerical models

 Althoughaa it can be traced back to the 1920s (or earlier, see Chapter  4), the 
modern quantitative era of weather science really got underway during the 1950s 
with the development of computers.bb Figure 1.9 shows the historical development 
of numerical models of the atmosphere as quantified by their size—​the number 
of points they use in the horizontal and vertical directions. Today, typical models 
have more than 1,000 grid points in each horizontal direction,54 and about one 
hundred in the vertical (Fig. 1.9).cc Over this time, computing power increased by 
a factor of a quadrillion, and the efficiency of numerical algorithms increased by a 
factor of perhaps another million.55

aa  The second part of the title is a rhapsodic quote celebrating the nonlinear revolution. See 
Cvitanovic, P. Introduction. In: Universality in Chaos (ed. P. Cvitanovic), pp. 3–​34; quote, p. 4. (Adam 
Hilger, 1984).

bb Indeed, in the early days (1948), mathematician John von Neumann (1903–​1957) promoted the 
development of computers specifically to forecast the weather. From the very beginning, computer 
technology and weather forecasting have been intimately linked, with each stimulating the develop-
ment of the other.

cc Because of atmospheric stratification, the models use systematically fewer points in the vertical. 
Indeed, as Figure 1.9 shows, the historical development of the ratio of vertical to horizontal grid points 
even follows the theoretical expectations of the 23/​9 D model!
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30	 Weather, Macroweather, and the Climate

Simultaneous with the revolution in computation was a revolution in 
observations, especially from satellites and radar. Today, weather forecasting has 
skill up to several days in advance. It is starting to approach the theoretical limit to 
predictability—​the time it takes for tiny initial errors to be amplified catastrophi-
cally, destroying the forecast.dd

The quantitative era of climate science began at around the same time, during 
the 1960s and ʼ70s, with the extraction and analysis of the first long ice and ocean 
cores, with the first satellite imagery, and with the development of GCMs—​which, 
when run far enough into the future (and when coupled with ocean models, and 
later cryosphere and carbon cycle models), can be averaged to characterize ex-
isting or future climates (see Chapters 5, 6, and 7). At first, the notion of climate 
change itself was poorly discerned, so that, notably, throughout the 1960s, there 
was widespread scientific skepticism of anthropogenic warming.ee However, the 
development of GCMs changed everything. One of the first large-​scale numer-
ical experiments was to investigate the effects of greenhouse gases.56 By 1979, the 
results were sufficiently convincing that, in a report to the US National Academy 
of Science,57 the effect of a CO2 doubling was estimated as 1.5 to 4.5°C—​a range 
that has remained unchanged ever since58 (as discussed later). By the time the ev-
idence for the warming was unequivocal (the 1980s), most climate scientists were 
already convinced of its reality.ff

The large-​scale development of numerical weather and climate models 
represents an essentially brute-​force approach to atmospheric dynamics anal-
ogous to the molecular dynamics approach to handling large numbers of 
molecules. At first, the models were so small they were not expected to be realistic; 
they were viewed primarily as tools for understanding the dynamics. However, 
over time, as they became bigger and more realistic, the modelers increasingly 
abdicated attempts at understanding, often becoming satisfied with representing 
the atmosphere’s past and current state numerically or with forecasting its future 
development.

1.4.2  The nonlinear backlash

In parallel with the development of numerical models, theoretical attempts to 
understand the atmosphere as a complex dynamical system had also been devel-
oping. By the 1970s and ʼ80s, these attempts led to a kind of backlash—​a revolu-
tion in nonlinear science with new nonlinear paradigms developed solely for the 

dd The deterministic limit, resulting from the butterfly effect (see Chapter 7).
ee At the time, the theory was seen as simplistic, and many found it repugnant to think that humans 

could change something as immutable as the climate. For a historical context, see Sherwood, S. Science 
controversies past and present. Physics Today October, 39–​44 (2011). For a history, see Weart, S. R. The 
Discovery of Global Warming. (Harvard University Press, 2008).

ff There is an urban legend to the effect that, during the 1970s, the scientific community believed 
there was a danger of global cooling. This was never more than a fringe viewpoint, which was amplified 
by the media.
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Zooming through scales by the billion	 31

purpose of understanding turbulence, the atmosphere, and other strongly non-
linear systems. A nonlinear process is one in which a small cause can be amplified 
by feedback to yield a potentially enormous effect. It is not hard to believe that the 
atmosphere is highly nonlinear and that this property is essential to understanding 
its variability. Indeed, a standard way of quantifying nonlinear systems is to take 
the ratio of the nonlinear part of the system to the linear part. In the atmosphere, 
this nonlinear-​to-​linear ratio is called the Reynolds number, after nineteenth-​
century fluid mechanist Osborne Reynolds (1842–​1912). It is typically about a tril-
lion, so that standard (linear) mathematical techniques are nearly useless.59

It was hardly an accident that nonlinear science was born thanks to a meteor-
ologist: Ed Lorenz (1917–​2008). In 1963, Lorenz published a seminal article with 
the innocuous-​sounding title “Deterministic Nonperiodic Flow,”60 in which he 
showed that a system with only three interacting components (his simple model 
of the atmosphere, the “flow”) could follow randomlike (“nonperiodic”) behavior, 
even though the rule governing its evolution was defined strictly with no room for 
chance (it was “deterministic”). The random appearance of his modeled flow was 
a symptom of the phenomenon of sensitive dependence on initial conditions in 
which tiny changes in the starting conditions are amplified and can lead to huge 
changes later on: the famous “butterfly effect” (see Chapter 7).

Until Lorenz’s discovery of deterministic chaos,gg it was generally believed 
that typical real-​world systems with few interacting components—​such as the 
solar system, with the sun and each planet treated as a point—​behaved in a calm, 
smooth, regular manner: Newton’s “clockwork” universe. The discovery of deter-
ministic chaos showed that, on the contrary, complex randomlike behavior was 
the norm, not the exception (Box 1.1.hh

While these ideas were generating excitement throughout the sciences, Benoit 
Mandelbrot (1924–​2010) was investigating another aspect of the variability: fractals. 
The basic idea of fractals is scale invariance: that a small part of a system could in 
some way be similar to the whole. Indeed, by 1982, the fractal principle had al-
ready been applied to structures spanning the range from one to several thousand 
kilometers in scaleii and, by the mid 1980s, my colleague Daniel Schertzer and 
I had already proposed that scale invariance be used as the fundamental way of 
dividing atmospheric dynamics into qualitatively different regimes.61 Both of these 
avenues are explored extensively in this book. The resulting high-​level turbulent 
laws are illustrations of random “stochastic chaos”62 (Box 1.1). What the intervening 
decades have taught us is that both deterministic chaos such as NWPs and GCMs 

gg As discussed in Box 1.1, chaos is a much more general concept than this—​a fact that is often 
forgotten!

hh Ironically, it has since been shown that, in reality—​as a result of interactions among planets—​the 
solar system itself is chaotic, although it isn’t noticeable at periods less than tens of millions of years. 
See Laskar, J. Large-​scale chaos in the solar system. A&A 287, L9–​L12 (1994).

ii See Section 2.8 in this book. See also Lovejoy, S. Area perimeter relations for rain and cloud areas. 
Science 187, 1035–​1037 (1982). The basic idea actually goes back to Richardson, L. F. Atmospheric diffu-
sion shown on a distance-​neighbour graph. Proc. Roy. Soc. A110, 709–​737 (1926).
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32	 Weather, Macroweather, and the Climate

can coexist with stochastic chaos without contradiction (Fig. 1.3, bottom row), and 
that both can be used to describe, model, and forecast the atmosphere and climate.

So far, the scientific community has only sparsely assimilated the consequences 
of the nonlinear revolution. Although numerical models continue to grow in 
size and their skill for forecasting up to several days is uncontested, their brute-​
force approach has begun to reach a point of diminishing returns. On the one 
hand, during the past few years, NWP forecasts have shown only marginal 
improvements.63 On the other hand, although climate models have developed rap-
idly (notably by increasing their spatial resolutions and the number of physical 
processes they attempt to represent), they too have been reaching a limit. A single 
number illustrates this perhaps better than anything else: the estimated sensitivity 
of GCMs to a doubling of CO2 in the atmosphere. In 1979, based on early numerical 
experiments, the US National Academy of Sciences concluded that such doubling 
would lead to an increase in global temperature between 1.5°C and 4.5°C—​a very 
large range.jj In its latest (fifth) assessment report (AR5, 2013), the IPCC found 
exactly the same range. Indeed, with the minor variant in the AR4,64 every one 
of its reports iterated an identical range. The AR5 value was based primarily on 
thirty-​two different GCMs, and the range reflected a fundamental limitation of the 
GCM approach: Each GCM has its own climate and each is different from the real 
worldkk (see Chapters 5 and 7).

Although this numerical approach seems to be nearing its limit, the turbulent, 
stochastic chaos approach that has emerged from the past few decades is finally 
mature enough that it can make important contributions. It is needed to under-
stand wide-​range atmospheric variability properly, to reinstate the missing quad-
rillion, and to handle the new macroweather regime properly. It leads to improved 
applications in the form of better monthly, seasonal, annual, and decadal forecasts; 
and to longer term climate projections to 2050 and beyond (Chapter 7). The thesis 
of this book is that the nonlinear revolution is unfinished and, in the atmosphere—​
especially for weather and climate—​it must be taken to its logical conclusion by 
recognizing and exploiting the high-​level turbulent laws. By doing so, it promises 
to reunite the statistical and the deterministic strands of atmospheric science that 
have been divorced since the 1970s.ll

jj The range of 1.5 to 4.5°C for CO2 doubling goes back to 1979 to the National Academy of Sciences 
Committee on Anthropogenic Global Warming. The story of how this wide range was arrived at 
was later recounted by a famous participant, Syukuro Manabe. The committee had the results of two 
models: one that gave a sensitivity of 2°C and the other, 4°C. According to Manabe’s recollections, the 
committee chair, Jule Charney, “chose 0.5 °C as a not-​unreasonable margin of error, subtracted it from 
Manabe’s number, and added it to Hansen’s. Thus was born the 1.5 °C-​to-​4.5 °C range of likely climate 
sensitivity that has appeared in every greenhouse assessment” (p. 933). See Kerr, R. A. Three degrees of 
consensus. Science 305 (5686), 932–​934 (2004).

kk The scientific difficulty in evaluating the consequences of increasingly greenhouse gases—​and 
the main source of disagreement between the GCMs—​is how to estimate the amplifying effects of 
water vapor and clouds (see Box 6.1).

ll  In March 2018, in preparation for the centennial of the American Geophysical Union (AGU), 
section leaders were asked to predict the major changes they expected in their field over the coming 
century. My answer:
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 1.4.3  Complexity science

Before moving on, a word about complexity and complexity science. The at-
mosphere and climate system may be considered examples of “geocomplexity.”65 
Complexity science emerged as one strand of the nonlinear revolution, as an 
attempt to generate a series of general complexity mechanisms, models, and 
paradigms that might apply widely, including to biosystems (where many com-
plexity paradigms originated). An ambiguity arises because complexity itself 
may be somewhat subjective:  Is the wind trace (Fig.  1.3, top) simple or com-
plex?66 Although it certainly looks complicated, both the stochastic and de-
terministic models at the bottom of Figure 1.3 are based on simple rules so 
that, if these models are realistic, then Figure 1.3 is only apparently complex.67 
Indeed, the history of science is replete with examples of how apparently com-
plex systems turn out to be simple after they are theorized with the appropriate 
concepts. The turbulence approach to the atmosphere developed in these pages 
is indeed an attempt to make the apparently complex atmosphere as simple as 
possible.

But complexity science has more to it than just trying to find simple models 
for the apparently complex. It has also given rise to overarching theories of how 
our real, ordered cosmos actually evolved from the Big Bang through to the solar 
system to Earth, with its atmosphere and its biota, and even to the brain human. 
Eric Chiason, in his book Cosmic Complexity,68 has gone further in this direction 
than most. Interestingly, he chose a precise complexity metric, the energy rate den-
sity: ε. ε is the typical power (energy rate) per unit of mass necessary to maintain 
a complex system in a quasi-​steady state far from thermodynamic equilibrium. It 
turns out that ε is also the fundamental notion in classic turbulence theory, and we 
find that it that governs the horizontal weather and ocean dynamics up to plane-
tary scales (Chapter 4).69 Placing the atmosphere’s average ε value into Chiason’s 
scheme (Fig. 1.10) shows that it fits in reasonably well.

 “I expect that in one hundred years, geophysical modeling (including the ones that are currently 
fluid based) will have fully developed stochastic approaches that are complementary to our current 
deterministic ones.

Rather than attempting to account deterministically for all the “details,” the stochastic approaches 
will be based on the collective behavior of vast numbers of interacting components. They will ex-
ploit scale symmetries and, for fluid systems, they will be the descendants of classic approaches to 
turbulence.

This will be like molecular dynamics versus statistical mechanics: Both may be valid, and one uses 
one approach or the other depending on the application.

In particular, I expect that weather and climate predictions will be primarily stochastic.”
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Figure 1.10  The evolution of complex systems since the Big Bang as quantified by the 
energy rate density (ε, measured in watts per kilogram).70

1.5  An overview of this book

This book is about scale in both space and in time, and how its systematic study is 
revolutionizing the way we model and understand the atmosphere—​from small to 
big and fast to slow—​all the way from weather to climate to megaclimate. It’s about 
how we think about the atmosphere. It is an attempt to give you the fundamental 
information needed to understand what weather and climate really are, so you can 
fully understand the meaning of weather, of climate, of climate change. It focuses 
on developments during the past three decades, many of which I have been in-
volved in personally, often under the rubric of nonlinear geophysics. Nonlinear 
geophysics is the geoscience application and development of ideas spawned by the 
nonlinear revolution. It can be traced back to a series of workshops on nonlinear 
variability in geophysics (NVAG), the first of which was held at McGill University 
in 1986,71 and then on to the establishment of the nonlinear processes division at 
the European Geophysical Societymm (1989), the Nonlinear Processes in Geophysics 
journal (1994), and the nonlinear geophysics focus group at the AGU (1998). 
Nonlinear geoscience is highly interdisciplinary and is distinguished from other 
scientific specializations by its strong focus on the strongly nonlinear aspects of 
geosystems.

mm Since 2002, the European Geosciences Union.
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A few years ago, Daniel Schertzer and I wrote a lengthy technical review titled 
The Weather and Climate: Emergent Laws and Multifractal Cascades.72 Although 
the book you now hold in your hands is (hopefully) a widely accessible nontech-
nical distillation, it goes well beyond that review, extending its scope—​especially 
with regard to macroweather and the climate. The basic text is intended to be 
readable without special technical knowledge. However, for those who wish to 
learn more, there are numerous “boxes” that can either be read in sequence as part 
of the narrative, skipped, or read independently on their own. There are also nu-
merous footnotes and endnotes that give more information, with the latter being 
more technical.

The book is structured as follows:  In Chapter  2, I  discuss the two opposing 
ways of conceptualizing systems with variability over wide ranges:  scalebound 
and scaling. In Chapter 3, we examine a third, intermediate view based on a gen-
eralization of the notion of scale to anisotropic systems, which is necessary for 
answering the question: How big is a cloud? In Chapter 4, we look at the long 
saga of vindicating Richardson’s wide-​range scaling view of the atmosphere, and 
consequences for the temporal scaling up to the end of the weather regime. In 
Chapter  5, I  discuss macroweather, climate, and macro-​ and megaclimate. In 
Chapter 6, we see how humans have altered the atmosphere, by how much, and 
how we know what we know. In Chapter 7, I discuss predictability and its limits—​
both the (nearly familiar) deterministic butterfly effect as well as the lesser known 
stochastic predictability limits. I go on to describe how high-​level turbulent laws 
can be used to make predictions at monthly to decadal scales, and how scaling 
laws can be used to make predictions at monthly to decadal scales, and can help 
project the state of the atmosphere to the year 2050 or 2100.

Notes

1. This is essentially the same as the International Panel on Climate Change (IPCC) that 
states: “Climate in a narrow sense is usually defined as the ‘average weather,’ or more rigor-
ously, as the statistical description in terms of the mean and variability of relevant quantities 
over a period of time ranging from months to thousands or millions of years.” See IPCC. 
Glossary. In: The Fourth Assessment Report of the IPCC. (IPCC, 2007).

2. See Sachs, D., Lovejoy, S., & Schertzer, D. The multifractal scaling of cloud radiances 
from 1m to 1km. Fractals 10, 253–​265 (2002).

3. There exist somewhat artificial particle-​level “lattice–​gas cellular automaton” models 
that are used for the simulation of fluid flows, and these can reproduce vortices. See, for ex-
ample, Wolf-​Gladrow, D. A. Lattice–​Gas Cellular Automata and Lattice Boltzmann Models. 
(Springer, 2000).

4. Wedemeyer-​Böhm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., & de la Cruz 
Rodriguez, J. Magnetic tornadoes as energy channels into the solar corona. Nature 486, 
7404–​7408 (2012).

5. Moll, R., Cameron, R. H., & Schussler, M. Vortices in simulations of solar surface con-
vection. Astron. Astrophysics 533, A126–​A140 (2011).
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6. Thanks to M. Wilcek.
7. To make this point very clear, we could note that deterministic theories and models 

can be thought of as simply limiting special cases of stochastic ones in which all the 
probabilities reduce to certainties.

8. See Weierstrass, K. Presented to the Prussian Academy of Sciences, 1872.
9. Laplace, P. S. Théorie Analytique des Probabilités. Vol. 7. (Gauthier-​Villars, 1886). (orig-

inally published 1812).
10. Kolmogorov, A. N. Grundebegrisse der Wahrscheinlichkeitrechnung. (Springer, 1933). 

An English translation by N. Morrison appeared under the title Foundations of the Theory 
of Probability (Chelsea, New York) in 1950, with a second edition in 1956. For a history of 
the work, see Shafer, G., & Vovk, V. The sources of Kolmogorov’s Grundbegriffe. Stat. Sci. 
21 (1), 70–​98 (2006).

11. The probabilistic nature of quantum mechanics is a consequence of the “Born rule” 
for interpreting the modulus squared of the wave function as proportional to the proba-
bility (after Max Born, circa 1926).

12.  York, J.  & Li, T.  Y. Period three implies chaos. Amer. Math. Monthly 82, 985–​992 
(1975).

13. Such a state is usually considered to be the strongly nonlinear limit of incompressible 
hydrodynamic turbulence so that the atmosphere would be a stratified and compressible 
variant. It has been suggested that fully developed turbulence is a new state of matter akin 
to the familiar solid, liquid, and gaseous states. See Manneville P. Instabilities, Chaos and 
Turbulence, p. 642. 2nd ed. (Imperial College Press, 2010).

14. Feigenbaum, M. J. Quantitative universality for a class of nonlinear transformations. 
J. Stat. Phys. 19, 25 (1978).

15.  The development of nonlinear theory had been hampered by the fact that each 
distinct nonlinear system had its own quirks, properties, and behavior, each requiring 
specific—​often lengthy—​analysis. Universality meant that quite different detailed models 
shared the same basic “universal” behavior; therefore, it was only necessary to study broad 
“universality classes.” Because no model is a perfect fit to reality, without some kind of uni-
versality, nonlinear models could not be expected to be able to explain the real world or to 
be experimentally testable. Universality in itself was not a new idea. In probability theory, it 
explains the ubiquity of the bell curve (Gaussian probability distributions). The term univer-
sality gained currency in the 1960s and ʼ70s in the study of phase transitions.

16. Cvitanovic, P.  Introduction In: Universality in Chaos (ed. P. Cvitanovic), pp. 3–​34; 
quote, p. 4. (Adam Hilger, 1984).

17. Nicolis, C. & Nicolis, G. Is there a climate attractor? Nature 311, 529 (1984).
18. Osborne, A. R., & A. Provenzale. Finite correlation dimension for stochastic systems 

with power-​law spectra. Physica D 35, 357–​381 (1989).
19.  Lovejoy, S.  & Schertzer, D.  In:  ECO-​TEC:  Architecture of the In-​between (ed. 

A. Marras), pp. 80–​99. (Princeton Architectural Press, 1999).
20. Mathematically, these probability spaces are usually infinite dimensional.
21. Fortunately, atmospheric scientists are rarely concerned with philosophical purity. 

During the 1990s, despite the ambient deterministic worldview, they improved weather 
forecasts by introducing random numbers at the model grid scale to represent the dy-
namics of structures that were too small to be modeled explicitly. This was the origin of 
today’s hybrid deterministic–​stochastic ensemble forecasting systems. I predict that this is 
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only the first step; ultimately, these models will be replaced by pure stochastic forecasting 
systems.

22. Illustration by I. Tchigirinskaya; reproduced from Schertzer, D., & S. Lovejoy.Lecture 
Notes:  Resolution Dependence and Multifractals in Remote Sensing and Geographical 
Information Systems. McGill University, Montreal, June 10, 1996.

23. Bunge, M. Causality. (Dover, 1956).
24. The Kolmogorov law (see Chapter 4).
25. This is a typical value estimated with average energy fluxes (see Chapter 4).
26. Lovejoy, S. A voyage through scales, a missing quadrillion and why the climate is not 

what you expect. Climate Dynam. 44, 3187–​3210 (2015).
27. Twain, M. English as She Is Taught: Genuine Answers to Examination Questions in 

Our Public Schools, p. 29. Collected by Caroline B. Le Row. (Cassell & Co., Ltd., 1887).
28.  Huschke, R.  E. Glossary of Meteorology, p.  581. (American Meteorological 

Society, 1959).
29.  Committee on Radiative Forcing Effects on Climate, National Research Council. 

Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties, 
p. 12. (National Academies Press, 2005).

30. For a compact and nontechnical exposition, see Lovejoy, S. What is climate? EOS 94 
(1), 1–​2 (2013). The term macroweather replaces the slightly earlier cumbersome expression 
low-​frequency weather [Lovejoy, S. & Schertzer, D. Low frequency weather and the emer-
gence of the climate. In: Extreme Events and Natural Hazards: The Complexity Perspective 
(ed. A. S. Sharma, A. Bunde, D. N. Baker, & V. P. Dimri), pp. 231–​254. AGU monographs. 
(AGU, 2012).] Macroweather is the subject of Chapter 10 in Lovejoy, S. & Schertzer, D. The 
Weather and Climate:  Emergent Laws and Multifractal Cascades. (Cambridge University 
Press, 2013).

31. In the industrial epoch. In the preindustrial epoch, the timescale is longer and still 
poorly understood (see Chapter 5.

32. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Bruhn, F., Buhl, D., Carden, G., Diener, 
A., Ebneth, S., Goddris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O., & Strauss, H. 87Sr/​
86Sr, δ 18O and δ 13C evolution of Phanerozoic seawater. Chem. Geol. 161, 59–​88 (1999).

33. Shaviv, N.  J. & Veizer, J. Celestial driver of Phanerozoic climate? GSA Today July, 
4–​10 (2003).

34.  Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K.  Trends, rhythms, and 
aberrations in global climate 65 Ma to present. Science 292, 686–​693 (2001).

35. Huybers, P. Glacial variability over the last two million years: An extended depth-​
derived age model, continuous obliquity pacing, and the Pleistocene progression. Q. Sci. 
Rev. 26, 37–​55 (2007).

36. For this and the middle series in Figure 1.5A, a roughly 50% larger calibration con-
stant of –​6.5°C/​δ18O was used to take into account the greater high-​latitude variations.

37. Using either deuterium or 18O gives very similar results.
38. Moberg, A., Sonnechkin, D. M., Holmgren, K., Datsenko, N. M., & Karlén, W. Highly 

variable northern hemisphere temperatures reconstructed from low-​ and high-​resolution 
proxy data. Nature 433, 613–​617 (2005).

39.  Reproduced with permission from Lovejoy, S.  A  voyage through scales, a 
missing quadrillion and why the climate is not what you expect. Climate Dyn. 44, 
3187–​3210 (2015).
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40. Reproduced with permission from Lovejoy, S. A voyage through scales, a missing 
quadrillion and why the climate is not what you expect. Climate Dyn. 44, 3187–​3210 (2015).

41. The resolutions in years are thus not constant as a result of due to the compression of 
the ice with depth. They are given by the durations divided by 290: respectively, 0.24, 0.48, 
0.98, 2.02, 4.32, 10.0, 24.5, 54.1, 185, 434, and 2,710 years per point (upper left to lower right).

42. The means of the first eight are about the same; the means of the last three are about 
seven7 times greater larger than those of the last three (these are the ones that include large 
fractions—​or all—​of glacial-​–​interglacial cycles).

43.  Reproduced from Lovejoy, S., & Lambert, F.  High resolution EPICA ice core 
dust fluxes:  Intermittency, extremes and Holocene stability. Climate Past (submitted, 
August 2018).

44. Reproduced with permission from Lovejoy, S. A voyage through scales, a missing 
quadrillion and why the climate is not what you expect. Climate Dynam. 44, 3187–​3210 
(2015).

45. Reproduced with permission from Lovejoy, S. A voyage through scales, a missing 
quadrillion and why the climate is not what you expect. Climate Dynam. 44, 3187–​3210 
(2015).

46.  Rohde, R., Muller, R.  A., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., 
Wurtele, J., Groom, D., & Wickham, C.A new estimate of the average Earth surface land 
temperature spanning 1753 to 2011. Geoinfo. Geostat. 1, 1–​7 (2013).

47. Compo, G. P., et al. The twentieth century reanalysis project. Q. J. Roy. Meteorol. Soc. 
137, 1–​28, (2011).

48. Here we remove the annual cycle based on the entire record since 1871. The more 
usual practice is to remove it over the most recent thirty-​year climate-​normal period.

49. The square root of the average of the square of the difference between the value and 
the mean.

50. In Chapter 5, we see similar spike plots but we normalize instead by the mean ab-
solute change rather than by the standard deviation, which makes only a minor difference. 
Reproduced from Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws and 
Multifractal Cascades (Cambridge University Press, 2013).

51. Reproduced from Lovejoy, S., Tuck, A. F., Hovde, S. J., & Schertzer, D. The vertical 
cascade structure of the atmosphere and multifractal drop sonde outages. J. Geophys. Res. 
114, D07111 (2009), doi: 07110.01029/​02008JD010651.

52.  Reproduced from Lilley, M., Lovejoy, S., Strawbridge, K., & Schertzer, D.  23/​9 
Dimensional anisotropic scaling of passive admixtures using lidar aerosol data. Phys. Rev. E 
70, 036307-​036301-​036307 (2004).

53. With generalized scale invariance (discussed in Chapter 3), size is not a distance. In 
general, we define it without a metric.

54. Because Earth is spherical, usually they use special “Gaussian grids,” so things are not 
quite as simple. Nevertheless, typically each of the hundred or so vertical layers of a global 
model has a million or so points.

55.  Lynch, P.  The Emergence of Numerical Weather Prediction:  Richardson’s Dream. 
(Cambridge University Press, 2006).

56. Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the 
climate of a general circulation model. J. Atmos. Sci. 32, 3 (1975).
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57. Climate Research Board. Carbon Dioxide and Climate: A Scientific Assessment. (US 
National Academy of Science, 1979).

58. Identical to the IPCC AR3, 2002, range and the IPCC AR5, 2013, range. The latter 
qualifies this range as “high confidence.” The AR4 (2007) claimed the slightly reduced range 
of 2 to 4.5°C.

59. This has not prevented linear techniques from being used extensively for attempts at 
understanding atmospheric stability and waves. For a criticism and a scaling alternative, see 
Pinel, J. & Lovejoy, S. Atmospheric waves as scaling, turbulent phenomena. Atmos. Chem. 
Phys. 14, 3195–​3210 (2014).

60. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–​141 (1963).
61. Lovejoy, S. & Schertzer, D. Scale invariance in climatological temperatures and the 

local spectral plateau. Ann. Geophys. 4B, 401–​410 (1986).
62. Lovejoy, S. & Schertzer, D. Stochastic chaos and multifractal geophysics. In: Chaos, 

Fractals and Models (eds. F. M. Guindani & G. Salvadori), pp.  38–​52. (Italian University 
Press, 1998). Lovejoy, S.  & Schertzer, D.  Stochastic chaos, scale invariance, multifractals 
and our turbulent atmosphere. In: ECO-​TEC: Architecture of the In-​between (ed. Amerigo 
Marras), pp.  80–​99. (Storefront Book series, copublished with Princeton Architectural 
Press, 1999).

63. Stern, H. & Davidson, N. E. Trends in the skill of weather prediction at lead times of 
1–​14 days. Q. J. Roy. Meteorol. Soc. 141, 2726–​2736 (2015).

64. In 2007, the AR4 instead gave a range of 2 to 4.5°C.
65. The term was apparently first used as a title in a workshop in 2009. See Lovejoy, S., 

Agterberg, F., Carsteanu, A., Cheng, Q., Davidsen, J., Gaonac’h, H., Gupta, V., L’Heureux, 
I., Liu, W., Morris, S. W., Sharma, S., Shcherbakov, R., Tarquis, A., Turcotte, D., & Uritsky, 
V. Nonlinear geophysics: Why we need it. EOS 90 (48), 456–​457 (2009).

66.  Lovejoy, S., Schertzer, D., Allaire, V., Bourgeois, T., King, S., Pinel, J., & Stolle, 
J.  Atmospheric complexity or scale by scale simplicity? Geophys. Res. Lett. 36, L01801 
(2009), doi: 10.1029/​2008GL035863.

67.  One can define complexity mathematically by the number of bits of information 
needed to specify a process in a computer algorithm. On this basis, the bottom models are 
both very simple.

68. Chiason, E. J. Energy rate density as a complexity metric and evolutionary driver. 
Complexity 16, 27–​40 (2010).

69. In turbulence, it ε is viewed as the rate that energy flows from large structures to small 
ones, and it is usually given in the equivalent units of meters squared per cubic second. It 
also governs the oceans up to about one to two years, as well as the Martian atmosphere.

70. Adapted from Chiason, E. J. Energy rate density as a complexity metric and evolu-
tionary driver. Complexity 16, 27–​40 (2010).

71. The second was in Paris in 1988; the third in Corsica, France, in 1994; and the fourth 
in Roscoff, France, 1998. See Schertzer, D. & Lovejoy, S. EGS Richardson AGU Chapman 
NVAG3 conference:  Nonlinear VAriability in Geophysics:  Scaling and multifractal 
processes. Non. Proc. Geophysics 1, 77–​79 (1994). See also, Schertzer, D. & Lovejoy, S. Non-​
linear variability in geophysics: Scaling and Fractals. (Kluwer, 1991).

72. Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws and Multifractal 
Cascades. (Cambridge University Press, 2013).
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{ 2 }

 New worlds versus scaling: From van Leeuwenhoek 
to Mandelbrot

2.1  Scalebound thinking and the missing quadrillion

2.1.1  New worlds and spectral bumps

We just took a voyage through scales, noticing structures in cloud photographs 
and wiggles on graphs. Collectively, they spanned ranges of scale over factors of 
billions in space and billions of billions in time. We are immediately confronted 
with the question:  How can we conceptualize and model such fantastic 
variation?

Two extreme approaches have developed. For the moment, I  call the domi-
nant one the new worlds view, after Antoni van Leeuwenhoek (1632–​1723), who 
developed a powerful early microscope. The other is the self-​similar (scaling) 
view by Benoit Mandelbrot (1924–​2010), which I discuss in the next section. My 
own view—​scaling but with the notion of scale itself an emergent property—​is 
discussed in Chapter 3.

When van Leeuwenhoek peered through his microscope,a in his amazement he 
is said to have discovered a “new world in a drop of water”: “animalcules,” the first 
microorganisms1 (Fig. 2.1). Since then, the idea that zooming reveals something 
completely new has become second nature. In the twenty-​first century, atom-​
imaging microscopes are developed precisely because of the promise of such new 
worlds.

a The inventor of the first microscope is not known, but van Leuwenhoek’s was powerful, with up to 
about three hundred times magnification.
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The scale-​by-​scale “newness” idea was graphically illustrated by K.  Boeke’s 
highly influential book Cosmic View,2 which starts with a photograph of a girl 
holding a cat, first zooming away to show the surrounding vast reaches of outer 
space, and then zooming in until reaching the nucleus of an atom. The book was 
incredibly successful. It was included in Hutchins and Adler’s Gateway to the Great 
Books,3 a ten-​volume series featuring works by Aristotle, Shakespeare, Einstein, 
and others. In 1968, two films were based on Boeke’s book—​Cosmic Zoom4 and 
Powers of Ten (19685, re-​released in 19776), encouraging the idea that nearly every 
power of ten in scale hosts different phenomena. More recently (2012), there’s even 
the interactive Cosmic Eye app for the iPad, iPhone, or iPod, not to mention a 
lavish update: the “Zoomable Universe.”7

In an article published in 1981, Mandelbrot coined the term scalebound for 
this “new worlds” view—​a convenient shorthandb that I  use frequently later.c 
Often, scaleboundedness is obvious. For example, adult humans have heights 
in the range of 57 cm to 270 cm (these are records!)—​a factor of 5—​and give or 
take a factor of 10, atoms are several tenths of a nanometer across. Stretching the 

Figure 2.1  Antoni van Leuwenhoek discovering “animalcules” (microorganisms), 
circa 1675.

b He wrote it as used here, as one word, as a single concept.
c He was writing in Leonardo, to an audience of architects: “I propose the term scalebound to de-

note any object, whether in nature or one made by an engineer or an artist, for which characteristic 
elements of scale, such as length and width, are few in number and each with a clearly distinct size” 
(p. 44). Mandelbrot, B. Scalebound or scaling shapes: A useful distinction in the visual arts and in the 
natural sciences. Leonardo 14, 43–​47 (1981).
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42	 Weather, Macroweather, and the Climate

idea only a little, bacteria are scalebound even though they range in size from a 
tenth of a micron to a tenth of a millimeter. But what about a cloud, a coastline, 
or a storm?

While Powers of Ten was proselytizing the new worlds view to an entire gen-
eration, there were other developments that pushed scientific thinking in the 
same direction. During the 1960s, long ice and ocean cores were revolutionizing 
climate science by supplying the first quantitative data at centennial, millen-
nial, and longer timescales. This coincided with the development of practical 
techniques to decompose a signal into oscillating components: “spectral anal-
ysis.” Although it had been known since Joseph Fourier (1768–​1830) that any 
time series may be written as a sum of sinusoids, applying this idea to real data 
was computationally challenging and, in atmospheric science, had been largely 
confined to the study of turbulence.d The breakthrough was the development 
of fast computers combined with the discovery of the “fast Fourier transform” 
(FFT)8 algorithme (1965).

The beauty of Fourier decomposition is that each sinusoid has an exact, unam-
biguous timescale. Its period (the inverse of its frequency) is the length of time it 
takes to make a full oscillation (Fig. 2.2A, upper left, for example). Fourier analysis 
thus provides a systematic way of quantifying the contribution of each timescale 
(inverse frequency) to a time series. The spectrum is obtained from the analysis by 
averaging9 the square of the contribution at a given frequency per unit frequency 
band. Qualitatively, it indicates the variability of the process as a function of timescale 
(one divided by the frequency). In the following, this qualitative idea is the main thing 
to keep in mind.f

d  Even there, spectra were often estimated by using specialized circuitry involving numerous 
narrow-​band filters.

e The speed-​up resulting from the invention of the FFT is huge. Even for the relatively short se-
ries in Figure 1.3 (2,048 points), it is about a factor of 100. In numerical weather models, it accelerates 
calculations by factors of millions.

f A precise interpretation of the spectrum is technically challenging and, as discussed later, even the 
professionals missed key implications!
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Figure 2.2  (A) (Upper left) The first eight contributions to the Weierstrass function (displaced 
in the vertical for clarity). Sinusoids with frequencies of 1, 2, 4, 8, 16, 32, 64, and 128 cycles per 
second (the time t is in seconds). (Upper right) Sinusoids with frequencies of 2, 4, 8, 16, 32, 64, 
and 128 cycles per second, stretched by a factor of 2H = 1.25 in the vertical and a factor of 2 in the 
horizontal. The sum (top) is the same as that on the left, but it is missing the highest frequency 
detail (the difference is barely perceptible; see the discussion a little later). (Lower left) The 
spectrum on a linear–​linear scale, with each point indicating the contribution (squared) and 
the frequency. (Lower right) The same as lower left, but on a logarithmic plot (it is now linear). 
(B) The darker line represents the Fourier spectrum10 [E(ω), proportional to the amplitude 
squared of the components discussed in (A)] of the changes in wind speed in the one-​second-​long 
simulation shown at the bottom left of Figure 1.3, representing the amplitudes of the first one 
hundred frequencies (ω).11 The points the farthest to the left are thus at frequencies of one cycle 
over the length of the simulation (i.e., one cycle per second, a period of one second). The far right 
shows the variability at one hundred cycles per second, giving the amplitude of the wiggles at 
10 ms (higher frequencies are not shown for clarity). At the bottom, there are actually two gray 
curves that are nearly indistinguishable. One shows the average over 5,000 random series, each 
identical statistically to that in the bottom left of Figure 1.3. As expected, it is nearly identical to 
the other superposed theoretical (scaling) power law gray curve. The top three dotted curves show 
the theoretical 1%, 1 in 1 million and 1 in 10 billion extreme fluctuation limits (bottom to top) 
determined by assuming that the spectrum has bell curve (Gaussian) probabilities. The arrows 
show the most extreme spikes, each of which has a probability of less than 1 in 1 million.12
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44	 Weather, Macroweather, and the Climate

Figure 2.2A illustrates this for the Weierstrass function, which in this example is 
constructed by summing sinusoids with frequencies increasing by factors of 2 so that the 
nth frequency is ω = 2n. The amplitudes (A) decrease by factors of 2–​H (here, H = 1/​3 so 
that 2–​H = 0.79), so that the nth amplitude is 2–​nH. Figure 2.2A (upper left) shows the result 
for H = 1/​3, with all the terms up until 128 cycles per second (upper row). Eliminating 
n, we find the power law relation A = ω–​H. More generally for a scaling process, we have

	 Spectrum Frequency ,= −( ) β 	

where β is the usual notation for the “spectral exponent.”13 The spectrum is the square 
of the amplitude, so that in this (discrete) example,14 we have β = 2H. The spectrum 
of the Weierstrass function is shown in Figure 2.2A (bottom row left) as a discrete 
series of dots, one for each of the eight sinusoids in the upper left construction. In 
the bottom row right, we see the same spectrum, but on a logarithmic plot on which 
power laws are straight lines. Of course, in the real world—​unlike this academic 
example—​there is nothing special about powers of two, so that all frequencies—​a 
continuum—​are present.

The Weierstrass function was created by adding sinusoids: Fourier composi-
tion. Now let’s take a complicated-​looking series—​for example, the multifractal 
simulation of the data series (lower left in Fig. 1.3). It has small, medium, and 
large wiggles. To analyze it, we need the inverse of composition, and this is 
where the FFT is handy. In this case, by construction, we know that the wiggles 
are unimportantg; they are generated randomly by the process. However, if we 
had no knowledge—​or only a speculation—​about the mechanism that produced 
it, we would wonder: Do the wiggles hide signatures of important processes of 
interest? Or are they simply uninteresting details that should be averaging out 
and ignored?

Figure 2.2B shows the spectrum of the multifractal simulation (Fig. 1.3, lower 
left) for all periods longer than 10 ms. How do we interpret the plot? One sees three 
strong spikes, at frequencies of 12, 28, and 41 cycles per second (corresponding to 
periods of 1/​12, 1/​28, and 1/​41 of a second—​about 83, 35, and 24 ms). Are they sig-
nals of some important fundamental process or are they just noise?

Naturally, this question can only be answered if we have a mental model of 
how the process might be generated, and this is where it gets interesting. First of 
all, consider the case in which we have only a single series. If we know the signal 
is turbulent (as it is for the data series at the top), then turbulence theory tells us 
we could expect all the frequencies in a wide continuum of scales to be impor-
tant and, furthermore, that at least on average, their amplitudes should decay 
in a power law manner (as with the Weierstrass function). But, classic theory 

g I mean they don’t imply any special origin or mechanism. However, various applications might 
only be sensitive to a narrow range of frequencies—​for example, wind blowing against a swing. In this 
case, the wiggles, fluctuations in the wind that happens to occur at the natural frequency of oscillation 
of the swing would be important for pushing the swing even if—​from the point of view of the under-
lying turbulent wind—​they had no special role.
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tells us only the spectrum we would expect to find if we averaged over a large 
number of identical experimentsh (each one with different “bumps” and wiggles, 
but from the same overall conditions). In Figure 2.2B, this average is the smooth 
blue curve.i

But in Figure 2.2B, we see there are apparently large departures from this av-
erage. Are these departures really exceptional or are they just “normal” variations 
expected from randomly chosen pieces of turbulence? Before the development of 
cascade models and the discovery of multifractals in the 1970s and ʼ80s, turbu-
lence theory would have led us to expect that the up-​and-​down variations about 
a smooth line through the spectrum should roughly follow the bell curve. If this 
was the case, then the spectrum should not exceed the bottom curve more than 1% 
of the time and the top curve more than 1 in 10 billion times. Yet, we see that even 
this 1/​10,000,000,000 curve is exceeded twice in this single but relatively unexcep-
tional simulation15 (indicated by the two leftmost arrows in Fig. 2.2B).

The spectrum turns out to be very sensitive to “jumps” and “spikes” that are 
hiding in the signal, as illustrated in Figure 1.6 (but see also Plates 4.1 and 4.2, and 
Figs. 4.5 and 5.2). This turns out to be an example of extreme black swan variability 
discussed in Box 3.1. Had we encountered this series in an experiment, turbu-
lence theory itself would probably have been questioned—​as indeed it repeatedly 
was (and still is). Failure to appreciate fully the huge variability that is expected in 
turbulent processes, and the continued embrace of inappropriate bell curve–​type 
paradigms has spuriously shed discredit on many attempts at establishing turbu-
lent laws and has been a major obstacle to their understanding.

In conclusion, until the development of multifractals in the 1980s, even if we 
knew the series came from an apparently routine turbulent wind trace on the roof 
of the physics building, we would still have concluded that the bumps were indeed 
significant.

But what would be our interpretation if, instead, Figure 2.2B was the spectrum 
of a climate series?j We would have no good theory of the variability and we would 
typically only have a single trace.

Let’s take the example of an ice core record. The series itself was likely the product 
of a near-​heroic scientific effort, possibly involving months in freezing conditions 
near the South Pole. The sample would first be cored and then transported to the 
lab. This would have been followed up by a painstaking sampling, analysis of the 
isotopic composition using a mass spectrometer, and finally a digitization of the 
result. Careful comparison with other cores or with ice flow models would even-
tually establish a chronology.

At this point, the researcher would be eager for a quantitative look at what she 
had found. If the darker curve in Figure 2.2B was the spectrum of such a core, 

h An “ensemble” or “statistical” average (see Chapter 4).
i It is the ensemble average spectrum. In this example, it lies mostly below the spectrum of the single 

(somewhat exceptional) realization shown by the darker line.
j Obviously at totally different timescales!
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how would she react to the bumps in the spectrum? Unlike the turbulence situ-
ation, in which there was some theory, an early core would have had little with 
which to compare. This is the point where the new worlds view could easily in-
fluence the researcher’s results. She would be greatly tempted to conclude that the 
spikes were so strong, so far from the bell curve theory, that they represented real 
physical oscillations occurring over a narrow range of timescales. Alternatively, 
there might be incorrect theories that could be spuriously supported by fortui-
tously placed random spectral bumps, and much time would be wasted chasing 
blind alleys.

Further support for hypothesizing the action of special physical processes 
would come from the fact that the two extreme bumps in the spectrum involve 
several successive frequencies and, according to usual statistical assumptions, 
“background noise” should not be correlated in this way. This wide bump would 
strengthen the spurious interpretation that there was a hidden oscillatory process 
at work.16 Armed with the series of bumps, she might start to speculate about pos-
sible physical mechanisms to explain them.17

We should thus not be surprised to learn that the 1970s witnessed a rash of 
articles based on spectra resembling that seen in Figure 2.2B; oscillators were 
suddenly ubiquitous.18 It was in this context that Murray Mitchell19 (1928–​1990) 
famously made the first explicit attempt to conceptualize temporal atmospheric 
variability (Fig 2.3A). Mitchell’s ambitious composite spectrum ranged from hours 
to the age of Earth (≈4.5 × 109 to 10–​4 years; bottom, Fig. 2.3A). Despite his candid 
admissionk that this was mostly an “educated guess,” and notwithstanding the sub-
sequent revolution in climate and paleoclimate data, more than forty years later it 
has achieved an iconic status and is still cited and reproduced regularly in climate 
articles and textbooks.20 Its continuing influence is demonstrated by the slightly 
updated version shown in Figure 2.3B, which (until 2015) adorned the National 
Oceanic and Atmospheric Administration’s (NOAA’s) National Climate Data 
Center paleoclimate website.l The site was surprisingly forthright about the figure’s 
ideological character. While admitting that “in some respects it overgeneralizes 
and over-​simplifies climate processes,” it continued:  “the figure is intended as a 
mental model to provide a general ‘powers of ten’ overview of climate variability, 
and to convey the basic complexities of climate dynamics for a general science 
savvy audience”m Notice the explicit reference to the “powers of ten” mindset more 
than fifty years after Boeke’s book was published.

k I should make it clear that the problem was not Mitchell—​who made an important pioneering 
contribution—​but rather the later elevation of Mitchell’s provisional, tentative interpretation into an 
unexamined ideology.

l The site explicitly acknowledged Mitchell’s influence.
m If this were not enough, the site adds a further gratuitous interpretation. To assure skeptics, it 

continues “[just] because a particular phenomenon is called an oscillation, it does not necessarily mean 
there is a particular oscillator causing the pattern. Some prefer to refer to such processes as variability” 
(p. 3190). Lovejoy, S. A voyage through scales, a missing quadrillion and why the climate is not what 
you expect. Climate Dynam. 44, 3187–​3210 (2015). Because any time series—​whether produced by tur-
bulence, the stock market, or a pendulum—​can be decomposed into sinusoids, the decomposition has 
no physical content per se, yet we are told that variability and oscillations are synonymous.
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Figure 2.3  (A) A comparison of Mitchell’s relative scale, “educated guess” of the spectrum 
(gray, bottom),21 with modern evidence from spectra of a selection of the series displayed in 
Figure 1.5 (the plot is logarithmic in both axes). There are three sets of thick black lines. On the far 
right, the spectra from the 1871 to 2008 Twentieth-​Century Reanalysis (20CR; at daily resolution) 
quantifies the difference between the globally averaged temperature (bottom right) and local 
averages (2° × 2°, top right).22 The spectra were averaged over frequency intervals (ten per factor 
of 10 in frequency), thus “smearing out” the daily and annual spectral “spikes.” These spikes have 
been reintroduced without this averaging, and are indicated by vertical lines at daily and annual 
resolution curves. Using the daily resolution data, the annual cycle is a factor of ≈1,000 above the 
continuum, whereas using hourly resolution data, the daily spike is a factor of ≈3,000 above the 
background. Also shown is the other striking narrow spectral spike at 41,000 years–​1 (obliquity; 
approximately a factor of 10 above the continuum, shown as a short vertical dashed line), which 
is shown in a dashed gray line because it is only apparent over the period 0.8 to 2.56 million 
years before present. The thick sloping dashed lines have slopes indicating the scaling behaviors. 
The thin dashed lines show the transition periods that separate out the regimes discussed in 
detail in Chapters 4 and 5. These are at 20 days, 50 years, 80,000 years, and 500,000 years. 
Mitchell’s original figure has been reproduced faithfully many times. It is not actually very 
important to be able to read the lettering near the spikes. If needed, most of them can seen in 
(B), which was inspired by the original [see also (C) and Box 2.1].23 (B) The updated version of 
Mitchell’s spectrum is reproduced from the National Oceanic and Atmospheric Administration’s 
National Climate Data Center paleoclimate website.n The “background” on this spectrum is 
perfectly flat; hence, in comparison with the empirical spectrum in (A), it is in error by an overall 
factor of ≈1016.24 (C) The spectrum in (B), replotted in terms of fluctuations (gray), where the flat 
baseline of (B) now has a slope of –​1/​2, corresponding to an uncorrelated Gaussian “white noise” 
background. Because the amplitudes in (B) were not specified, the amplitude of the transformed 
gray “bumps” is only notional.25 At the top is superposed the typical fluctuation at timescale ∆t, 
as estimated from various instrumental and paleoseries, from those displayed in Figure 1.5. More 
details can be found in Section 2.3 and Figure 2.4A.26

n The page has since been taken down.
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Figure 2.3  Continued
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Certainly the continuing influence of Mitchell’s figure has nothing to do with 
its accuracy. Within fifteen years of its publication, two scaling composites (one 
close to that shown in Fig. 2.3Ao and the fluctuation analysis shown in Fig. 2.18)27 
already showed colossal discrepancies. In Figure 2.3A, the spectra of several 
of the series analyzed in Chapter  1 have been superposed; the difference with 
Mitchell’s original is literally astronomical. Although over the range of one hour 
to 1,000,000,000 years, Mitchell’s background varies by a factor of ≈150 (bottom, 
gray), the spectra from real data imply instead that the true range is a factor of 
a quadrillion28 (1015). With its completely flat background, NOAA (Fig.  2.3B) 
extends this error by a further factor of 10.29

Rather than plotting the data in the difficult-​to-​interpret terms of amplitudes 
of sinusoids, we can plot it in a much simpler-​to-​interpret way using typical 
amplitudes of fluctuations. Fluctuations are discussed in detail in Section 2.3, but 
even with only an intuitive idea that they quantify the variation of a quantity over 
an interval of time ∆t, if they are scaling, they will follow a power law with fluctu-
ation exponent H:

	 Fluctuations Interval Scale≈ ≈( ) ( .)∆t H H 	

Figure 2.3C (top) shows the analysis of many of the same series in Figure 2.3A, 
but using the fluctuations described in detail in Section 2.3 (see Fig. 2.4A, B). We 
can see that Figure 2.3C makes intuitive sense. By reading the numbers off the top 
curve of the graph, we see that typical temperature fluctuations vary between a 
little less than a degree to as much as 15°C or 20°C at hundreds of millions of years 
(full details and a discussion are included in Section 2.3). In comparison, Figure 
2.3C (bottom, the line and the gray areas) shows that the quantitative implications 
of Mitchell’s spectrum are quite implausible. Although the amplitude of the 
fluctuations in Figure 2.3B was not specified, the baseline background in Figure 
2.3B is a constant level of white noise that corresponds to fluctuations decreasing 
with a slope of  –​1/​2, as indicated. We see, for example, that it implies that suc-
cessive century-​long average temperatures would typically differ by less than one 
hundredth of a degree and that consecutive 1,000,000-​year average temperatures 
would differ by millionths of a degree centigrade! Figure 2.3A and C (top) shows 
how these analyses can be used to establish a basic typography to categorize the 
dynamical regimes. We return to this in Section 2.3 and Chapter 5. For a critical 
discussion, see Section 2.3 and especially Box 2.1.

o A composite spectrum over the range of scales from 1,000 to 100,000,000 years was published by 
Shackleton, N. J. & Imbrie, J. The δ18O spectrum of oceanic deep water over a five-​decade band. Climat. 
Change 16, 217–​230 (1990).
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Figure 2.4  (A) A composite of typical Haar fluctuations.30 This composite is 
mathematically equivalent,31 but is easier to understand than the spectrum in Figure 2.3A. 
Using largely the same data, it extends the range of timescales by a factor of 100,000 from 
an hour down to 2 × 0.017 = 0.034 second. From left to right, the curves are from thermistors 
at 0.017-​second resolution (the same data as the lower right of Fig. 1.5E) from (daily and 
annually detrended) hourly temperatures (second from the left, from a station in Lander, 
Wyoming), Twentieth-​Century Reanalysis temperatures (thick, middle; the same data as 
Fig. 1.5D, but at 75°N), and paleotemperatures from EPICA ice cores (the S-​shaped curve at 
the right; from the data shown in Fig. 1.5B and in the spectrum in Fig. 2.3A) from the past 
800,000 years. The two far right curves are from the upper benthic curves in Figure 1.5A 
and Figure 2.3A. The different dynamical regimes are indicated by the dashed lines, which 
roughly separate regions with different linear scale dependencies. The slopes are estimates 
of H.32 (B) The same as (A), but shows spatial fluctuations. The curves display analyses 
from data averaged over weather (W), macroweather (M), and climate (C) timescales. The 
straight reference line has the slope H = 0.4. The lower left is from the aircraft data used in 
Figure 1.6 (280-​m resolution), the upper right is from daily temperatures in January 2006, 
and the fluctuations in the longitudinal direction are every 1° in longitude (the same data 
as used in Fig. 5.2; see the description there). The middle (M) and lower (C) right curves are 
from monthly and 140-​year averaged data in the longitudinal direction (see Fig. 5.2 for more 
details).33 (C) Representative series from each of the five scaling regimes taken from Figure 1.5 
and (A), with the addition of the hourly surface temperatures from Lander, Wyoming 
(bottom, detrended daily and annually), and a thermistor series in Montreal. To contrast their 
appearances fairly, each series had the same number of points (180) and was normalized by 
its overall range (the maximum minus the minimum), and each series was offset by 1°C in 
the vertical for clarity.34 The series resolutions were 1 hour, 1 month, 400 years, 14,000 years, 
370,000 years, and 1,230,000 years, bottom to top respectively. The fluctuation exponent H is 
indicated at the left, H < 0.35
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Box 2.1  Lucy’s fluctuations

The fluctuation analyses (Fig. 2.4A) and the (statistically equivalent) corresponding 
spectra (Fig. 2.3A) are based on real data, with the behavior of fluctuations being 
particularly straightforward to interpret. It points to a seductively simple picture 
involving four or—​with macroclimate—​possibly five scaling regimes.

But is this classification into different dynamical regimes really justified? So far, the 
main criticism of the composites is not that they are wrong, but that they are misleading. 
In particular, Nielsen et al.36 pointed out that the composites will be somewhat different 
depending on the epoch at which they are compiled. This is because the shorter timescale 
series making up the composite come from the more recent past, which may not be 
representative of the behavior further back in time.37 For example, the dashed lines in 
Figure 2.4A already indicate that the weather–​macroweather transition scale depends 
on whether we include the industrial epoch. Anthropogenic warming increases the 
multidecadal variability, yielding a shorter transition scale (see Chapter 6).

Indeed, as discussed in Section 5.6 on freak macroweather, the preindustrial 
macroweather–​climate transition time is still not clear, with Greenland ice cores 
showing an exceptionally long (multimillennial) transition scale in our current post-​
Ice Age Holocene epoch (Fig. 5.13).p Because a Holocene ocean core near Greenland 
shows a much shorter (centennial-​scale) transition, both the epoch-​to-​epoch 
(Holocene, pre-​Holocene) as well as the geographical variations of the transition scale 
need clarification. Currently there is a PAGES (Past Climate Change) working group 
on climate variability across scales (CVAS) that is investigating this issue. In Figure 
2.4A, this exceptional Holocene feature is hidden, because the middle (EPICA ice core) 
curve is an average over the past 800,000 years (the middle and late Pleistocene epoch). 
However, throughout this nearly 1,000,000 -​year-​long epoch, our interpretation of 
Figure 2.4A would be valid as long as it was nuanced by these qualifiers.

Broadening our view to the past 550  million years, it might nevertheless be 
misleading to think of Figure 2.4A as representative of the entire (Phanerozoic) eon. 
To explore this further, let’s consider what the composites would have looked like 
had they been produced during the Pliocene epoch, 3.2 million years ago, by Lucy, 
our famous brainy hominid ancestor.q Lucy lived before the Quaternary (see Box 
1.2, Fig. 1.5A, bottom) at a time when—​thanks to continental drift—​the landmasses 
and ocean currents were sufficiently different so that there were no ice sheets, no 
glacial–​interglacial transitions.

Let’s imagine that Lucy was a climatologist who was trying to make sense out of 
extensive archives of climate data from a wide variety of sources. She got the idea of 
analyzing the fluctuations systematically and making composites that show the broad 
sweep of atmospheric variability. Her goal was to clarify and classify an otherwise 
complex mass of information. If her paleodata were good enough, she might have 
been able to detect the coming and going of ice sheets in the Late Eocene to Early 
Oligocene, 28 to 31  million years earlier38 (Fig.  1.5A, middle), but the temporal 
resolution of that ancient data would have been poor and her centennial-​scale data 

p As discussed in Section 5.6, there may be a more mundane explanation: The ice core data are not 
representative of global conditions.

q Lucy was an Australopithecus afarensis, discovered in Ethiopia by Donald Johanson and Tom Gray 
on November 24, 1974.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   52 29-Dec-18   8:14:21 PM

shaun2008
Inserted Text
 scale



New worlds versus scaling: From van Leeuwenhoek to Mandelbrot	 53

would have come from her own ice sheet-​free epoch. Over the range of scales from 
centuries to a million years, Lucy’s composite would probably not reproduce the 
middle bump in Figure 2.4Ar at 100,000-​year scales.

But how different would her composite really have been? First consider the basic 
weather and macroweather regimes—​the nine or ten orders of magnitude of the 
graph covering milliseconds to decades. This part of Lucy’s composite would have 
been almost identical to ours. We can be fairly certain of this for several reasons. First, 
weather and macroweather variability are fundamental characteristics of turbulence, 
a fact that is underscored (Section 4.8) by the finding that nearly identical weather 
and macroweather regimes exist on Mars. Second, very similar regimes are also well 
reproduced by climate or turbulent models when they are run with fixed external 
conditions (“control runs,” Chapter 5, Fig. 5.10). Although Lucy’s orbital parameters 
were different, this difference would only have been important at tens of thousands 
of years (Box 5.4); Lucy’s GCM would also produce weather and macroweather 
regimes, and they would have today’s statistics.39

Let’s now turn our attention to the right-​hand side of Figure 2.4A, which includes 
the temperature variability for periods of hundreds of thousands of years and longer—​
the megaclimate regime. The megaclimate turns out to be quite robust—​at least its 
most recent 65 million years (the Cenozoic era)—​and Lucy’s composite would also 
have agreed with ours about this. This was demonstrated40 using the Zachos stacks 
(Fig. 1.5A, middle) with fluctuations that are shown in the second curve from the 
right in Figure 2.4A. This Cenozoic series was analyzed over six successive 10-​million-​
year periods, and each of these segments was found to have very similar variability 
over the range of 500,000 years on up.41 This is not surprising because, at these long 
timescales, (bio)geological processes drive the system, and they are also likely to be 
scaling.s Lucy’s composite would therefore be quite similar to our own, with the main 
exception being the scales from centuries to hundreds of thousands of years.

Putting this together, if we restrict the applicability of Figure 2.4A to the past 
800,000 years, then there would be relatively minor differences, depending on when 
the series was compiled. Even if this is extended to 65 million years, with the added 
caveats discussed earlier, it would also be a realistic picture of atmospheric variability.

But Lucy would have understood that the real importance of her composite was 
paradigmatic: that atmospheric variability should be understood using a relatively 
small number of wide-​range scaling dynamical processes, with quasi-​periodic 
scalebound processes generally playing only minor roles.42 Yet, in different epochs, 
the boundaries between the regimes will shift to shorter or longer timescales, 
and using high-​resolution data unavailable to us, Lucy might have discovered a 
new scaling “mesoclimate” regime in the place of our climate and macroclimate. 
Nevertheless, her composite would still lead her to conceptualize the climate system 
in a scaling way rather than a scalebound way.
  

r Interestingly, had she lived 30 millions earlier, she might have again produced a composite similar 
to our Figure 2.4A.

s Geological scaling is likely because the processes of erosion and continental drift don’t have preferred 
scales, and the field for which we have the best data—​Earth’s topography—​is also scaling. There is also 
evidence for scaling in geogravity, geomagnetism, and seismicity. See a review in Lovejoy, S. & Schertzer, 
D. Scaling and multifractal fields in the solid earth and topography. Nonlin. Proc. Geophys. 14, 1–​38 (2007).
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Writing a decade and a half after Mitchell, leading climatologists Nicholas 
Shackelton and John Imbrie laconically noted that their own spectrum was “much 
steeper than that visualised by Mitchell,” 43 a conclusion already anticipated five years 
earlier (Fig. 2.11) and subsequently reinforced by several scaling composites.44 Over 
at least a significant part of this range, Carl Wunsch45 further underlined its mis-
leading nature by demonstrating that the contribution to the variability from specific 
frequencies associated with specific “spikes” (presumed to originate in oscillatory 
processes) was much smaller than the contribution resulting from the continuum.

But none of this perturbed the dominant scalebound view. Just as van 
Leeuwenhoek peered through the first microscope and discovered a new world, 
today we automatically anticipate finding new worlds by zooming in or out of 
scale. It is a scientific ideology so powerful that even quadrillions do not shake it.

The scalebound view led to a framework for atmospheric dynamics that 
emphasized the importance of numerous processes occurring at well-​defined 
timescales, the quasi-​periodic “foreground” processes illustrated as bumps—​
the signals—​on Mitchell’s nearly flat background that was considered to be 
an unimportant noise.t Although in Mitchell’s original figure the lettering is 
difficult to decipher, Figure 2.3B spells them out more clearly with numerous 
conventional examples. For example, QBO is the “Quasi-​Biennal Oscillation,” 
ENSO is the “El Niño Southern Oscillation,” PDO is the “Pacific Decadal 
Oscillation,” and NAO is the “North Atlantic Oscillation.” The Dansgaard-​
Oeschger and Milankovitć and tectonic cyclesu will be discussed in Chapter 5 
at longer timescales. The point here is not that these processes, mechanisms, 
are wrong or nonexistentv; rather, it is that—​at best—​they only explain a small 
fraction of the overall variability.

Even the nonlinear revolution was affected by scalebound thinking. This in-
cluded atmospheric applications of low-​dimensional deterministic chaos. When 
chaos techniques were applied to weather and climate, the spectral bumps were 
associated with specific chaos models, analyzed with the help of the dynamical 
systems machinery of bifurcations, limit cycles, and the like.46 Of course—​as 
discussed later—​from the alternative scaling, turbulence view, wide-​range con-
tinuum spectra are generic results of systems with large numbers of interacting 
components (degrees of freedom)—​stochastic chaos47—​and are incompatible 
with the usual small number of interacting components (low-​dimensional) deter-
ministic chaos (Box 2.2).w Similarly, whenever there are no dynamically important 
characteristic scales or scale breaks, the spectra will be scaling (i.e., power laws48; 
Chapter 3).

t Mitchell actually assumed that his background was either a white noise or over short ranges, sums 
(integrals) of a white noise.

u Figure 2.3B refers to these as cycles rather than oscillations, perhaps because they are broader.
v Although, in some cases, maybe they are!
w During the early 1980s, excitement about chaos was so strong that enthusiasm sometimes replaced 

cool heads. A famous article published in Nature that was based on a new time series analysis algo-
rithm even claimed that four interacting components were enough to describe and model the climate! 
Nicolis, C. & Nicolis, G. Is there a climate attractor? Nature 311, 529 (1984).

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   54 29-Dec-18   8:14:21 PM

shaun2008
Cross-Out

shaun2008
Replacement Text
8

shaun2008
Cross-Out

shaun2008
Replacement Text
1.1



New worlds versus scaling: From van Leeuwenhoek to Mandelbrot	 55

2.1.2  New worlds and the meteorological zoo

At weather scales, and at virtually the same time as Mitchell proposed a 
scalebound framework for temporal variability, Isidoro Orlanski proposed a 
scalebound spatial classification of atmospheric phenomena by powers of ten.49 
Figure 2.5 shows a reproduction of Orlanski’s phenomenological space–​time 
diagramx with eight different dynamical regimes indicated on the right according to 
their spatial scales. The diagram does more than just classify phenomena according 
to their size; it also relates their sizes to their lifetimes. Along the diagonal, various 
preexisting conventional phenomena are indicated, including fronts, hurricanes, 
tornadoes, and thunderstorms. The dashed straight-​line embellishment was added 
by my colleagues and me in 199750 ; it shows that the figure actually shows scaling, 
not scalebound behavior! This is because straight lines on logarithmic plots such as 
this are power laws, and even the slope of the line (–​3/​2) turns out to be predicted 
theoretically using the energy rate density (Chapter 4).

Figure 2.5  Orlanski’s space–​time diagram with eight different dynamical regimes indicated 
on the right according to their spatial scales. Notice that he indicates that the climate starts 
at about two weeks (bottom row). The straight line shows that the figure is actually scaling 
(straight on this logarithmic plot).51

x Sometimes called “Stommel diagrams” after Henry Stommel (1920–​1992), who produced such 
diagrams in oceanography.
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56	 Weather, Macroweather, and the Climate

At the time of Orlanski’s classification, meteorological thinking was already 
largely scalebound. There were several reasons for this. One was, in part, a re-
sult of its near-​total divorce from turbulence theory, which was primarily scaling.y 
Another resulted from its heritage from the older more qualitative traditions of 
“synoptic” meteorology with its “zoo”52 of atmospheric shapes, morphologies, and 
structures.z Finally, I should note the influence of analytical linearized approaches, 
which were the only ones available in the precomputer era. Therefore, Orlanski’s 
classification rapidly became popular as a systematic rationalization of an al-
ready strongly, phenomenologically scalebound approach. It is ironic that just as 
Orlanski tried to perfect the old scalebound approach, and unbeknown even to 
the modelers, the computer revolution was ushering in the opposite scaling ap-
proach: NWPs and GCMs.53

2.2  Scaling: Big whirls have little whirls and little  
whirls have lesser whirls

2.2.1  The fractal revolution

Scalebound thinking is now so entrenched that it seems obvious that “zooming 
in” to practically anything will disclose hidden secrets. Indeed, we would likely 
express more wonder if we zoomed in only to find that nothing had changed, 
if the system’s structure was scaling! Yet during the past thirty years, antiscaling 
prejudices have started to unravel. Much of this is thanks to Mandelbrot’s path-
breaking Fractals, Form, Chance and Dimension54,aa (1977) and The Fractal Geometry 
of Nature.55 Thanks to his avant-​garde use of stunning computer graphics, his 
books made an immediate visual impact. They were the first to display the re-
alism of scaling. One was also struck by the word “geometry” in the title. The 
last time scientists had emphasized geometry was sixty years earlier, when D’Arcy 
Thompson56 (1860–​1948) used it brilliantly to understand the shapes of diatoms 
and other biomorphologies. Although Mandelbrot’s simulations, imagery, and 
scaling ideas sparked the fractal strand of the nonlinear revolution—​and continue 
to transform our thinking—​his insistence on geometry is now nearly forgotten. 
The basic reason is that scientists are—​in my opinion rightly so—​more interested 
in statistics than in geometry. There is also a less obvious reason: The most inter-
esting thing to come from the scaling revolution was probably not fractals per se, 
but multifractals, and—​despite attempts—​they cannot, in general, be reduced to 
geometry (Box 2.2).57

y All the fundamental turbulence theories were scaling. The question was whether one or two—​or, 
in some cases, three—​scaling ranges were required. This is discussed in detail in Chapter 4.

z For example, as examined in Chapter 3, clouds had been classified since the early nineteenth cen-
tury, but these classifications were based on cloud shapes—​morphologies—​not size.

aa This was actually a translation and extension of his earlier French book: Mandelbrot, B. B. Les 
objets fractals, forme, hasard et dimension. (Flamarion, 1975).
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In contrast with a “scalebound” object, Mandelbrot counterposed his new 
scaling, fractal one:

A scaling object . . . includes as its defining characteristic the presence of very 
many different elements whose scales are of any imaginable size. There are so many 
different scales, and their harmonics are so interlaced and interact so confusingly 
that they are not really distinct from each other, but merge into a continuum. For 
practical purposes, a scaling object does not have a scale that characterizes it. Its 
scales vary also depending upon the viewing points of beholders. The same scaling 
object may be considered as being of a human’s dimension or of a fly’s dimension.”58

I had the good fortune to begin my own graduate career in 1976, just as the 
scalebound weather and climate paradigms were ossifying, but before the non-
linear revolution really took off. I was thus totally unprepared and can vividly re-
member the epistemic shock when, shortly after it appeared, I first encountered 
Fractals, Form Chance and Dimension. Revealingly, it was neither my PhD super-
visor, Geoff Austin, nor any other scientific colleague who introduced me to the 
book, but rather my motherbb—​an artist—​who was awed by Mandelbrot’s imagery 
and fascinated by its artistic implications. At the time, my thesis topic was on the 
measurement of precipitation from satellitescc and I  had become frustrated be-
cause of the enormous space–​time variability of rain that was way beyond any-
thing that conventional methods could handle.dd The problem was that there were 
several competing techniques for estimated rain from satellites and each one was 
different, yet there was essentially no way to validate any of them, to determine 
which was the best. Scientific progress was blocked. Fortunately, this didn’t pre-
vent radar and satellite remote sensing technology from continuing to advance.

Not long after reading Mandelbrot’s book, I  started working on developing 
fractal models of rain, so that when I finally submitted my thesis in November 
1980, about half of it was on conventional remote-​sensing topics and the other half 
was an attempt to understand precipitation variability by using fractal analyses and 
fractal models of rain.59 Given that three of the more conventional thesis chapters 
had already been published in journals—​and had thus passed peer review—​I was 
confident of a rubber stamp by the external thesis examiner. Because I had already 
been awarded a postdoctoral fellowship financed by Canada’s National Science 

bb She was a pioneering electronic artist and had been working with the first color Xerox machines 
to develop electronic imagery years before the development of personal computers and cheap com-
puter graphics. She used various fractal simulations that I supplied—​including some with computer 
glitches—​as “objets trouvés” to make abstract images, see Lovejoy, M. Postmodern Currents: Art and 
Artists in the Age of Electronic Media. (Prentice Hall College Division, 1989).

cc My thesis was titled The Remote Sensing of Rain. McGill University, 1981.
dd Conventional methods—​both deterministic (of NWP type) and stochastic but scalebound—​are 

still in vogue, but during the past ten years, our understanding of precipitation has been revolutionized 
by the application of the first satellite-​borne weather radar [the Tropical Rainfall Measurement Mission 
(TRMM)], which has demonstrated unequivocally that—​like the other atmospheric variables—​
precipitation is a global-​scale cascade process that is distinctive primarily because its intermittency 
parameter is much larger than for the other fields. Lovejoy, S., Pinel, J., & Schertzer, D. The global 
space–​time cascade structure of precipitation: Satellites, gridded gauges and reanalyses. Adv. Water 
Res. 45, 37–​50 (2012).
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58	 Weather, Macroweather, and the Climate

and Engineering Research Council, I happily began preparing for a move to Paris 
to take it up at the Météorologie Nationale (the French weather service).

But rather than getting a nod and a wink, the unthinkable happened: My thesis 
was rejected! The external examiner, David Atlas (1924–​2015), then at the National 
Aeronautics and Space Administration (NASA), was a pioneering radar meteor-
ologist who was involved in then-​fashionable scalebound mesoscale theorizing 
(Chapter 4). Atlas was clearly uncomfortable with the fractal material; but, rather 
than attacking it directly, he instead claimed that although the content of the thesis 
might be acceptable, its structure was not. To his way of thinking, there were in 
fact two theses, not one. The first was a conventional one that had already been 
published, whereas the second was a thesis on fractal precipitation that, according 
to him, was unrelated to the first. The last point piqued me because it seemed ob-
vious that the fractals were there in an attempt to overcome longstanding problems 
of untamed space–​time variability. On the contrary, they were very relevant to a 
remote-​sensing thesis.

At that point, I  panicked. According to the McGill thesis regulations, I  had 
only two options: either I accept the referee’s strictures, amputate the offending 
fractal material, and resubmit, or I  could refuse to bend. In the latter case, the 
thesis would be sent without change to two external referees, both of whom would 
have to accept it—​a highly risky proposition. Although I was ready to defend the 
fractal material, I knew full well it had not received serious critical attention. There 
might be errors that would sink the whole thing. A  second rejection would be 
disastrous because, then, McGill would not permit me to resubmit a thesis on the 
same topic. Therefore, before making a decision—​and with the encouragement of 
Austin—​I contacted Mandelbrot, visiting him at his Yorktown heights IBM office 
in January 1981.

Mandelbrot was very positive about the material in the draft thesis. Not being 
very familiar with atmospheric science,60 and wanting to give me the best pos-
sible advice, he contacted his friend and oceanographer Eric Mollo-​Christensen 
(1923–​2009) at the Massachusetts Institute of Technology. Mollo-​Christensen 
advised me simply to remove the fractal material and get the thesis out of the 
way. I could then try to publish it in the usual scientific literature. Beyond that, 
Mandelbrot advised me to make a short publication out of the analysis part, 
hinting that we could later start a collaboration to develop an improved fractal 
model of rain.

With the fractals excised, the thesis was accepted without a hitch,ee and at the 
end of June, a week after defending my thesis, I went off to my Paris postdoc at the 

ee Twenty-​five years later, I met up with Atlas, who was by then in his eighties but still occupying an 
office at NASA. His rejection of my thesis had been a fatherly act, intending to steer me back toward 
mainstream science. During our discussion, he was mostly intrigued that I was still pursuing the ma-
terial he had rejected so long ago!
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Météorologie Nationale, to work with radar specialist Marc Gilet.ff In literally my 
first week in the French capital, I wrote up the analysis part—​the empirical rain 
and cloud area–​perimeter relation (Fig. 2.6)—​and submitted it to Science.gg A few 
months later, I started a series of month long visits to Mandelbrot in Yorktown 
Heights. This collaboration eventually spawned the Fractals Sums of Pulses (FSP) 
model61 close to the H model described in Box 2.3.

2.2.2  Fractal sets and dimensions

The converse of scalebound objects are scaling, fractal objects.64 Let’s take a look 
at some examples and see how it’s possible for zooming to lead to sameness: to old 
worlds, not to new ones.

An object is scaling if, when blown up, a small part in some way resembles the 
larger whole. An unavoidable example is the icon that now bears his name—​the 
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Figure 2.6  (Left) Richardson’s proposed 4/​3 law of turbulent diffusion,62 which includes a 
few estimated data points. (Right) The area–​perimeter relation for radar-​detected rain areas 
(black) and infrared satellite cloud images (open circles). The perimeter is the horizontal axis; 
the area, the vertical axis. The slope corresponds to D = 1.35. The mesoscale (roughly 1–​100 
km) is shown in the brackets—​nothing special.63

ff Within two months of the start of my postdoc, Gilet was given a high-​level administrative posi-
tion and essentially withdrew from research. As a free agent, I soon started collaborating with Daniel 
Schertzer in the newly formed turbulence group.

gg The paper sparked a stir; since then, it has been cited nearly 1,000 times. Lovejoy, S. Area perim-
eter relations for rain and cloud areas. Science 187, 1035–​1037 (1982).
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60	 Weather, Macroweather, and the Climate

Mandelbrot set, the black silhouette in Figure 2.7. It can be seen that, after a se-
ries of blowups, we find reduced-​scale copies of the original (largest version) of 
the set.hh Although the Mandelbrot set has been termed “the most complex ob-
ject in mathematics,”65 it is simultaneously one of the simplest, being generated by 
simply iterating the algorithm: “I take a number, square it, add a constant, square 
it, add a constant, . . . .”66 Precisely because of this algorithmic simplicity, it is now 
the subject of a small cottage industry of computer geeks who superbly combine 
numerics, graphics, and music. YouTube is replete with examples; the last time 
I looked, the recordholder displayed a zoom by a factor of more than 104000 (a one 
followed by 4,000 zeroes)!

The Mandelbrot set may be easy to generate, but it is hardly easy to understand. 
To understand the scaling, fractal idea, consider instead the simplest (and his-
torically the first) fractal: Cantor’s “perfect” set (Fig. 2.8A). Start with a segment 
one unit long (infinitely thin; this is mathematics!)—​the “base.” Then, remove the 
middle one third; this is the “motif ” (second from the top in Fig. 2.8A). Then it-
erate by removing the middle third of each of the two one-​third-​long segments 
from the previous. Continue iterating so that at every level, you remove all the 
middle segments before moving to the next level. When this is repeated to infi-
nitely small segments, the result is the Cantor set.68 From Figure 2.8A, we can see 
that if either the left or right half of the set is enlarged by a factor of 3, then one 
obtains the same set.

Figure 2.7  The scaling approach. Looking through the microscope at the Mandelbrot set 
(the black in the upper left square), after two magnifications (lower left and right-​hand side), 
Mandelbrot noticed one of an infinite number of reduced-​scale versions (slightly deformed, 
near the lower right-​hand corner).67

hh The small versions are actually slightly deformed versions of the larger ones.
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L

X3

(A)

(B)

(C)

Figure 2.8  (A) The Cantor set. Starting at the top (the “base”), a segment one unit long 
(the “motif ”) is obtained by removing the middle third. The operation of removing middle 
thirds is then iterated to infinitely small scales, the first six iterates are shown. The dashed 
ellipses show the property of self-​similarity: The left-​hand half of any level (not only the one 
explicitly shown), when blown up by a factor of 3, gives the next level up. 
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Figure 2.8  Continued
(B) The construction of the Sierpinski carpet. The base (upper left) is transformed to the motif 
(upper middle) by dividing the square into nine subsquares, each one third the size, and then 
removing the middle square. The construction proceeds left to right/​top to bottom to the fifth 
iteration. (C) The geographical distribution of the 9,962 stations that the World Meteorological 
Organization listed as giving at least one meteorological measurement every twenty-​four hours 
(in 1986). It can be seen that it closely follows the distribution of landmasses and is concentrated in 
the rich and populous countries. The main visible artificial feature is the Trans-​Siberian Railroad. 
Also shown is an example of a circle used in the analysis.69 (D) The average number of stations 
(vertical axis) within a circle radius L horizontal axis (in kilometers). The slope of the top straight 
line is D = 1.75.70 (E) The black indicates the 5° × 5° grid points for which there are some data in 
the month of January 1878 (20% of the 2,560 grid points were filled).ii Although highly deformed 
by this map projection, we can almost make out the South American continent (lower left) as 
white surrounded by black data that are from ship measurements, and Europe (the central upper 
black mass of grid points). The fractal dimension of the data is close to that in (C).

ii This is from the Hadley Centre Climate Research Unit Temperatures (HadCRUT) data set using 
an equal angle projection that greatly distorts high latitudes. See Kennedy, J. J., Rayner, N. A., Smith, 
R. O., Saunby, M., & Parker, D. E. Reassessing biases and other uncertainties in sea-​surface tempera-
ture observations measured in situ since 1850. Part 2: Biases and homogenisation. J. Geophys. Res. 116, 
D14104–​D14121 (2011).
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This property—​that a part is in some way similar to the whole—​is for obvious 
reasons called “self-​similarity.” In this case, the left or right halves are identical to 
the whole. In atmospheric applications, the relationship between a part and the 
whole will generally be statistical; small parts are only the same as the whole on av-
erage. The Cantor set has many interesting properties. For our purposes the main 
one is its fractality, a consequence of its self-​similarity.

Let’s consider it a little more closely. After n construction levels, the number 
of segments is N = 2n, and the length of each segment is L =  (1/​3)n. Therefore, 
N and L themselves are related by a power law. Eliminating the level n, we find 
N = L–​D, where D =  log(2)/​log(3) = 0.63  .  .  . . D is the fractal dimension (“log” 
for logarithm). In this case, it is called the “box-​counting” dimension because—​
if we considered a fully formed Cantor set—​the number of segments L (one-​
dimensional “boxes”) that we need to cover the set would be the same71 N. If this 
fractal dimension seems a bit weird, consider what would happen if we applied 
the definition to the entire initial (one-​dimensional) line segment. We can check 
that we do indeed recover the usual value for a line: D = 1. To see this, consider 
what would happen if we did not remove the middle third (we kept the original 
segment), but analyzed it using the same reasoning. In this case, would still di-
vide by three at every iteration so that, as before, L = (1/​3)n, but now the number 
of segments is simply N  =  3n instead of 2n. This would lead to the dimension 
D = log3/​log3 = 1, simply confirming that the segment does indeed have the usual 
dimension of a line.

When a quantity such as N changes in a power law manner with scale L, it is 
called “scaling,” and thus N = L–​D is a scaling law. Contrary to a scalebound process 
that changes its mechanism (its “laws”) every factor of 10 or so, a unique scaling 
law may hold over a wide range of scales. For the Cantor set and other mathemat-
ical fractals, it holds over an infinite range. Of course, real physical fractals can 
only be scaling over finite ranges of scale. There is always a smallest and largest 
scale beyond which the scaling will no longer be valid.

Why does a power law imply scaling (and vice versa)? The answer is simply that 
if N = L–​D and we zoom in by a factor λ (so that L → L/​λ), then we see that N →NλD; 
the form of the law is unchanged. Writing this in words and referring to the dashed 
ellipses in Figure 2.8A, we could write

Number of segments inside the large ellipse = (Length of large ellipse)D

Number of segments inside the small ellipse = (Length of small ellipse)D,

where, in this case, λ = 3 (the ratio of the large ellipse to the small one) and D = 0.63, 
as explained earlier.

In contrast, for a scalebound process, changing scales by zooming would give 
us something quite different. Whenever there is a scaling law, there is something 
that doesn’t change with scale, something that is scale invariant. In the previous 
example, it is the fractal dimension D. No matter how far we zoom into the Cantor 
set, we will always recover the same value D. Self-​similarity is a special case of 
scale invariance and it occurs when—​as its name suggests—​some aspect of the 
system is unchanged under a usual blowup. In physics, quantities (such as energy) 
that are invariant (conserved) under various transformations are of fundamental 
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importance, hence the significance of exponents such as fractal dimensions that 
are invariant under scale transformations.

More generally, a system can be invariant under more generalized “zooms” (i.e., 
blowups combined with stretchings, rotations, or other transformations). As an 
example, let’s return to the graph of the Weierstrass function, which is scale invar-
iant but not self-​similar. To show that it is indeed scale invariant, we must combine 
a blowup with a squashing—​or, alternatively, a blowup by different factors in each 
of the coordinate directions. This property is shown in Figure 2.2A by comparing 
the full Weierstrass function on the interval between zero and one, with the upper 
right that shows the left half72 stretched in the horizontal direction by a factor 
of 2 and stretched in the vertical direction by a factor of 2H = 1.26. Objects that 
are scale invariant only after being blown up by different factors in perpendicular 
directions are called “self-​affine.” The graph of the Weierstrass function is thus 
self-​affine. As we study at length in Chapter 3, scale invariance is still much more 
general than this.

On the other hand, in the infinitely small limit, the Cantor set is simply a col-
lection of disconnected points (Mandelbrot calls such sets “dusts”),jj and a math-
ematical point has a dimension zero.73 The Cantor set is thus an example of set 
with a fractal dimension of 0.63... that is between zero and one, and D quantifies 
the extent to which it fills the line. Sets of points with such in-​between dimensions 
(they are usually noninteger) are fractals.kk More generally, for the purposes of this 
book, a fractal is a geometric set of points that is scale invariant.74

As another mathematical example, consider Figure  2.8B, the “Sierpinski 
carpet.”75,ll The figure shows the base (upper left) and motif (upper middle) 
obtained by dividing an initial square into squares one third the size, and then 
removing the middle one. The bottom right shows the result after five iterations. 
Using the same approach as that described earlier, after n construction steps 
(levels), the number of squares is N = 8n, and the size of each is L = (1/​3)n. Thus, 
N = L–​D, with D = log8/​log3 = 1.89... . Indeed, the Cantor set, the Sierpinski carpet, 
and the unit segment illustrate the general result:

	 Probability Scale≈ ( ) ,C 	

where the scale is identified with the length of the side of a square.

jj At some stage in the construction, any connected segment would have been cut by the removal 
of a middle third.

kk As a result of nontrivial mathematical issues, there are numerous mathematical definitions of 
dimension. A full discussion of them would take us too far afield.

ll  This construction and the analogous one based on removing middle triangles is credited (in 
1916) to Waclaw Sierpinski (1882–​1969). The name “carpet” was added by Mandelbrot. Mobile phone 
and Wi-​Fi antennae have been produced using a few iterations of the Sierpinski carpet, exploiting their 
scale invariance to accommodate a wide range of frequencies. The Sierpinski triangle goes back to at 
least the thirteenth century; it is seen in churches as decorative motifs.
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Just as the Cantor set has a fractal dimension D = 0.63... between zero and one—​
between a point and a line—​the value of D for the Sierpinski carpet is between one 
and two (i.e., between a line and a plane), and it quantifies the extent that the 
Sierpinski carpet exceeds a line while partially filling the plane. These examples 
show a basic feature of fractal sets. As a result of their hierarchical clustering of 
points, they are “sparse.” Their fractal dimension quantifies their sparseness.

Although the number of boxes gives us information about the absolute fre-
quency of occurrence of parts of the set of size L, it is often more useful to charac-
terize the density of the boxes of size L, which is obtained by dividing the number 
of boxes needed to cover the set by the total number of possible boxes—​for ex-
ample, the Cantor set by L–​1 and the Sierpinski carpet by L–​2 because they are 
sets on the line (d = 1) and plane (d = 2), respectively.76 This ratio is their relative 
frequency. In other words, it is the probability that a randomly placed segment 
(d = 1) or square (d = 2) will happen to land on part of the set. The ratio is L–​D/​L–​d =  
Ld–​D = LC, where C = d –​ D > 0 is the codimension of the set. Although D measures 
absolute sparseness and frequencies of occurrence, C measures relative sparseness 
and probabilities of occurrence. For the Cantor set, C  =  1  –​ log2/​log3  =  0.36... ,  
and for the Sierpinski carpet, C  =  2  –​ log8/​log3  =  0.11... , so that their relative 
sparsenesses are not so different. If I put a circle (or square) of size L at random on 
the Sierpinski carpet (iterated to infinitely small scales), the probability of it landing 
on part of the carpet is L0.11, whereas for the Cantor set, putting a random seg-
ment of length L would have almost the same probability of landing on the set: L0.36. 
Notice that in both cases the probability gets smaller as the scale L is reduced. This 
is because small segments/​boxes are more likely to land in “holes” than larger ones.

This example illustrates the general result

	 Probability Scale≈ ( ) .C 	

In science, we’re usually interested in probabilities, so that fractal codimensions 
are generally more useful than fractal dimensions.

An example of fractal sets that is relevant to atmospheric science includes the 
locations where meteorological measurements are taken, represented as points in 
Figure 2.8C. In this case, the set is sparse because the measurement stations are 
concentrated on continents and in richer nations. To estimate its fractal dimension, 
one can place circles of radius L on each station77 (one is shown in the figure) and 
determine the average number of other stations within distance L. If one repeats 
this operation for each radius L, averaging over all the stations, one finds that, on 
average,78 there are LD stations in radius L and that this behavior continues down to 
a scale of 1 km.79 For the measuring network, we found D = 1.75 (Fig. 2.8D).

Even today, much of our knowledge of the atmosphere comes from meteoro-
logical stations. For climate purposes, such as estimating the evolution of the at-
mosphere over the past century, we must also consider ship measurements, place 
the data on a grid (typically 5° × 5° in size), and average them over a month (e.g., 
Fig. 2.8E). It turns out that for any given month, the set of grid points having some 
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temperature data is similarly sparse,80 so that both in situ weather and climate 
data are literally taken on fractal sets. An immediate consequence of a fractal net-
work is that it will not detect sparse fractal phenomena—​for example, the violent 
centers of storms that are so sparse that their fractal dimensions are less than C (in 
this example, less than about 0.25).

This analysis shows that as we use larger and larger circles, they typically encom-
pass larger and larger voids, so that the number of stations per square kilometer 
decreases systematically. The measuring network effectively has holes at all scales. 
This means that the usual way of handling missing data must be revised (Box 5.1). 
Currently, one thinks of the measuring network as a two-​dimensional spatial array 
or grid of data (three dimensional if we include time), although with some grid 
points empty because of missing data. According to this way of thinking, because 
Earth has a surface area of about 500  million km2, each of the 10,000 stations 
represents about 50,000 km2. This corresponds to a box about 220 km on a side 
so that atmospheric structures (e.g., storms) smaller than this will typically not be 
detected. Although it is admitted to be imperfect,81 the grid is therefore supposed 
to have a spatial resolution of 220 km. Our analysis shows that, on the contrary, the 
problem is one of inadequate dimensional resolution.82

2.2.3  Fractal lines and wiggliness

The preceding examples of fractal sets were deliberately chosen so that we could 
get an intuitive feel for the sparseness that the dimension quantifies. In many cases, 
we instead deal with sets made up of “wiggly” lines, such as the Koch curve,83 shown 
in Figure 2.9A.mm The fractal dimension can often quantify wiggliness. The construc-
tion proceeds from top to bottom by replacing each straight segment by segments 
in the shape of the second curve from the top (i.e., made of pieces, each of the orig-
inal size). Again, after n iterations, we have N = 4n and L = (1/​3)n, hence the fractal 
dimension is D = log4/​log3 = 1.26... . In this curve, the “wiggles” have a dimension 
between one and two; the wiggliness is quantified by D. Notice that as we proceed 
to more and more iterations, the length of the curve increases. Indeed, after each 
iteration, because each segment is replaced with four segments each one third the 
previous length, the length increases by a factor of 4/​3. Therefore, after n iterations, 
the length is (4/​3)n, which becomes infinite as n grows. If a completed Koch curve is 
measured with a ruler of length L (by definition, such a ruler will be insensitive to 
wiggles smaller than thisnn), then in terms of the fractal dimension, the length of the 
Koch curve is L1–​D. As the ruler gets shorter and shorter, it can measure more and 
more details, and the length increases accordingly. Since D (= 1.26 > 1), the length 
grows as L–​0.26 and becomes infinite for rulers with a small enough L.

mm If three Koch curves are joined at the vertices of a triangle, one obtains the Koch “snowflake,” 
which is probably more familiar.

nn This method is sometimes called the “Richardson dividers method” after Lewis F. Richardson, 
who first used it to estimate the length of coastlines and other geographical features.
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Figure 2.9  (A) (Left) A fractal Koch curve used as a model of the interface between two 
parts of a turbulent fluid by Weylander.84 (B) (Left) The first three steps of the original Peano 
curve, showing how a line (dimension 1) can literally fill the plane (dimension 2). (Right) 
A variant reproduced from Steinhaus, who used it as a model for a hydrographic network, 
illustrating how networks of streams can fill a surface.85
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How far can we take wiggliness? In 1890, Giuseppe Peano (1858–​1932) proposed 
the fractal construction that bears his name (Fig. 2.9B). The Peano curve is made 
from a line so wiggly that—​by successive iterations—​it passes through every single 
point in a square so that it ends up literally filling part of the plane! At the time, 
this stunned the mathematical community because it was believed that a square 
was two dimensional as it required two numbers (coordinates) to specify a point 
in it. Peano’s curve allows the position of a point in a square to be indicated instead 
by a single coordinate specifying its position on an (infinite) line wiggling its way 
around the square.86

We have already seen another example of wiggliness, the Weierstrass function 
(Figs. 1.3 and 2.2A), which is constructed by adding sinusoids with geometrically 
increasing frequencies and geometrically decreasing amplitudes. The Weierstrass 
function was originally proposed as the first example of a function with a value 
that is well-​defined everywhere (it is continuous), but does not have a tangent an-
ywhere (it is “nowhere differentiable”). A visual inspection (Fig. 2.2A) shows why 
this is so: To determine the tangent, we must zoom in to find a smooth-​enough 
part over which to estimate the slope. Because the Weierstrass function is a fractal, 
we in zoom forever without finding anything smooth.

An atmospheric example of a wiggly curve is the perimeter of a cloud, which 
can be defined from a cloud photograph as the wiggly line separating regions that 
are brighter or darker than a fixed brightness threshold.87 To estimate the fractal 
dimension of a single cloud perimeter, we could try to measure it with shorter and 
shorter rulers and use the fact that as L gets smaller, the perimeter length increases 
as L1–​D (since D > 1). It turns out that it is more convenient to use fixed-​resolution 
satellite or radar images (i.e., L is constant) and to instead use many clouds of 
different sizes. If we ignore any holes in the clouds,88 and if their perimeters all 
have the same fractal dimensions, then their areas (A) turn out to be related to 
the perimeter89 as P = AD/​2. Figure 2.6 (right) shows an example when this tech-
nique is applied to real cloud and rain areas. Although various theories were later 
developed to explain the empirical dimensionoo (D  =  1.35), the most important 
implication of this figure is that it gave the first modern evidence of the complete 
failure of Orlanski’s scalebound classification. Had Orlanski’s classification been 
based on real physical phenomena, with each different and acting over narrow 
ranges of scales, then we would expect a series of different slopes—​different fractal 
dimensions—​one for each of his scale ranges.

The expectation that the behavior would be radically different over different scale 
ranges was especially strong concerning the mesoscale, the horizontal range from 
about 1 to 100 km, where it was believed that atmospheric thickness would play a 
key role in changing the behavior: the “mesoscale gap” (Chapter 4). Before this, the 
only other quantitative evidence for wide-​range atmospheric scaling was from var-
ious empirical tests of Richardson’s 4/​3 law of turbulent diffusion.90 Figure 2.6 (left) 

oo These results were in my original PhD thesis. In the final version they were excised to satisfy the 
external referee. They were subsequently published in Science.
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shows his original verification using, notably, data from pilot balloons and volcanic 
ash.pp Throughout the 1950s and 1960s, Richardson’s atmospheric 4/​3 power law was 
confirmed repeatedly, with theorists invariably complaining that it extended beyond 
the range for “which it can be justified theoretically.” qq However the story didn’t end 
there. During the 1970s, in the wake of the two-​dimensional isotropic turbulence 
theory, a large-​scale balloon version, the EOLE experiment was undertaken and 
claimed to invalidate his law. In Chapter 4, I describe the saga of how this conclusion 
was based on an erroneous analysis, and how (partially) in 2004 and (fully) in 2013, 
Richardson was vindicated.

Box 2.2  Intermittency, multifractals, and the α model

In Section 1.3, we showed that lurking inside an apparently ordinary-​looking aircraft 
temperature transect is a highly intermittent (spiky) signal (the absolute differences 
between consecutive values). Figure  5.2 gives more examples. It turns out that 
this spikiness cannot be reproduced by additive fractal constructions such as the 
Wierstrasse function or the H model (Box 2.3). Instead, it requires a multiplicative 
construction and it yields multifractals. This is the subject of this box.

In Figure 1.6, I pointed out that the extreme spike in the figure was so much 
above the mean that the probability of it being generated by a process with a 
standard bell curve–​type probability was microscopic. How can we understand 
and model such a process? Because the temperature field is scaling, the natural 
thing to do is to see what happens when we degrade the resolution of the spikes 
systematically. Figure 2.10 shows how averaging the spikes in Figure  1.6 by 
successive factors of 4 smooths and reduces the resolution until, at the bottom, 
there are only two halves left. We could imagine a final step in which the two 
halves are averaged to yield a completely flat (constant) function. Notice that 
the spiky shape persists at all the lower resolutions. This is because the spikes 
are clustered and the clustering is hierarchical. For example, the largest spike 
(just above the letter m in “km” on the axis of the top row) is so strong and so 
highly correlated with the neighboring spikes, that it continues to stand out as we 
degrade the resolution.

pp The ocean is also an example of a stratified turbulent system, and the 4/​3 law holds fairly accu-
rately. Richardson tested his law creatively in the ocean using—​among other things—​bags of parsnips, 
which he watched diffuse from a bridge. Richardson, L. F. & Stommel, H. Note on eddy diffusivity in 
the sea. J. Meteorol. 5, 238–​240 (1948). Still later, it was verified in the ocean over a range from 10 m 
to 10,000 km. See Okubo, A. & Ozmidov, R. V. Empirical dependence of the horizontal eddy diffu-
sivity in the ocean on the length scale of the cloud. Izv. Akad. Nauk SSSR, Fiz. Atmosf. Okeana 6 (5), 
534–​536 (1970).

qq Meaning, it cannot be accounted for by the dominant three-​dimensional isotropic homogeneous 
turbulence theory, cited from p. 557 of Monin, A. S. & Yaglom, A. M. Statistical Fluid Mechanics. (MIT 
Press, 1975).
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Our objective now is to find a simple model that can reproduce this type of 
behavior. Let’s consider a simple process, the first two steps of which are shown 
in Figure 2.11: the “α model.”92 The idea is to inverse the order of the left column 
that increasingly averaged the data; to go from the bottom to the top in Figure 
2.10. In other words, start with a completely uniform interval and make it more 
and more spiky. This time we start with the unit interval—​the black line on the 
left half of the figure, one unit above the axis. We divide it in two, but this time we 
multiply each half by one of two possible numbers, choosing them randomly by 
separate “coin tosses” (although, in general, the probabilities will not be equal). In 
the example shown, the left multiplier was 2γ–​ and the right one was 2γ+, where γ–​, 
γ+ are the two basic “singularities” of the model, with γ–​ < 0 and γ+ > 0. Because 
γ–​ < 0, 2γ–​ < 1 and it decreases the level of the left-​hand side. And because γ+ > 0, 
2γ+ > 1, so that multiplication increases the level on the right-​hand side. Note that 
we could have any of the four combinations (γ–​, γ–​), (γ–​, γ+), (γ+, γ–​), (γ+, γ+)—​
in other words, (decrease, decrease), (decrease, increase), (increase, decrease), 
(increase, increase)—​although only the probabilities of the middle two would 
generally be equal.
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Figure 2.10  The top row is a reproduction of the intermittent spikes taken from the 
gradients in the aircraft data at the bottom of Figure 1.6. Moving from top to bottom, 
each row degrades (by averaging) the resolution of the previous by a factor of 4. Note 
the scale on the left is constantly changing.91
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Figure 2.12 shows the result for two different sets of γ–​, γ+. As we iterate the process 
by dividing and multiplying to smaller and smaller scales, the process becomes more 
and more spiky (note the vertical axes are constantly changing to accommodate the 
higher and higher extreme values that are generated). The simulation on the right is 
particularly extreme. This is an example of the “α model,” so named because of the 
exponent α that it introduces93.
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Figure 2.11  The first two steps in the construction of an a model in one dimension. 
The unit interval (the segment at vertical level 1 on the left) is broken into halves and 
each is multiplied by a randomly chosen factor, as explained in the text.
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Figure 2.12  Each column (top to bottom) shows every other stage in the construction of 
an α model over the unit interval (i.e., with resolutions 1/​4, 1/​16, 1/​64, 1/​256, and  
1/​1,024). Each column is a realization of an α model with different parameters (γ+, γ–​) that 
determine, respectively, the possible boost and reduction factors at each step. Passing from 
top to bottom is analogous to the redistribution of turbulent energy fluxes in a cascade. 
We see that most of the flux is in small spiky regions (the result of many boosts).94
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The α model is the simplest multifractal model and it was developed explicitly 
as a model of turbulent intermittency. The connection with turbulence and 
multifractality is perhaps more obvious if we make an α model in two-​dimensional 
space by starting with an initial square and dividing it into four subsquares (Fig. 
2.13). As before, each subsquare is multiplied by either 2γ–​ or 2γ+, chosen at random 
with probabilities selected to ensure the average is one: On average, the area under 
each curve is constant as the construction (cascade) proceeds to smaller scales.

Figure 2.13  This figure shows the first steps in the construction of an α model in two 
dimensions. The initial state (all white, all equal to one) is in the upper left. Moving 
to the right and from top to bottom, squares are divided in two in both horizontal 
directions. The vertical scale is fixed. For each subsquare, the value 1.31 (=2γ+) is chosen 
with a probability of 0.66; otherwise (probability 1 –​ 0.66 = 0.34), the value 0.38 (= 2γ–​) 
is chosen. On average, the value is 1. These values are then multiplied by the value given 
by the earlier steps in the process. At each level of activity (the vertical direction), the 
smallest scale is reduced by a factor of 2 so that, at the bottom right, there are 256 × 256 
spikes. To show them clearly, the levels have been shaded from the lowest value (white) 
to the highest value (black). The result is a multifractal. The regions that exceed a given 
level of activity each have different fractal dimensions decreasing as we move to higher 
and higher levels (the higher regions are thus more sparse).
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If we compare this with Figure 2.14—​the Richardson-​inspired “dead” or “alive” 
model for the region of turbulent activity—​we see that this two-​state (dead or alive) 
model is a special case obtained when the multipliers are either 2γ+ (boost) or decrease 
to zero (i.e., 2γ–​ with γ–​ = –​∞). Although the dead-​or-​alive case yields a fractal set of 
active regions, the α model is multifractal because each level of activity—​the spikes at 
a given vertical level in Figure 2.12 or Figure 2.13—​has a different fractal dimension 
that decreases at more and more extreme levels.

In the limit of a large number of steps, the value at each point is multiplied by an 
infinite number of factors so that it isn’t obvious that the process converges at all. It 
turns out that there is no convergence in the usual sense (i.e., at a geometric point in 
the horizontal plane).rr However, spatial averages over finite regions do converge, but 
they have extreme probabilities that are so far from the bell curve they can be called 
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Figure 2.14  A schematic diagram showing the first few steps in a Richardson-​
inspired cascade process. At each step, the parent eddy (Richardson’s “big whirl,” top) 
is broken up into “daughter” eddies, each reduced by a factor of 2 in scale, indicated as 
squares. The left shows a homogeneous cascade (corresponding to Kolmogorov’s 1941 
homogeneous turbulence) in which the energy flux (the energy rate density) is simply 
redistributed from large to small structures while keeping its average density constant. 
The right-​hand side shows an improvement: “On/​off” intermittency is modeled by 
an “alive/​dead” alternative at each step (here, only the bottom right subeddy becomes 
dead). The result is a fractal set of active areas. The fractal dimension is shown at the 
bottom. For pedagogical reasons, the alternative displayed is purely deterministic, but 
could be randomized easily (see text).95

rr This is why multifractals cannot be thought of as geometric sets of points.
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74	 Weather, Macroweather, and the Climate

black swans (see Box 3.1). Because the small scales are at the origin of the extreme 
behavior, this has been called96 the “multifractal butterfly effect.”97

The α model is the simplest multifractal model. It is an example of what physicists 
call a “toy model.” It has many of the key features of a realistic model, but is simple 
to understand. To be a realistic model of real-​world turbulent processes, the α model 
must be extended in several ways. One way is to allow for an arbitrary number of 
different multipliers: a continuous distribution rather than only the two possibilities 
allowed in the α model. A second generalization is needed to avoid the ugly straight 
construction lines in Figure 2.13. These lines are a consequence of only allowing 
reductions in scale by factors of 2. But nature doesn’t operate in powers of two; we 
need continuous-​in-​scale multifractals. It turns out that, in such multifractals, one 
obtains a simplification called “universal multifractals” 98 that depend on only three 
parameters.99 Finally, we need to remember that these pure multiplicative models 
are only appropriate for processes (such as the energy flux) that are, on average, 
conserved from one scale to another (large to small). To model directly observable 
fields, such as wind or temperature, we need a mixed multiplicative–​additive-​type 
process—​for example, a kind of marriage between the α model and the H model 
discussed in Box 2.3. Chapter 3 shows many examples of clouds modeled in this way.

These cascade models are produced by large scales modulating smaller scales 
multiplicatively, and with the smaller scales modulating even smaller scales, 
repeating over a wide range so that the variability grows from large to small scales, 
with each level of activity characterized by a different exponent. It turns out there 
is a straightforward method of displaying this systematic growth of the variability 
with scale and directly estimating the “outer scale” at which the cascade started. 
For examples of the method (called “trace moments”100) applied to both Earth and 
Mars for pressure, wind, and temperature, see Figure 4.14. There, it is found that the 
outer scales of the cascade—​the scale at which the variability begins to grow—​are (as 
expected) very near the largest possible distances on each planet.101

  

2.2.4  Richardson

We have examined several of the famous nineteenth-​century fractals: the Cantor 
set (Fig. 2.8A), the first set with a noninteger dimension; the Peano curve (Fig. 
2.8B), the first line that could pass through every point in the unit square (a plane); 
and the Weierstrass function (Fig. 2.2A), the first continuous curve that doesn’t 
have a tangent anywhere. But for a long time, these were considered to be essen-
tially mathematical constructions—​academic oddities without physical relevance. 
Mandelbrot rehabilitated them and provocatively called them “monsters.”

Mandelbrot not only coined the term “fractal,” but with his indefatigable energy 
put them squarely on the scientific map. Although he made numerous mathemat-
ical contributions,ss his most important one was as a towering pioneer in applying 

ss I will let the mathematicians judge his contributions to mathematics. However, there is no ques-
tion that Mandelbrot’s contribution to science has been monumental and underrated. In any case (and 
despite Mandelbrot’s efforts!), it is still a bit early to evaluate his place in the history of science. For a 
brief biography, see Barton, C. C., Lovejoy, S., Schertzer, D., & Turcotte, D. L. Benoit B. Mandelbrot 
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fractals and scaling to the real world. In this regard, his only serious scientific pre-
cursor was Lewis Fry Richardsontt (1881–​1953). As a result of his Quaker beliefs, 
Richardson was a pacifist, which made his career difficult, essentially disqualifying 
him from academic positions. He instead joined the Meteorology Office, but quit 
temporarily to drive an ambulance during the first world war. Afterward, he 
rejoined the Meteorology Office, but resigned in 1920, when it was militarized by 
being merged into the Air Ministry.

Richardson worked on a range of topics and is remembered for the nondimensional 
Richardson number that characterizes atmospheric stability, the Richardson 4/​3 
law (Fig. 2.6, left), the Modified Richardson Iteration, the Richardson Acceleration 
techniques of numerical analysis, and the Richardson divider’s method. The latter 
is a variant on box counting (discussed earlier) that he used notably to estimate the 
length of the coastline of Britain, demonstrating that it followed a nontrivial power 
law. Mandelbrot’s famous 1967 article that initiated fractals102,uu took Richardson’s 
graphs and interpreted the exponent in terms of a fractional dimension.103 Fully 
aware of the problem of conceptualizing wide-​range atmospheric variability, 
Richardson was the first to propose explicitly that the atmosphere might be fractal. 
A remarkable subheading in his 1926 article on turbulent diffusion is titled “Does 
the wind possess a velocity?” and is followed by the statement:  “this question, at 
first sight foolish, improves upon acquaintance.”104 He then suggested that a particle 
transported by the wind might have a Weierstrass functionlike trajectory that would 
imply that its speed (tangent) would not be well defined.vv

Richardson is unique in that he straddled the two main—​and superficially 
opposing—​threads of atmospheric science: the low-​level deterministic approach 
and the high-​level statistical turbulence approach. Remarkably, he was a founding 
figure for both. His seminal book Weather Forecasting by Numerical Process105 ,ww 
inaugurated the era of numerical weather prediction. In it, Richardson not only 
wrote down the modern equations of atmospheric dynamics, but also he pioneered 
numerical techniques for their solution. He even attempted a laborious manual 
integration.xx Yet, this work also contained the seed of an alternative: Buried in 

(1924–​2010). EOS Trans. 93 (4), 44 (2012). Interested readers may consult his posthumously published 
autobiography: Mandelbrot, B. B. The Fractalist. (First Vintage Books, 2011).

tt  I  have given some historical examples of early geophysical fractal models (Fig. 2.9A and the 
right side of Fig. 2.9B), but other notable precursors were Jean Perrin (1870–​1942), who questioned 
the differentiability of the coast of Brittany [Perrin, J. Les Atomes. (NRF-​Gallimard, 1913).] and Hugo 
Steinhaus (1887–​1972), who questioned the integrability of the length of the river Vistula [Steinhaus, 
H. Length, shape and area. Colloq. Math. III, 1–​13 (1954).]. Lack of differentiability and its converse, 
integrability, are typical scaling, fractal features. Looking back, these examples are significant, but are 
isolated. In contrast, Mandelbrot initiated a whole body of work.

uu This was still nearly a decade before Mandelbrot coined the word “fractal.”
vv It turned out that the problem was not the velocity, but the acceleration.
ww Lacking support, he paid for the publication out of his own pocket.
xx Near the war’s end, he somehow found six weeks to attempt a manual integration of the weather 

equations. His estimate of the pressure tendency at a single grid point in Europe turned out to be badly 
wrong (as he admitted), but the source of the error was only recently identified. See the fascinating 
account by Lynch, P. The Emergence of Numerical Weather Prediction: Richardson’s Dream. (Cambridge 
University Press, 2006).
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the middle of a paragraph, he slyly inserted the now iconic poem describing the 
cascade idea: “Big whirls have little whirls that feed on their velocity, little whirls 
have smaller whirls and so on to viscosity (in the molecular sense).”yy Figure 2.14 is 
a schematic showing a modern interpretation that is the basis of turbulent models 
of intermittency and is the basic multifractal model (see Box 2.2).

Richardson’s book was soon followed by the first turbulent law, the Richardson 
4/​3 law of turbulent diffusion,106 today celebrated as the starting point for modern 
theories of turbulence, including the key idea of cascades and scale invariance. 
Unencumbered by later notions of mesoscale,zz and with remarkable prescience, 
he even proposed that his scaling law could hold from dissipation up to planetary 
scales (Fig. 2.6, left). Richardson is the precursor of much of the work described 
in this book, including the area–​perimeter analysis (Fig. 2.6, right) and the large 
body of results that we examine later. Today, he is honored both as the father of 
numerical weather prediction by the Royal Meteorological Society’s Richardson 
prize and as grandfather of turbulence by the European Geosciences Union’s 
Richardson medal.aaa

As a humanist, Richardson worked to prevent war. With his article “The 
Problem of Contiguity:  An Appendix of Statistics of Deadly Quarrels,”107 he 
founded the mathematical (and nonlinear!) study of war. He was also anxious 
that his research be applied to improve the situation of humanity directly, and 
proposed the construction of a vast “weather factory” that would employ tens of 
thousands of human “computers” and would make real-​time weather forecasts. 
Recognizing (from personal experience) the tedium of manual computation, he 
foresaw the need for the factory to include social and cultural amenities.

Let me now explain a deep consequence of Richardson’s cascade idea that didn’t 
fully mature until the nonlinear revolution in the 1980s. We have seen that the 
alternative to scalebound thinking is scaling thinking, and that fractals embody 
this idea for geometric sets of points. For example, the Koch curve was a model of 
a turbulent interface, the set of points bounding two different regions; the Peano 
curve was a model of a hydrographic network. However, to apply fractal geometry 
to the set of bounding (perimeter) points on a cloud, we were already faced with a 
problem: We had to reduce the gray shades to white or black (cloud or no cloud). 
Because atmospheric science does not often deal with black/​white sets—​but rather 
with fields, such as cloud brightness or temperature, which have numerical values 
everywhere in space and that vary in time—​something new was necessary.

 (Re)consider Figure  1.6, the aircraft temperature transect. We could re-
peat the treatment of the Weierstrass function to try to fit the transect into the 

yy Richardson, L. F. Weather Prediction by Numerical Process. (Cambridge University Press, 1922), 
p. 66. (Republished by Dover, 1965). This poem was a parody of a nursery rhyme by mathematician 
Augustus de Morgan, the “Siphonaptera”: “Big fleas have little fleas, Upon their backs to bite ʼem, And 
little fleas have lesser fleas, and so, ad infinitum.” Quoted from Teskey, G. The Poetry of John Milton. 
(Harvard University Press, 2015).

zz That predicted a strong break in the scaling (see Chapter 4).
aaa The highest honor of the Nonlinear Processes Division.
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framework of fractal sets by simply considering the points on the top graph as 
the set of interest. But, this turns out to be a bad idea, because as we also saw 
in Figure  1.6 (bottom), the figure was actually hiding some incredibly variable, 
spiky (intermittent) changes, and this behavior requires something new to handle 
it: multifractals.bbb Indeed, multifractals were first discovered precisely as models 
of such turbulent intermittency.108

Focus on the “spikes” at the bottom of Figure  1.6. Rather than treating all the 
points on the graph as a wiggly fractal set, instead consider the set of points that ex-
ceed a fixed threshold—​for example, those above the level of one standard deviation, 
as indicated by the horizontal line in the figure—​as a kind of Cantor set. If the spikes 
are scale invariant, then this set will be a fractal with a certain fractal dimension. Now, 
move the horizontal line a little higher to consider a different set: the spikes that ex-
ceed this higher level. We find that the fractal dimension of this different set is lower. 
Indeed, in this way, moving to higher and higher levels, we could specify the fractal 
dimension of all the different-​level sets, thus completely characterizing the set of 
spikes by an infinite number of fractal dimensions. The absolute temperature changes 
(the spikes)—​and indeed the temperature transect itself—​are thus multifractals. It 
turns out that multifractals are naturally produced by cascade processes that are phys-
ical models of the concentration of energy and other turbulent fluxes into smaller and 
smaller regions. More information about this is included in Box 2.2.

Mathematically, although fractals are scale-​invariant geometric sets of points, 
they are black or white; you are either on or off the set of points. In contrast, 
multifractals—​at least when averaged over small segments and time intervals—​
are scale-​invariant fields. Like the temperature, they have numerical values at each 
point in space, at each instant in time.

Box 2.3  Fluctuations and the fractal H model

We have seen that both sparse sets of points as well as wiggly lines can be fractal 
sets, and that fractal dimensions can characterize both sparseness and wiggliness. 
Usually, we are not very interested in sets of points, but rather in functions—​such as 
the temperature as a function of time. How can fractals help us there? An obvious 
way is to graph the temperature as a function of time. At every instant in time, plot 
the value of the temperature.109 In the simplest “monofractal” model discussed here, 
if the temperature is scale invariant with respect to changes in timescales, then the 
set of points on the graph is a fractal set.110

We have already given the example of the Weierstrass function, where we 
introduced the exponent H to characterize the fluctuations. It turns out that 
fluctuations are fundamental. In particular, there is a basic distinction between 

bbb Mathematically, the nontrivial point is that although the Weierstrass function is continuous (i.e., 
well defined at each instant t, a mathematical point on the time axis), a multifractal only converges in 
the neighborhood of the instant. To converge, the multifractal must be averaged over a finite interval. 
This is the origin of the “dressed” properties that are related to the “multifractal butterfly effect” and 
extreme events discussed later in Box 3.1.
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functions that have fluctuations that increase in size with scale (H > 0) and those that 
have fluctuations that decrease with scale (H < 0).

To understand more fully fluctuations that increase or decrease with scale, let’s 
consider the simple fractal H model.111 Figure 2.15 shows the first two steps in the 
construction. The motif is a basic step of width (time interval) ∆t and amplitude 
(temperature variation) ∆T. The step represents a basic fluctuation at scale ∆t. It is 
equal to –​∆T/​2 on the left half and ∆T/​2 on the right half. The second iteration in 
the construction is achieved by reducing the timescale by a factor of 1/​2, but the 
amplitude (the vertical direction) by a different amount:  (1/​2)H. When H > 0, the 
amplitude of the shorter duration fluctuations is less than one half; when H < 0, it is 
larger. We then flip a coin to decide if this reduced-​scale fluctuation is left as it is or 
whether it is flipped upside down (equivalent to multiplying it by a factor of –​1). We 
then repeat this a second time and place this second (reduced) replica to the right of 
the first one as shown (in the example, only the second one is flipped). Notice that 
the average over an entire fluctuation is zero and, similarly, that the difference in 
amplitude between the beginning and end of a fluctuation is ∆tH. We return to this 
when we consider analyzing the H model.

∆t

∆T

±(1/2)H x ∆T 

Random sign

“motif ’’ =
1st iteration

2nd iteration(1/2) x ∆t

Figure 2.15  The first two steps in the construction of the H model. The basic shape is a 
step function (top), two copies of which are produced by reducing in scale by a factor of 2 
in the horizontal and by a factor of (1/​2)H in the vertical. This reduced-​scale copy is then 
either left as it is (e.g., the left-​hand side in the bottom row, the solid line) or “flipped” (as 
in the right-​hand side in the bottom row, the dashed line). Figure 2.16 shows several more 
stages in the construction.112
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We then continue this process (Fig. 2.16), generating a series of levels, each with 
fluctuations of shorter and shorter duration. To the left of Figure 2.16, we see an 
example with H > 0; on the right, H < 0. Finally, the fractal is made by summing 
the individual iterates (bottom). We see that when H > 0 (left), the resulting signal 
wanders, drifts up or down; on the right, it converges, displaying lots of cancelations, 
with origins that can be seen in the iterates.

If we were given the series on the right or the left, how could we deduce the 
exponent H that was used in its construction? The easiest to understand is the right-​
hand simulation (H < 0). If we average the simulation over a duration ∆t, we can 
see that we will average out all the shorter duration iterates so that the remaining 
variation depends only on the larger scales. Increasing the averaging duration will 
eliminate more and more of the small iterates, so that we could use the rate that the 
averaging eliminates the smaller scale fluctuations to estimate H.

For the left-​hand side, with H > 0, the basic idea is the same, although instead of 
averaging, we must now consider the effect of taking differences between values of 
the process over longer and longer intervals (∆t). The differences will be dominated 
by the fluctuations smaller than ∆t—​those that come from the larger ∆t (lower level 
iterates) will typically not change the temperature difference over durations of ∆t.
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Figure 2.16  Examples of the first seven steps in the construction of H models, 
with H > 0 (left) and H < 0 (right). The final result is obtained by summing over 
all the reduced-​scale series. The left column corresponds to the weather, the climate, 
and megaclimate regimes (see Fig. 2.13) whereas the right column corresponds to 
macroweather and macroclimate.113
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80	 Weather, Macroweather, and the Climate

The Haar fluctuation (Fig. 2.17) combines averaging and differencing into a single 
analysis tool that works for either positive or negative H. It gives good estimates for 
either the left-​ or right-​hand simulations.

  

–1 < H < 1
Haar fluctuations
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Figure 2.17  (Top) Schematic illustration of difference fluctuations for a multifractal 
simulation of the atmosphere in the weather regime (0 ≤ H ≤ 1). (Middle) Illustration 
of the anomaly fluctuation for a series in the macroweather regime with –​1 < H <0. 
(Bottom) Illustration of Haar fluctuations (useful for processes with –​1 ≤ H ≤ 1), 
applied here to the middle series. The Haar fluctuation over the interval ∆t is the mean 
of the first half subtracted from the mean of the second half of the interval ∆t.114

2.3  Fluctuation analysis as a microscope

When confronted with variability over a huge range of space and timescales, we 
have argued that there are two extreme opposing ways of conceptualizing it. We 
can either assume that everything changes as we move from one range of scale 
to another—​every factor of 10 or so—​or, on the contrary, we can assume that, 
at least over a wide range (factors of hundreds, thousands, or more), blowing up 
gives us something that is essentially the same. But this is science; it shouldn’t 
be a question of ideology. If we are given a temperature series or a cloud image, 
how can we analyze the data to distinguish the two? To tell which is correct? We 
have already introduced two methods:  spectral analysis, which is quite general; 
and the area–​perimeter relation, which is rather specialized. Although spectral 
analysis is a powerful technique, its interpretation is not so simple. Indeed, had 
the interpretations been obvious, we would never have missed the quadrillion, and 
the distinction between macroweather and the climate would have been clarified 
long ago!
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ccc This monthly series from the Greater London area is famous for the being the longest complete 
series based on real thermometer measurements.

ddd Long before the Internet, scanners, and publicly accessible data archives, as a postdoc at the 
Météorologie Nationale in Paris, I recall taking the published graphs, making enlarged photocopies, 
and then using tracing paper to digitize them painstakingly.

It is therefore important to use an analysis technique that is both easy to apply 
and easy to understand—​a kind of analytical microscope that allows us to zoom 
in and to compare systematically a time series or a transect at different scales to 
test the scalebound or scaling alternative directly—​fluctuation analysis, which was 
already briefly discussed in Figures 2.3C and 2.4, and Box 2.1.

We probably all have an intuitive idea about what a fluctuation is. In a time se-
ries, it’s about the how the values change over an interval in time. Consider a tem-
perature series. We are interested in how much the temperature has fluctuated over 
an interval of time ∆t. The simplest fluctuation is simply the difference between 
the temperature now and at a time ∆t earlier (Fig. 2.17, top). This is, indeed, the 
type of fluctuation that has traditionally been used in turbulence theory and was 
used in the first attempt to test the scaling hypothesis on climate data (Fig. 2.18). To 
make Figure 2.18, first, two instrument series were analyzed: the Manley115 series 
from central England starting in 1659ccc (open circles) and an early northern hem-
isphere series from 1880 (black circles). The former was essentially local (regional) 
and the latter was global in scale. The other series were from early paleoisotope 
series, using the official calibrations to transform them into temperature values.ddd

101

10–1

101 102

100 10 kyrs

∆t (years)

∆T °C

1 Myr

103 104 105 1061

1

Figure 2.18  The square root of the average squared differences (the root mean square, 
or RMS, differences; the “structure function”) estimated from local (central England) 
temperatures since 1659 (open circles, upper left), northern hemisphere temperature (black 
circles), and from paleotemperatures from Vostok (Antarctic, solid triangles), Camp Century 
(Greenland, open triangles), and from an ocean core (asterisks). For the northern hemisphere 
temperatures, the (power law, linear on this plot) climate regime starts at about ten years. 
The rectangle (upper right) is the “glacial–​interglacial window” through which the structure 
function must pass to account for typical variations of ±2 to ±3°C for cycles with half periods 
of ≈50,000 years.116
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To make the graph for a given time interval ∆t, one calculates systematically 
all the nonoverlapping differences in each series and averages the squares of these 
differences. The typical values shown in the plot are the square root of these (the 
“root mean squares”). One then plots the results on logarithmic coordinates because, 
in that case, scaling appears as straight lines and can be identified easily. Reading 
the graph, one can see, for example, that at ten-​year intervals, the typical northern 
hemisphere temperature change is about 0.2°C and that, over about 50,000 years, 
the typical temperature difference is roughly 6°C (±3°C), which corresponds to 
the typical difference of temperature between glacials and interglacials. Hence the 
box, which allows for some uncertainty, is the “glacial–​interglacial window.” These 
fluctuations are therefore straightforward to understand.

In Figure 2.18, a reference line with slope H = 0.4 is shown corresponding to 
the scaling behavior ∆T ≈ ∆tH, linking hemispheric temperature variations at ten 
years to paleovariations at hundreds of thousands of years. Although this basic 
picture is essentially correct, later work provided a number of nuances that help 
to explain why things were not fully cleared up until much later. Notice, in partic-
ular, the two essentially flat sets of points in the figure—​one from the local central 
England temperature up to roughly three hundred years and the other from an 
ocean core that is flat from scales of 100,000 years and longer. It turns out that the 
flatness is an artifact of the use of differences in the definition of fluctuations. We 
need something better.

Before continuing, let us recall the scaling laws that have been introduced up 
until now:

	 Spectrum Frequency Scale≈ ω ≈( () )−β β 	

	 Number of boxes Size L Scale≈ ≈( () )− −D D 	

	 Probability Scale≈ ( )C 	

	 Fluctuations Interval Scale ,≈ ∆ ≈( () )t H H 	

where β is the spectral exponent, D is the fractal dimension of a set, C is the 
codimension, and H is the fluctuation exponent.117 Fluctuations are potentially 
widely applicable and easy to interpret. A  nonobvious problem with defining 
fluctuations as differences is that, on average, differences cannot decrease with 
increasing time intervals.118 This is fine when H is positive, but it means that it 
is useless whenever H is negative (implying that ∆tH decreases with increasing 
∆t).119 But do regions of negative H exist? One way to investigate this is to try to 
infer H from the spectrum, which does not suffer from an analogous restriction; 
its exponent, β, can take any value. In this case there is an approximate for-
mula120 we can use: β = 1 + 2H. This formula implies that negative H corresponds 
to β < 1, and a check on the spectrum (Fig. 2.3A) indicates that several regions 
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are indeed flat enough to imply negative H. How do we fix the problem with 
difference fluctuations and use fluctuations to estimate the correct H when it is 
negative?

It took a surprisingly long time to clarify this issue. To start with, the turbu-
lence community was fond of difference fluctuations for which it had developed 
many convenient theoretical results. Turbulence theorists had been the first to 
use fluctuations as differences, effectively introducing the first fluctuation ex-
ponent H =  1/​3 as the exponent in Kolmogorov’s famous laweee a decade before 
Edwin Hurst (see Chapters  3 and 4). In classic turbulence, all the H values are 
positive, so that the restriction to positive H was not a problem. Later, in the wake 
of the nonlinear revolution during the 1980s, mathematicians invented an entire 
mathematics of fluctuations called “wavelets.”fff Although, technically, difference 
fluctuations are indeed wavelets, mathematicians mock them, calling them the 
“poor man’s wavelet,” promoting the more sophisticated ones. Wavelets turned out 
to have many beautiful mathematical properties and often have colorful names 
such “Mexican Hat,” “Hermitian Hat,” or the “Cohen-​Daubechies-​Feauveau 
wavelet.” For mathematicians, it was irrelevant that the corresponding physical 
interpretations were not evident. The mastery of wavelet mathematics also re-
quired a fair intellectual effort, and this limited the number of their adepts.

This was the situation in the 1990s, when scaling started to be applied to geo 
time series involving negative H (essentially, to any macroweather series, al-
though at the time this was not at all clear). It fell upon statistical physicist Chung-​
Kang Peng to develop an H < 0 technique that he applied to biological series: the 
detrended fluctuation analysis (DFA) method.121 Also at this time, another part 
of the scaling community (including my colleagues and I) were focusing on 
multifractality and intermittency, and these issues didn’t involve negative H, so 
the problem was ignored. Over the following nearly two decades, there were 
thus several more or less independent strands of scaling analysis, each with its 
own mathematical formalism and interpretations. The wavelet community dealt 
with fluctuations directly but were unconcerned about the simplicity of physical 
interpretations; the DFA communityggg wielded a somewhat complex method, 
but one that could be readily implemented numerically and didn’t require much 
theoretical baggage122; and the turbulence community focused on multifractal in-
termittency. In the meantime, mainstream geoscientists continued to use spec-
tral analysis—​focusing on spectral peaks that supposedly (and often spuriously) 
represented quasi-​oscillating processes—​rather than on the scaling or on the 

eee Kolmogorov’s law was very close to Richardson’s 4/​3 law; the 4/​3 was H + 1.
fff Although wavelets can be traced back to Alfred Haar (1909, discussed later), they really took off 

starting in the early 1980s with the continuous wavelet transformation by Alex Grossman and Jean 
Morlet.

ggg At last count, Peng’s original article had more than 2,000 citations, an astounding number for 
such a highly mathematical paper.
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84	 Weather, Macroweather, and the Climate

interpretation of the amplitudes of the spectra, most of which were treated as un-
interesting background noise.

Ironically, the impasse was broken by the first wavelet, the one that Alfred 
Haar (1885–​1933) had introduced in 1910, even before wavelet formalism had been 
invented.123 The Haar fluctuation is beautiful for two reasons: the simplicity of its 
definition and calculation, and the simplicity of interpretation.124 To determine 
the Haar fluctuation over a time interval ∆t, one takes the average of the first half 
of the interval and subtracts the average of the second half (Fig. 2.17, bottom). 
That’s it!hhh As for the interpretation,125 it is easy to show that when H is positive, 
that it is (nearly) the same as a difference, whereas whenever H is negative, we not 
only recover its correct value,iii but the fluctuation itself can be interpreted as an 
“anomaly.”jjj

When Haar fluctuations are substituted for difference fluctuations, and using 
the climate series discussed in Chapter 1, we obtain the composite Figure 2.4A, 
which covers a range of about five orders of magnitude more than that covered by 
Mitchell126 (Fig. 2.3A). One can clearly make out five distinct regions, each—​with 
the exception of macroclimate127—​of which is scaling over ranges of roughly 1,000 
in timescale.kkk We clearly see the alternation of the sign of the slope (H) from 
positive (the weather regime to about 10 days; Fig. 2.3A, left) through the longer 
macroweather regime,128 with decreasing fluctuations and negative H, to the 
increasing climate regime, decreasing macroclimate, and increasing megaclimate. 
The numbers on the vertical axis of Figure 2.4A all make perfect sense and give a 
precise idea of typical fluctuations at the corresponding timescale. For example, 
reading the numbers off the graph, we see that typical temperature fluctuations 
at intervals of one second are about 0.1°C; at ten days (midlatitudes), about 10°C. 
These are the increasing part of the curve at the left, and they indicate that typical 
changes at these scales are ±0.05°C, ±5°C. At ten years—​on the decreasing part 
of the curve, we again have fluctuations with amplitudes of about 1°C—​in this 
case, indicating that typical consecutive ten-​year averages differ by this amount. 
Continuing to longer time periods, we find that typical Ice Age variations (with 
half periods ∆t about 50,000 years) are roughly 6°C, and at 100 million years are 
about 12°C. Similarly, in space (Fig. 2.4B), kilometer-​to-​kilometer changes are on 
the order of 0.2°C, with typical changes at 100 km of 1°C. In contrast, we saw by 
direct comparison (Fig. 2.3C) that the quantitative implications of Mitchell’s spec-
trum are quite implausible. For example, analysis shows that it implies that con-
secutive centennial average global temperatures would vary by only a hundredth 

hhh I can recall a comment of a referee of an article in which I explained the Haar fluctuation using 
the same words. Expecting a complicated wavelet expression, he complained that he didn’t understand 
the words and instead wanted an equation!

iii The Haar fluctuation is only useful for H in the range –​1 to 1, but this turns out to cover almost all 
of the series that are encountered in geoscience.

jjj In this context, an anomaly is simply the average over a segment length ∆t of the series after its 
long-​term average has been removed.

kkk The weather regime apparently continues for a further factor of 100 down to millisecond dissi-
pation scales.
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oflll a degree centigrade, that million-​year averages would vary by a few dozen 
microdegrees.

But how reliable is Figure 2.4A? Would it have been different if it had been 
compiled at a different epoch? Box 2.1 explored its robustness by imagining that 
our hominid ancestor Lucy was a climatologist, and argued that her version of the 
figure would have been only a little—​but not much—​different. With only one or 
two caveats, the figure is likely to be representative of the past 800,000 years, and 
even of the past 65 million years.

Figure 2.4C shows how fluctuations in the different regimes look, confirming 
the canceling (H < 0) and wandering (H > 0) behaviors. By comparing the bottom 
two at 0.017-​second and hourly resolutions, we see visual confirmation that al-
though they have the same H values, the characters are somewhat different, with 
the bottom being more “spikey”—​a consequence of intermittency (Box 2.2). Last, 
Figure 2.4B is the spatial counterpart of Figure 2.3A, showing how data averaged 
over different time intervals (the different regimes) fluctuates in space. It shows 
excellent scaling (straight lines in the figure) including through the mesoscale 
discussed earlier (1–​100 km).

By comparing the difference and Haar fluctuations (Fig.  2.18 and Fig.  2.4A, 
respectively), we can now comprehend the limitations of the difference-​based 
analysis (Fig. 2.18), and understand why macroweather was not clearly discerned 
until so recently. As expected, the increasing parts of the two figures are quite 
similar: The flat parts of Figure 2.18 do indeed correspond to negative H—​both 
macroweather and macroclimate. The remaining apparent divergence between 
the differences and Haar fluctuations (Figs. 2.18 and 2.4A) has to do with the dif-
ference between local and globally averaged temperatures, and the difference be-
tween industrial and preindustrial temperatures (resulting from anthropogenic 
warming). I defer discussion of this until Chapter 5 and Box 5.1.

Notes

1. Recent historical research indicates that Robert Hooke may, in fact, have preceded van 
Leeuwenhoek, but the latter is usually credited with the discovery.

2. Boeke, K. Cosmic View: The Universe in Forty Jumps. (John Day, 1957).
3.  Hutchins, R.  M. & Adler, M.  J. Gateway to the Great Books. (Encyclopædia 

Britannica, 1963).
4. Produced by the National Film Board of Canada.
5. By Charles and Ray Eames.

lll  The missing quadrillion refers to the spectrum—​the amplitude of the fluctuations squared. 
Mitchell’s error in the fluctuation amplitude is only by a factor of about a few million. The subsecond 
thermistor data analyzed in the lower left of Figure 2.4A extends Mitchell’s range of timescales by a 
further factor of 100,000 (from two hours down to 0.03 seconds). If Mitchell had extended his roughly 
flat background spectrum to the corresponding high frequencies, the error would have compounded 
by a further factor of 100 million or so.
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6. The re-​release had the subtitle “A Film Dealing with the Relative Size of Things in the 
Universe and the Effect of Adding Another Zero” and was narrated by Philip Morrison. 
More recently, the similar Cosmic Voyage (1996) appeared in IMAX format.

7. Sharf, C. The Zoomable Universe. (Scientific American, 2017).
8. Cooley, J. W. & Tukey, J. W. An algorithm for the machine calculation of complex 

Fourier series. Math. Comput. 19 (90), 297–​301 (1965).
9. The averaging is over a collection (ensemble) of similar processes. If we only have a 

single time series, then technically the result is a “periodogram.”
10. Because the darker curve is the result of analyzing a single series, there is no averaging 

over a collection of series so that, technically, this is a periodogram. Rather, the spectrum is 
represented by the smooth gray curves at the bottom, which are obtained by averaging over 
many periodograms (one of these by averaging over 5,000; the other is the theoretical result 
for averaging over an infinite number).

11.  The spectrum is actually the ensemble average of the squares of the absolute 
amplitudes. It was “windowed” to avoid spurious “spectral leakage” that could smear out 
the spectrum artificially.

12.  For other examples, see Lovejoy, S.  The spectra, intermittency and extremes of 
weather, macroweather and climate. Nat. Sci. Rep. 8, 1–​13. (2018).

13. The negative sign is used by convention so that, in typical situations, β is positive.
14. In the more usual case of continuous spectra, we have β = 1 + 2H, with corrections 

when intermittency is important (see Box 2.3).
15. I admit that, to make my point, I made 5,000 simulations of the multifractal process 

in Figure 1.3 and then searched through the first fifty to find the one with the most striking 
variation. But this was by no means the most extreme of the 5,000, and if the statistics had 
been from the bell curve, then the extreme point in the spectrum in Figure 2.3 would have 
corresponded to a probability of 1 in 10 trillion, so that my slight cheating in the selection 
process would still have been extremely unlikely to have caused the result!

16. According to standard assumptions (which this example shows are inappropriate), 
successive frequencies should be statistically independent of each other; there should be no 
relationship between them.

17. The standard statistical null hypothesis used for detecting extreme spectral peaks is 
based on the bell curve and this is inappropriate. Several examples of spurious periodicities 
emerged in the 1990s as a consequence of the use of sophisticated analysis techniques such 
as the multitaper method and the singular spectral analysis method combined with such 
inappropriate probability assumptions, see Chapter 4.

The search for significant oscillations continues. A recent climate example of a spec-
tral analysis with a spectrum similar to Figure 2.2B (albeit with much smaller spikes, but 
still claimed to be significant) can be found in Galloway, J., Wigston, A., Patterson, R.T., 
Swindles, G.T., Reinhardt, E., & Roe, H.M. Climate change and decadal to centennial-​scale 
periodicities recorded in a late Holocene NE Pacific marine record: Examining the role of 
solar forcing. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 669–​689 (2013).

18.  I  could also mention the contribution of “Box-​Jenkins” techniques (1970) to 
bolstering scalebound blinkers. Originally, they were engineering tools for analyzing 
and modeling stochastic processes based on the a priori scalebound assumption that the 
correlations decayed in an exponential manner. This contributed especially to scalebound 
thinking in precipitation and hydrology. See, for example, the following influential 
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publications: Zawadzki, I. Statistical properties of precipitation patterns. J. Appl. Meteorol. 
12, 469–​472 (1973); Bras, R. L. & Rodriguez-​Iturbe, I. Rainfall generation: A nonstationary 
time varying multidimensional model. Water Resourc. Res. 12, 450–​456 (1976); Bras, R. L. & 
Rodriguez-​Iturbe, I. Random Functions and Hydrology. (Addison-​Wesley Publishing, 1985).

19.  Mitchell, J.  M. An overview of climatic variability and its causal mechanisms. 
Quaternary Res. 6, 481–​493 (1976).

20.  Dijkstra, H.  & Ghil, M.  Low frequency variability of the large scale ocean 
circulations:  A dynamical systems approach. Rev. Geophys. 43 (RG3002), 1–​38 (2005). 
Fraedrich, K., Blender, R., & Zhu, X. Continuum climate variability: Long-​term memory, 
scaling, and 1/​f-​noise. Intl. J. Modern Phys. B 23, 5403–​5416 (2009). Dijkstra, H. Nonlinear 
Climate Dynamics. (Cambridge University Press, 2013).

21.  Mitchell, J.  M. An overview of climatic variability and its causal mechanisms. 
Quaternary Res. 6, 481–​493 (1976).

22. Mitchell also distinguished between regional and global spectra, with the latter being 
the lower curve contained completely within the gray area near the bottom.

23. Adapted from Lovejoy, S. A voyage through scales, a missing quadrillion and why 
the climate is not what you expect. Climate Dynam. 44, 3187–​3210 (2015). The original is 
Mitchell, J. M. An overview of climatic variability and its causal mechanisms. Quaternary 
Res. 6, 481–​493 (1976).

24. Reproduced from Lovejoy, S. A voyage through scales, a missing quadrillion and 
why the climate is not what you expect. Climate Dynam. 44, 3187–​3210 (2015).

25. Only the sloping straight-​line background is quantitative. This line implies very low 
variability. For example, on the graph, we see that successive century-​averaged temperatures 
would differ by only about one hundredth of a degree, and that successive million year aver-
ages by less than 100 microdegrees.

26. Reproduced from Lovejoy, S. A voyage through scales, a missing quadrillion and 
why the climate is not what you expect. Climate Dynam. 44, 3187–​3210 (2015).

27. Figure 2.18 covers a range from 5 years to 1,000,000 years, but the full article had 
other analyses down to three minutes in scale. See Lovejoy, S. & Schertzer, D. Scale invar-
iance in climatological temperatures and the local spectral plateau. Annal. Geophys. 4B, 
401–​410 (1986).

28. In Figures 2.3C and 2.4A, we plot the same information but in real space and find 
that the root mean square fluctuations at 5.53 × 108 years are ≈±10K, so that extrapolating 
Gaussian white noise over the range implies a value of ≈10–​6K. In other words, it is in error 
by a factor of ≈107.

29. If we attempt to extend Mitchell’s picture to the dissipation scales (at frequencies a 
million times greater, corresponding to millisecond variability), the spectral range would 
increase by an additional factor of a billion.

30. These are root mean square Haar fluctuations: the square root of the average of the 
squares of the fluctuations.

31. It has the same information content. From the point of view of spectral analysis, the 
Haar wavelet is just a filter.

32. Adapted from Lovejoy, S. A voyage through scales, a missing quadrillion and why the 
climate is not what you expect. Climate Dynam. 44, 3187–​3210 (2015).

33. Reproduced from Lovejoy, S. The spectra, intermittency and extremes of weather, 
macroweather and climate. Nat. Sci. Rep. 8, 1–​13 (2018).
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34. From top to bottom, the ranges used for normalizing are 10.1, 4.59, and 1.61 (Veizer, 
Zachos, and Huybers, respectively, all δ18O); and 6.87°C, 2.50°C, 25°C, and 0.8°C (Epica, 
Berkeley, Lander, thermistor).

35. Adapted from Lovejoy, S. A voyage through scales, a missing quadrillion and why the 
climate is not what you expect. Climate Dynam. 44, 3187–​3210 (2015).

36. Neilsen, T., Rypdal, K., & Fredriksen, H.-​B. Are there multiple scaling regimes in 
Holocene temperature records? Earth Syst. Dynam. 7, 419–​439 (2016).

37. Nielsen et al. and others mistakenly couch the issue as one of statistical stationarity, 
claiming that Earth’s temperature is a nonstationary process [i.e., one with statistical 
properties that depend on (absolute) time (not simply on timescale)]. But as discussed in 
Section 4.1, statistical stationarity is a property of an infinite ensemble, and because all data 
are finite, it is only a property of models. We only have one realization of Earth’s evolution 
and so we cannot conclude anything about its stationarity or nonstationarity simply by 
analyzing data. The more interesting question is whether a stationary or nonstationary sto-
chastic model is physically the most justified. Which of the two best fits the observations? 
To justify nonstationary models, appeals are often made to the fact that, mathematically, if 
the variability continued to grow down to arbitrarily low frequencies (infinitely long times), 
a nonstationary model would be necessary. Yet this observation isn’t very helpful because 
the longest time period that is accessible empirically (550 million years) is still not infinite 
in length, and it is a trivial matter to make a finite-​length stationary stochastic process that 
reproduces any given spectrum.

38. Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M., Barrett, P., 
Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico, F.M., & Zachos, J.C Antarctic 
ice sheet variability across the Eocene–​Oligocene boundary climate transition. Science 
doi:10.1126/​science.aab0669 (2016).

39.  Lucy’s fluctuations would be about her own Pliocene climate, but their statistical 
variability would be the same. This is analogous to today’s GCMs, each of which have their 
own climates, but nevertheless have very similar statistical variability about these climates 
(see Chapters 5 and 7).

40. Lovejoy, S. A voyage through scales, a missing quadrillion and why the climate is not 
what you expect. Climate Dynam. 44, 3187–​3210 (2015).

41.  The amplitudes of the variability did change somewhat from one 10-​million-​year 
section to another, but the basic megaclimate behavior was robust.

42. Even here there are exceptions. We mentioned the diurnal and annual cycles, but as-
tronomical cycles presumably play a role in driving climate macroclimate regimes (Box 5.4).

43. Cited in Shackleton, N. J. & Imbrie, J. The δ18O spectrum of oceanic deep water over 
a five-​decade band. Climat. Change 16, 217–​230 (1990); quote, p. 228.

44. Pelletier, J. D. The power spectral density of atmospheric temperature from scales 
of 10–​2 to 106 yr. EPSL 158, 157–​164 (1998). Huybers, P. & Curry, W. Links between annual, 
Milankovitch and continuum temperature variability. Nature 441, 329–​332 (2006).

45. Wunsch, C. The spectral energy description of climate change including the 100 ky 
energy. Climate Dynam. 20, 353–​363 (2003).

46. They have been updated more recently with the help of stochastics:  the “random 
dynamical systems” approach. Chekroun, M. D., Simonnet, E., & Ghil, M. Stochastic cli-
mate dynamics:  Random attractors and time-​dependent invariant measures. Physica D 
240, 1685–​1700 (2010). Dijkstra, H. Nonlinear Climate Dynamics. (Cambridge University 
Press, 2013).
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47. Lovejoy, S. & Schertzer, D. In: Chaos, Fractals and Models 96 (eds. F. M. Guindani & 
G. Salvadori), pp. 38–​52. (Italian University Press, 1998).

48. In the more recent “random dynamical systems” approach, the driving noise may be 
viewed as an expression of large numbers of degrees of freedom. This interpretation is only 
justified if there is a significant scale break between the scales of the noise and of the ex-
plicitly modeled dynamics. This framework is not trivially compatible with scaling spectra.

49. Orlanski, I. A rational subdivision of scales for atmospheric processes. Bull. Amer. 
Metereol. Soc. 56, 527–​530 (1975).

50. Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y., & Marsan, D. Multifractal 
cascade dynamics and turbulent intermittency. Fractals 5, 427–​471 (1997).

51.  Reproduced with permission from Schertzer, D., Lovejoy, S., Schmitt, F., 
Chigirinskaya, Y., & Marsan, D. Multifractal cascade dynamics and turbulent intermittency. 
Fractals 5, 427–​471 (1997).

52. The term “zoo” is borrowed from statistical physics, where it is sometimes used to 
describe the bewildering variety of shapes that occur, for example, in the study of phase 
transitions.

53. At the time, NWPs and GCMs were much too small to allow for proper statistical 
scaling analyses of their outputs, and the reigning turbulence theory turned out to be seri-
ously unrealistic (Chapter 3). Even today, the fact that NWPs and GCMs should be—​and 
are—​scaling is practically unknown. Sometimes the absence of a scale break is even seen 
not as a model strength, but as a model deficiency! See the discussion in Chapter 4.

54. Mandelbrot, B. B. Fractals, Form, Chance and Dimension. (Freeman, 1977).
55. Mandelbrot, B. B. The Fractal Geometry of Nature. (Freeman, 1982).
56. Thompson, D. W. On Growth and Form. (Cambridge University Press, 1917).
57. The mathematical issue is their singular small-​scale nature. The basic multifractal 

process is a cascade that does not converge to mathematical points, but only converges in 
the neighborhood of points. This precludes them from being represented as a geometric 
set of points. Mathematically, they are “generalized functions,” such as the Dirac delta 
functions used in physics.

58. Mandelbrot, B. Scalebound or scaling shapes: A useful distinction in the visual arts 
and in the natural sciences. Leonardo 14, 43–​47 (1981); quote, p. 45.

59. My approach to rainfall modeling followed the method that Mandelbrot had used to 
make cloud and mountain models in his book, except that I used a variant that was far more 
variable [based on “Levy” distributions rather than the bell curve (see Box 3.1)].

60.  The Fractal Geometry of Nature contained simulations of cloud “surfaces” based 
on turbulence theory (the Corrsin-​Obukhov law), but they were not related directly to 
meteorology.

61. The FSP model was an extension and improvement over the Levy fault model that 
I had developed during my PhD thesis, but was nevertheless still mono-​, not multi-​, fractal. 
Lovejoy, S. & Mandelbrot, B. B. Fractal properties of rain and a fractal model. Tellus 37 A, 
209 (1985).

62.  Richardson, L.  F. Atmospheric diffusion shown on a distance–​neighbour graph. 
Proc. Roy. Soc. A110, 709–​737 (1926).

63. Adapted from Lovejoy, S. Area perimeter relations for rain and cloud areas. Science 
187, 1035–​1037 (1982).

64.  The use of the term “fractal object” is frequent in this context, but is sometimes 
confusingly vague. Mathematically, fractals are sets of points that have a scale symmetry 
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(scaling) whereas multifractals are fields—​such as the temperature in the atmosphere—​that 
have values at each point in space and in time and that are scaling.

65. Dewdney, A. K. A computer microscope zooms in for a close look at the most com-
plicated object in mathematics. Scientific American August, 16–​24 (1985); quote, p. 18.

66. To get an interesting result, the constant should be a complex number (i.e., one that 
involves the square root of –​1).

67.  Reproduced with permission from Peitgen, H.O. & Richter, P.H. The Beauty of 
Fractals. (Oxford University Press, 1986).

68. Cantor, G. Sur les ensembles infinis et linéaires de points. Acta Math. 2, 381–​408 
(1883). It was apparently discovered a bit earlier by H. J. S. Smith in 1874.

69. Adapted from Lovejoy, S., Schertzer, D., & Ladoy, P. Fractal characterisation of inho-
mogeneous measuring networks. Nature 319, 43–​44 (1986).

70. Adapted from Lovejoy, S., Schertzer, D., & Ladoy, P. Fractal characterisation of inho-
mogeneous measuring networks. Nature 319, 43–​44 (1986).

71. Here—​as almost always—​the box-​counting dimension is the same as the Hausdorff 
dimension that is sometimes used in this context.

72. In the upper left construction, we omitted the lowest frequency. If we don’t remove 
the lowest frequency, then the result is only approximately self-​affine. However, the con-
struction mechanism itself is nevertheless self-​affine.

73.  The familiar geometric shapes studied by Euclid—​points, lines, planes, and 
volumes—​have “topological dimensions” 0, 1, 2, and 3. Topological dimensions have to do 
with the connectedness properties of a set. For fractal sets, the fractal dimension and the 
topological dimension are generally different.

74. Of course, the line in the previous example is scale invariant with D = 1, so according to 
this definition it is also a fractal. However, we generally reserve the term “fractal” for less trivial 
scale-​invariant sets, usually with a fractal dimension greater than the topological dimension.

75.  Sierpiński, W.  Sur une courbe cantorienne qui contient une image biunivoque et 
continue de toute courbe donnée. C. r. hebd. Seanc. Acad. Sci. Paris 162, 629–​632 (1916). (in 
French).

76.  The negative sign indicates that smaller segments are more numerous. Indeed,  
N × L = total length (in d = 1), N × L2 = total area (in d = 2), and so on.

77. This technique actually estimates the “correlation dimension” of the set. If, instead, one 
centers circles at points chosen at random on Earth’s surface (instead of only on stations), then 
one obtains the box-​counting dimension discussed earlier. It turns out that, in general, the two 
are slightly different. The density of points is an example of a multifractal measure. Indeed, one 
can introduce an infinite hierarchy of different exponents associated with the density of points.

78. The rule LD for the number of stations in a circle is a consequence of the fact that 
the number of boxes at scale L decreases with L as L–​D, because, on average, the number of 
points per box is independent of L: L–​D × LD = constant.

79. The geographical locations of the stations in Figure 2.8C were only specified to the 
nearest kilometer, so it is possible that the curve actually extends to even smaller scales. For 
large L, it is valid up to several thousand kilometers, which is about as much as is theoreti-
cally possible given that were only 9,962 stations.

80. Both in space and—​as a result of data outages and ship movements—​also in time, the 
fractal dimensions and codimensions are nearly the same as for the meteorological network. 
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Lovejoy, S.  & Schertzer, D.  The Weather and Climate:  Emergent Laws and Multifractal 
Cascades. (Cambridge University Press, 2013).

81.  The techniques for filling the “holes,” such as “Kriging,” typically also make 
scalebound assumptions (exponential decorrelations and the like).

82. When estimating global temperatures over scales up to decades, the problem of put-
ting meteorological station data onto grids does indeed dominate the other errors (although 
this is not the same as dimensional resolution). The most important effect is from slight 
errors in the space–​time resolution of the data: the “space–​time reduction factor” (Box 5.1).

83. Koch, H. On a continuous curve without tangents constructible from elementary 
geometry. Arkiv. Matematik Astronomi Fysik 1, 681–​702 (1904).

84. Koch, H. On a continuous curve without tangents constructible from elementary 
geometry. Arkiv. Matematik Astron. Fysik 1, 681–​702 (1904).]. Reproduced from Welander, 
P. Studies on the general development of motion in a two dimensional, ideal fluid. Tellus 7, 
156 (1955).

85. Steinhaus, H. Mathematical Snapshots. (Oxford University Press, 1960).
86. Note that in the infinitely small limit, at each point, the Peano curve touches itself. 

This means that although it is a mapping of the line onto the plane, the mapping is not 
one-​to-​one.

87. Lovejoy, S. Area perimeter relations for rain and cloud areas. Science 187, 1035–​1037 
(1982).

88. If the cloud area is itself a fractal set, the P AD Dc= / ,  where Dc < 2 is the fractal dimen-
sion of the cloud image.

89.  The area–​perimeter relation was proposed in Mandelbrot, B.  B. Fractals, Form, 
Chance and Dimension. (Freeman, 1977).

90.  Richardson, L.  F. Atmospheric diffusion shown on a distance–​neighbour graph. 
Proc. Roy. Soc. A110, 709–​737 (1926).

91. Adapted from Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws 
and Multifractal Cascades. (Cambridge University Press, 2013).

92. Interestingly, a slightly more simple variant with less extreme behavior (now called 
the “p model”) was first proposed by a geologist to describe the distribution of mineral 
ores. See de Wijs, H.  J. Statistics of ore distribution:  (2) Theory of binomial distribution 
applied to sampling and engineering problems. Geol.Mijnbouw 15, 12–​24 (1953). See also 
Schertzer, D. & Lovejoy, S. Elliptical turbulence in the atmosphere. In: Fourth Symposium 
on Turbulent Shear Flows, (ed. L.J.S. Bradbury, F. Durst, B.E. Launder, F.W. Schmidt, J.H. 
Whitelaw) pp. 11.1–​11.8 (Karlshule, 1983); and Turbulence and chaotic phenomena in fluids, 
IUTAM. In:  On the Dimension of Atmospheric Motions (ed. T.  Tatsumi), pp.  505–​512. 
(Elsevier Science Publishers B. V., 1984).

93.  The name “α model” was given because—​like all cascade processes—​it gener-
ally displays extreme power law probabilities with “black swan” events and, at the time, 
the probability exponent was denoted by the symbol α. Today, it is often denoted “qD” 
(see Box 3.1), because it depends on the dimension of space D over which the process is 
averaged (and it should not be confused with the symbol α used in a similar context for 
Levy extremes).

94. Reproduced from Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent 
Laws and Multifractal Cascades. (Cambridge University Press, 2013).
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95. Adapted from Schertzer, D. & Lovejoy, S. Physical modeling and analysis of rain and 
clouds by anisotropic scaling of multiplicative processes. J. Geophys. Res. 92, 9693–​9714 
(1987). For the generalization of the (fractal) model to multifractals, see Box 2.2.

96. The expression “multifractal butterfly effect” was coined in Lovejoy, S. & Schertzer, 
D. In: Chaos, Fractals and Models 96 (eds. F. M. Guindani & G. Salvadori), pp. 38–​52. (Italian 
University Press, 1998). But, the original mathematics were discovered by Mandelbrot B. B. 
Intermittent turbulence in self-​similar cascades: Divergence of high moments and dimen-
sion of the carrier. J. Fluid Mech. 62, 331–​350 (1974). This was generalized in Schertzer, D. & 
Lovejoy, S. In: Turbulent Shear Flow (eds. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. 
Schmidt, & J. H. Whitelaw), pp. 7–​33. (Springer-​Verlag, 1985).

97. This is different from the more familiar “butterfly effect” (Chapter 7), which refers 
to sensitive dependence on initial conditions so that a Brazilian butterfly might sufficiently 
destabilize a local—​and then a larger and then even larger—​region of the atmosphere, ul-
timately provoking a tornado in Texas, where there might not have otherwise been one.

98. Schertzer, D. & Lovejoy, S. Physical modeling and analysis of rain and clouds by ani-
sotropic scaling of multiplicative processes. J. Geophys. Res. 92, 9693–​9714 (1987).

99. As a special case, the singularities can, for example, follow the bell curve. In this 
special case, the field values (the activity levels) would follow “log-​normal” distributions, a 
log-​normal multifractal process.

100. Schertzer, D. & Lovejoy, S. Physical modeling and analysis of rain and clouds by an-
isotropic scaling of multiplicative processes. J. Geophys. Res. 92, 9693–​9714 (1987).

101. For many more trace moment plots on satellite data, aircraft data, dropsondes, and 
NWP models, see Chapter 4 in Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent 
Laws and Multifractal Cascades. (Cambridge University Press, 2013).

102. Mandelbrot, B. B. How long is the coastline of Britain? Statistical self-​similarity and 
fractional dimension. Science 155, 636–​638 (1967).

103. Earlier, we saw that the length of the analogous fractal cloud perimeter varies as 
L1–​D, where L is the length of the ruler and D is the fractal dimension.

104.  Richardson, L.  F. Atmospheric diffusion shown on a distance–​neighbour graph. 
Proc. Roy. Soc. A110, 709–​737 (1926); quote, p. 717.

105. Richardson, L. F. Weather Prediction by Numerical Process. (Cambridge University 
Press, 1922). (Republished by Dover, 1965).

106.  Richardson, L.  F. Atmospheric diffusion shown on a distance–​neighbour graph. 
Proc. Roy. Soc. A110, 709–​737 (1926).

107.  Richardson, L.  F. The problem of contiguity:  An appendix of statistics of deadly 
quarrels. Gen Syst Yrbk. 6, 139–​187 (1961).

108.  It was actually a little more complicated than that. The key multifractal formula 
appeared independently in three publications in 1983—​one dealing with turbulence and the 
other two in the field of deterministic chaos. Schertzer, D. & Lovejoy, S. On the dimension 
of atmospheric motions. In:  IUTAM Symposium on Turbulence and Chaotic Phenomena 
in Fluids (ed. T. Tasumi), pp. 141–​144. Grassberger, P. Generalized dimensions of strange 
attractors. Phys. Rev. Lett. A 97, 227 (1983). Hentschel, H. G. E. & Procaccia, I. The infinite 
number of generalized dimensions of fractals and strange attractors. Physica D 8, 435–​444 
(1983).

Although the turbulent publication was admittedly only in a conference proceeding, the 
debate about the priority of discovery was soon overshadowed by Mandelbrot’s claim to be 
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the “father of multifractals”: Mandelbrot, B. B. Multifractals and fractals. Physics Today 39, 
11 (1986).

Soon after the initial discovery of multifractals, a major contribution was made by 
Parisi and Frisch, who were also the first to coin the term “multifractal”: Parisi, G. & Frisch, 
U. A multifractal model of intermittency. In: Turbulence and Predictability in Geophysical 
Fluid Dynamics and Climate Dynamics (eds. M.  Ghil, R.  Benzi, & G.  Parisi), pp.  84–​88. 
(North Holland, 1985).

Recognizing the importance of multifractals, Mandelbrot subsequently spent a huge 
effort claiming its paternity. Ironically, Steven Wolfram, in his review of Mandelbrot’s 
posthumous autobiography The Fractalist [Mandelbrot, B. B. The Fractalist. (First Vintage 
Books, 2011).], complained that Mandelbrot had “diluted” the fractals concept by insisting 
on multifractals: Wolfram, S. The Father of Fractals: The pioneering mathematician Benoit 
Mandelbrot spotted a common thread in complex shapes such as clouds, coastlines and 
Romanesco broccoli. Wall Street Journal (November 22, 2012).

109. It is actually an important assumption that the value of the temperature at a mathe-
matical point does indeed converge to a well-​defined value. In the more general multifractal 
case, the reduction of the temperature to a graph and hence to a set of points is already a 
kind of low-​resolution approximation.

110. It will actually be an anisotropic (“self-​affine”) fractal set like the Weierstrass func-
tion (discussed in Chapter 3).

111. The H model is actually a variant of the pulse-​in-​pulse model and has some inter-
esting properties, including (depending on the value of H) the divergence of high-​order 
statistical moments. Lovejoy, S. & Mandelbrot, B. B. Fractal properties of rain and a fractal 
model. Tellus 37 A, 209 (1985).

112. Reproduced with permission from Lovejoy, S. A voyage through scales, a missing 
quadrillion and why the climate is not what you expect. Climate Dynam. 44, 3187–​3210 
(2015).

113. Reproduced with permission from Lovejoy, S. A voyage through scales, a missing 
quadrillion and why the climate is not what you expect. Climate Dynam. 44, 3187–​3210 
(2015).

114. Adapted from Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws 
and Multifractal Cascades. Cambridge University Press, 2013).

115.  Manley, G.  Central England temperatures:  Monthly means 1659–​1973. Q. J.  Roy. 
Meterol. Soc. 100, 389–​495 (1974).

116.  Reproduced from Lovejoy, S.  & Schertzer, D.  Scale invariance in climatological 
temperatures and the local spectral plateau. Annal. Geophys. 4B, 401–​410 (1986).

117.  The symbol H is used in honor of Edwin Hurst, who discovered the “Hurst ef-
fect”: long-​range memory associated with scaling in hydrology. He did this by examining 
ancient records of Nile flooding where he introduced the “rescaled range” statistic and its 
scaling exponent H. It turns out that the fluctuation exponent is, in general, not the same 
as Hurst’s exponent and that they are only the same if the data follow the bell curve, which 
they do only rarely! This distinction has caused much confusion. Additional confusion 
occurs because many authors define H in terms of the running sum of the process. This 
increases the value of H by one, leading to an explosion of definitions and incommensurate 
emprical results. Hurst, H. E. Long-​term storage capacity of reservoirs. Trans. Amer. Soc. 
Civil Eng. 116, 770–​808 (1951).
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118. This is true for any series that has correlations that decrease with increasing interval 
∆t, as physically relevant series always do.

119. When H < 0, the difference-​based fluctuations will simply give a roughly constant 
result—​the flat parts of Figure 2.18. Because neither the dimension D nor the codimension 
C can be negative, this problem does not arise for them.

120. Valid if we ignore intermittency; otherwise, there are “intermittency corrections” 
(Box 2.2).

121. In retrospect, the key innovation was simply that the method started by taking the 
running sum of the original series, effectively adding one to the value of H. As long as the 
original H was greater than –​1, the new series thus had a positive H, allowing the usual 
differences and differencelike fluctuations to be used. Peng, C.-​ K., Buldyrev, S. V., Havlin, 
S., Simons, M., Stanley, H. E., & Goldberger, A. L. Mosaic organisation of DNA nucleotides. 
Phys. Rev. E 49, 1685–​1689 (1994).

122. In other words, the DFA method estimates fluctuations by the standard deviation 
of the residuals of a polynomial fit to the running sum of the series. The interpretation is 
so obscure that typical plots do not bother even to use units for the fluctuation amplitudes, 
thus throwing away much of the information.

123. Haar, A. Zur Theorie des orthogonalen Funktionsysteme. Math. Annal. 69, 331–​371 
(1910).

124.  Lovejoy, S.  & Schertzer, D.  Haar wavelets, fluctuations and structure 
functions: Convenient choices for geophysics. Nonlinear Proc. Geophys. 19, 1–​14, (2012).

125. The correspondence Haar = difference with H positive and Haar = anomaly with 
H negative is not exact numerically. It is usual to multiply the “raw” Haar fluctuation by a 
factor of 2 to make the correspondence closer. This has been done in Figure 2.18 and else-
where in this book.

126. To avoid cluttering the figure, I did not show the curve for the globally averaged 
temperature. This is examined extensively in Chapter 5.

127. It is not clear that this is, indeed, a true scaling regime (see Chapter 5).
128. The figure shows macroweather at a high-​latitude location (Greenland). Over the 

ocean or averaged globally, it is less steep; H is less negative (see Chapter 5).
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{ 3 }

How big is a cloud?

3.1  Fractals: Where’s the physics?

3.1.1  Symmetries

We have discussed two extreme views of atmospheric variability: the scalebound 
view, in which every factor of 10 or so involves some new mechanism or law; 
and the opposing self-​similar scaling view, in which zooming gives us something 
essentially the same—​a single mechanism or law that could hold over ranges of 
thousands or more.

By considering time series and spatial transects, we saw that, over various ranges 
of scale in space and in time, atmospheric scaling seemed to work quite well. We 
looked at a complication: Interesting geophysical quantities are not simply black 
or white (geometric sets of points), but have gray shades; they have numerical 
values everywhere. To deal with the associated extreme variability and intermit-
tency, we saw that we had to go beyond fractal sets to multifractal fields (Box 
2.2). Understanding multifractals turned out to be important. Failure to appre-
ciate their importance led to numerous deleterious consequences.1 In this chapter, 
I want to consider something quite different: the morphologies of shapes in two 
or three dimensions.

Up until now, we have identified scaling with self-​similarity, the property that, 
following a usual isotropic zoom (one that is the same in all directions), small 
parts resemble the whole in some way. Yet in Chapter1 (Fig.  1.8A, B), we saw 
that zooming into lidar vertical sections uncovered morphologies that changed 
with scale. As we zoomed into flat, stratified layers, structures became visibly 
more “roundish” (compare Fig. 1.8A with Fig. 1.8B). Vertical sections are thus not 
self-​similar. Their degree of stratification—​anisotropy—​changes systematically 
with scale.

But the vertical isn’t the only place where self-​similarity is unrealistic. Although 
it is not as obvious, the same difficulty arises if we zoom into clouds in the hori-
zontal. We criticized Orlanski’s powers of ten classification as being arbitrary and 
in contradiction with the scaling area–​perimeter relation, but Orlanski was only 
trying to update an older phenomenological classification scheme, some of which 
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96	 Weather, Macroweather, and the Climate

predated the twentieth century. Surely this contained some truth. If we viewed 
Earth from outer space and zoomed in, wouldn’t cloud morphologies change sys-
tematically with the degree of magnification? We might spot a hurricane 1,000 
kilometers across, but if we zoom in, we surely wouldn’t see one 1,000 meters wide!

By the mid 1980s, the initial excitement about scaling ideas had begun to dissipate 
and the wider scientific community was starting to dismiss scaling and fractals as 
“just geometry,” and an implausibly self-​similar one at that. While Mandelbrot’s group 
was busily promoting the geometry of fractal sets, Schertzer and I were developing 
tools for analyzing and modeling multifractal processes in which geometry played 
only a secondary role.a Caught between a rock and a hard place, by the end of the 
1980s, our articles were being rejected by the fractalists for being insufficiently fractal 
while being shunned concomitantly by the mainstream for being too geometrical—​in 
my case, guilt by association. At one point—​only weeks after the rejection of a manu-
script from a special journal issue on fractalsb—​I received a particularly negative (and 
costly) evaluation of a research grant application. The irate reviewer—​apparently a 
geographer oblivious to the debate and unaware of the irony—​exhorted me to “do 
physics, not geometry.”

The question on everyone’s mind was:  Fractals:  Where’s the physics? This 
was the title of an influential article by statistical physicist Leo Kadanoff (1937–​
2015).2,c Kadanoff had known about scaling ever since the mid 1960s, when he 
had contributed to the development of (scaling) renormalization group theory 
that accounted for phase transitions in materials.d However, in statistical physics, 
there was also a diverse gamut of scaling phenomena, such as low-​frequency cir-
cuit noise, referred to collectively as “1/​f ” or “flicker” noises. These continued 
to defy understanding, thus fueling the idea that scaling was something mys-
terious that required new physics—​not new geometry. Kadanoff ’s position was 
nuanced:  While admitting that one had to go beyond geometry to physics,e he 

a As discussed in the introduction in Chapter 1, in an attempt to build our alternative approach, 
starting at McGill University in 1986 through to 1999 in Roscoff, France, we organized four workshops 
on nonlinear variability in geophysics, or NVAG.

b The paper had originally been accepted for publication in the special issue by the referees and 
regular editor, but was rejected at the last minute following the personal intervention of Mandelbrot, 
who was a guest editor of the special issue. The article was finally published in a later (regular) 
issue: Schertzer, D. & Lovejoy, S. Generalized scale invariance and multiplicative processes in the at-
mosphere. Pageoph 130, 57–​81 (1989).

c It was published in Physics Today. Its circulation was wide and included all the members of the 
American Physical Society.

d Although he shared the 1980 Wolff prize with Kenneth Wilson for this work, in 1982, it was Wilson 
who got the Nobel.

e He could hardly have thought otherwise. He had just coauthored an important article proposing 
the dimension formalism of multifractals. Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., & 
Shraiman, B. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. 
A 33, 1141–​1151 (1986).
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was nevertheless enthusiastic about fractals.f Although he did not say it, what was 
missing was a proper formulation of the scaling principle itself.

If scaling was limited to invariance under ordinary zooms (isotropic scale 
changes, self-​similarity), then it would indeed have few real-​world applications. 
But seemingly attractive scientific ideas and theories often fail to conform to re-
ality. Most of the time, we simply abandon them and move on to something else, 
but occasionally it’s possible to fix them by generalizing them to fit the facts. In 
its historical development, the law of conservation of energy was frequently faced 
with such failures, but rather than being abandoned, it was generalized succes-
sively from applying only to mechanical energy, to include heat, chemical, and 
electrical energies, and finally to mass-​energy (E = mc2).

Self-​similar scaling is seductive because it is a symmetry. It says that when we 
zoom into an object, something is invariant, that a small part is similar in some 
way to the whole. To save the scaling idea, it must be generalized to account for 
systematic changes in morphologies with scale. We must formulate scale invari-
ance as a symmetry principle more general than self-​similarity.

It turns out that modern physics is literally based on symmetry principles. 
Ever since Emmy Noether (1882–​1935) published her eponymous theorem3 
demonstrating the equivalence between symmetries and conservation laws, 
physicists have been obsessed with symmetry. To get an idea of the power of 
Noether’s theorem, consider two examples:  If the laws of physics are the same 
everywhere in space (a symmetry), then momentum is conserved; if the laws are 
the same at all times (another symmetry), then energy is conserved.4 The conser-
vation of momentum and energy are hugely important because they tell us that, 
although a system may be complicated—​at least in some respects—​we don’t need 
to know the details. Two cars may crash and make a mess, but if we know the mo-
mentum and energy of each before the collision, then the subsequent trajectories 
of the mangled metal are tightly constrained. Similarly, for a self-​similar fractal 
set, the fractal dimension is conserved under zooming—​it is scale invariant—​thus 
telling us precious information about the set’s morphological structure. If it was 
associated with a dynamical system, then it would give information about the un-
derlying physics. If scaling could be formulated as a general symmetry principle, 
then—​thanks to Noether’s theorem—​the answer to Kadanoff ’s question would 
be: Scaling is the physics.

The thing about symmetry principles is that they represent a kind of max-
imal simplicity, and because “entities must not be multiplied beyond necessity,” g 
physicists always assume that symmetries hold unless there is evidence for sym-
metry breaking. Again, consider the car crash, only this time one in which a gas 
tank explodes. Now, the sum of the mechanical energy of the cars before and after 

f I met him two years later, when he participated enthusiastically as an invited speaker at the second 
NVAG workshop in Paris.

g This is a common statement of “Occam’s razor,” the principle that one should always adopt the 
simplest explanation of the facts, after William of Occam (1287–​1347).
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the collision would no longer be equal. The energy symmetry would be broken.h 
However, in the absence of information about an exploding gas tank, one assumes 
conservation.i

Thanks to Noether’s theorem, conservation laws are not mysterious. They 
are simply another way of expressing a symmetry:  Energy and momentum are 
conserved unless there is a specific source or sink that breaks the symmetry. The 
original question of “Why are momentum and energy conserved?” has thus been 
transformed into “Why are the laws of physics the same everywhere and at all 
times?” The answer to this question is: “Because we haven’t found any reason to 
doubt it.” In complex systems with variability over wide ranges of scale, one there-
fore expects scaling. It is expected to hold unless processes can be identified that 
act preferentially and strongly enough at a specific scale that could break it. This 
turns the table on scalebound thinking. If we can explain the atmosphere’s struc-
ture in a scaling manner, then this is the simplest explanation and should, a priori, 
be adopted. The onus must be on the scalebound approach to demonstrate the in-
adequacy of scaling and the need to replace the hypothesis of a unique wide-​range 
scaling regime by (potentially numerous) distinct scalebound mechanisms.

3.1.2  Zooming and squashing

In science, solutions to problems are often unexpected. In fall 1981, I had begun 
participating in the newly created turbulence groupj at the Météorologie Nationale 
and I became acutely aware that, for the theorists, the wide-​range scaling displayed 
by the area–​perimeter relation (Fig. 2.6) was highly problematic.k The difficulty was 
the “mesoscale,” the range from roughly 1 to ≈100 km, where a “dimensional tran-
sition”5 supposedly divided the quite different small-​scale, self-​similar (isotropic) 
three-​dimensional turbulence from the large-​scale, self-​similar two-​dimensional 
turbulence (see Chapter 4).

It was therefore no accident that in spring 1982, my first joint project with 
Daniel Schertzer was to find out what was happening with the mesoscale. The 
service had just finished an experiment in Landes involving eighty high-​quality, 
research-​grade weather balloons—​“radiosondes,” with vertical resolutions of 50 
m, that were launched at regular three-​hour intervals. We therefore chose to ex-
ploit this unique data to investigate the vertical structure that was plausibly linked 

h Of course the energy in the universe would still be conserved because the explosion was powered 
by chemical energy in the fuel tank, but the mechanical energy in the collision would not be conserved.

i Even with the explosion, momentum would be conserved.
j The group had been created at the Météorologie Nationale in the wake of the historic Left victory 

in the May and June elections that loosened bureaucratic restrictions on fundamental research in the 
service. It was headed by Jean-​Claude André, with Daniel Schertzer and Gerard Thierry. The high-​level 
civil servants viewed it as a concession to the political Left and made sure that it didn’t survive the turn 
to the Right over the following couple of years.

k The work had just been accepted for publication is Science. Lovejoy, S. Area perimeter relations for 
rain and cloud areas. Science 187, 1035–​1037 (1982).
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theoretically to the hypothetical mesoscale dimensional transition and that was 
more experimentally accessible.

We had recently become aware of Mandelbrot’s important article (published 
in 1974),6 “Intermittent Turbulence in Self-​similar Cascades:  Divergence of 
High Moments and Dimension of the Carrier,” in which he proposed two major 
ideas: that turbulence was fractal (although he hadn’t quite coined the term yet) 
and also the “divergence of high-​order moments.” Having already been convinced 
of the fractality, it was the latter that caught our attention. The “divergence of high-​
order moments” is another way of saying that the extreme events generated by 
turbulent cascades are far stronger than anything possible under classic bell curve 
statistics, so that—​in turbulence—​one expects black swan extremes (Box 3.1).

Box 3.1  Multifractal butterflies, gray and black swans, extreme events, and tipping points

 We have discussed scaling in space and in time, the idea that as we zoom to smaller 
spatial scales—​or, in time, to shorter durations—​fluctuations or other features are 
“scaling” (i.e., they follow power laws, with exponents such as H and D) that are scale 
invariant. It turns out that not only are the structures and fluctuations themselves 
scaling, but also their probabilities of occurrence are scaling. Indeed, processes that 
are scaling in space and/​or time are usually also characterized by scaling probabilities, 
and many mechanisms—​such as the multifractal butterfly effect (Box 2.2)—​linking the 
two have been proposed. In this box we examine the consequences, which include the 
unexpectedly frequent occurrence of extreme events and the difficulty of distinguishing 
them from qualitatively different (potentially catastrophic) “tipping points.”l

The basic phenomenon of power law, “fat” probability tailsm has a long history, 
going back at least to Vilfredo Pareto (1848–​1923), who used it as an empirical 
distribution in economics, notably for describing income distribution (the “Pareto 
law”). In 1925, Paul Levy (1886–​1971) discovered a general additive mechanism 
for producing such distributions, but the resulting “Levy distributions”7 were 
restricted to exponents less than 2.  In the equation that appears later in this box,  
qD < 2.  Such low exponents imply incredibly strong extremes and, empirically, 

l The spurious classification of an event as a tipping point (when in reality it is simply an extreme 
but “normal” outcome, the same unique mechanism that produces weak fluctuations) is a species phe-
nomenological fallacy (see Section 3.3.7). Phenomena with power law probabilities often suffer from 
this. For example, following Mandelbrot [Mandelbrot, B. B. The variation of certain speculative prices. 
J. Business 36, 394–​419 (1963).], Bunde et al. have argued that stock market crashes may be the conse-
quence of extreme power law price fluctuations. Bunde, A., Kropp, J., & Schellnhuber, H. J. The Science 
of Disasters: Climate Disruptions, Heart Attacks and Market Crashes. (Springer, 2002). Later, I suggest 
that Dansgaard-​Oeschger events may be explained analogously. Box 4.1 gives an example of aircraft 
turbulence.

m “Tails” refers to the low-​probability, extreme tail-​end of the probability distribution. Probability 
distributions can be classified on the basis of the relative importance of their extremes. Standard (e.g., 
bell curve) Gaussian distributions are then “thin tailed”; power law distributions are “fat tailed.” There 
is also an intermediate “long-​tailed” category that occurs, for example, when the probability of the log-
arithm of the variable is Gaussian.
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relatively few real-​world processes have been found with qD < 2 (although now that 
Levy distributions are becoming better known, this is changing!). In any case, even 
if Levy distributions have relatively few direct applications, they are nevertheless 
important as the generators of “universal multifractals”8 (Box 2.2).

A decisive advance was Mandelbrot’s (1974) discovery that multiplicative cascade 
processes can lead to power law probability tails but without Levy’s restriction. He 
called the more general phenomenon the “divergence of high-​order moments.”9 
Schertzer and I (1987) generalized Mandelbrot’s result and showed that, physically, it 
arose because of perturbations at small scales.10 This is analogous to Lorenz’s famous 
butterfly effect (Chapter 7), in which the atmosphere is so unstable that the flapping 
of a single butterfly’s wings can drastically change the evolution of the atmosphere. 
Here, it is as though there is a flock of (spatially distributed) butterflies, hence we 
called it the “multifractal butterfly effect.”11

At the same time, Bak et al. (1987)12 discovered a somewhat different but also 
scaling process that generated power law probabilities that generated “self-​organized 
criticality” (SOC). n It turns out that there are deep links between multifractal 
and SOC routes to power laws.13 In the framework of multifractals, the power law 
probability distributions can be theorized as “multifractal phase transitions.”14 More 
recently (2009), another mechanism for generating power law probabilities using 
correlated additive and multiplicative noise was discovered by Sardeshmuhk and 
Sura.15 Regardless of the mechanism, from an empirical point of view, as discussed 
later, it seems simpler to call the phenomena themselves “black swans.”

To make the idea of scaling probabilitieso more precise, consider the equation 
for the probability that a random variable (such as, for example, a temperature 
fluctuation), ∆T, exceeds a fixed threshold s:

	 Pr( ) ; ,∆T s s sqD> ≈ −
1 	

where Pr indicates probability and qD is an exponent16 that characterizes the 
extremes. The condition “s >> 1” indicates that this law is only expected to hold for 
very extreme thresholds17 s (the “tail”). To get an idea of how extreme the extremes 
can be, consider an example with qD = 5 [as has been estimated for both the wind 
(Fig. 3.218) and the temperature (Fig. 3.1)]. Temperature fluctuations ten times larger 
than typical fluctuations would therefore occur only 100,000 times less frequently. In 
comparison, for the bell curve—​with probabilities that decay exponentially quickly—​
the corresponding probability would be 10–​23. In Chapter 6, I show how this can be 
used to test (and reject) statistically the hypothesis that the global warming that has 
occurred since the nineteenth century is no more than a giant natural fluctuation, 
or GNF.

n The basic SOC example is the “sandpile model,” in which grains of sand are added one at a time to 
a pile of sand. From time to time, this provokes avalanches. The spatial pattern of the regions affected 
by avalanches are fractal sets, the magnitude of the avalanches (the number of grains in the pile that 
fall in an avalanche) have extreme power law probability distributions. The term “self-​organized criti-
cality” is justified because, at any moment, the shape of the sand pile is determined precisely by extreme 
events—​the avalanches—​so the pile is “self-​organizing.”

o This might be confusing. Up until now, I’ve used the term “scaling” to denote an invariance under 
zooming in time and/​or space. Here it refers to zooming in probabilities.
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Figure 3.1  (A) The probability distribution of daily temperature differences in daily mean 
temperatures from Macon, France, for the period 1949 to 1979 (10,957 days). Positive and negative 
differences are shown as separate curves. For reference, a best-​fit Gaussian is shown as the solid 
curved line, indicating that the extreme fluctuations correspond to more than seven standard 
deviations. For a Gaussian, this has a probability of 10–​20. The straight reference line (added) has 
a slope of –​qD, with qD = 5.19 (B) Probability distributions of paleotemperature changes for Vostok 
(left),20 and a modern comparison of GRIP (Greenland Ice Core Project; Summit, Greenland) 
and Vostok (right).21 The graphs differ not only because of the much improved sampling density 
of the more modern data, but also, the rightmost graph is at constant depth intervals (0.55 m for 
GRIP and 1 m for Vostok), which avoids issues of uncertain chronologies. In all cases, the straight 
reference lines indicate extreme s qD−  behavior with qD = 5, where s is a temperature change. 
The reference lines in the left graph are spaced H log104 apart, with scaling exponent H = 0.4. 
(C) The total probability of random, absolute pre-​1900 temperature differences exceeding a 
threshold s (measured in degrees Celsius), using three multiproxies to increase the sample size (the 
distributions are very similar in form for each of the multiproxies). To avoid excessive overlapping, 
the latter were compensated by multiplying by the lag ∆t (so that, for example, the far right curve 
must be divided by sixty-​four to obtain the temperature fluctuations in degrees Celsius). The data 
are the pooled annual resolution multiproxies (Box 5.3) from 1500 to 1900. The (dashed) reference 
curves are Gaussians, with corresponding standard deviations, and the thin, straight lines starting 
at probabilities of 0.03 (Pr ≈ <3%) correspond to the bounding power laws s–​4 and s–​6.22
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The “Gaussian,” “normal,” or “bell curve” introduced by Carl Friedrich Gauss 
(1777–​1855) is known and loved by anyone who has taken a course in statistics. But 
why the obsession? The reason for its popularity is twofold. First, it can arise in fairly 
general circumstances—​for example, as the result of the sum of many independent 
processes, including measurement errors.23 Second, it is mathematically very 
convenient for calculations.

A basic property of the bell curve is that, for all practical purposes, it excludes 
extreme events. It doesn’t do this simply by outlawing them, but rather by ensuring 
their probability of occurrence is tiny. We saw an example of this in Figure  1.6, 
where the extreme of the 8,192 temperature gradients was about seventeen times the 
“typical” gradient as quantified by the standard deviation (the spread about the mean 
value, see also Fig. 5.2). We noted that, had the temperature changes been generated 
by a standard bell curve process, the event would have had a probability of less than 
1 in 1080.

Indeed, despite their ubiquity in the geosciences, very few geoprocesses follow 
the bell curve,24 and extremes occur all too frequently—​a fact that colleagues and 
I emphasized regularly starting in the 1980s.25 Theoretically, the trouble is that, at 
best, the bell curve applies to additive processes—​although not to the H model 
(Box 2.3)—​and it fails completely for multiplicative processes26 (Box 2.2).27 One 
of Mandelbrot’s first contributions—​several years before he introduced fractal 
dimensions—​was to apply strongly non-​bell curve Levy distributions to financial 
series,28 arguing that they accounted for extreme price changes, and later associating 
them with stock market crashes.29

This work in finance inspired experienced market trader Naseem Taleb to write 
an entire book popularizing the issue, introducing the term “black swan.”30 For a 
trader, Taleb has an unusual background (philosophy), and he put it to good work 
to argue that virtually all important historical events were unexpected. In his basic 
argument, the black swan issue is not one of probability; rather, a black swan event 
is something that is more than just improbable, it is unthinkable. The story of black 

Figure 3.1  Continued

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   102 29-Dec-18   8:14:33 PM



How big is a cloud?	 103

swans illustrates this nicely. Ancient Greek poets originally used black swans as 
metaphors for the impossible: It was a known fact that all swans were white. But then, 
in the seventeenth century, the British discovered Australia and the unthinkable 
happened: They discovered an entire black swan species (Cygnus atratus). For Taleb, 
a black swan event is thus one that is epistemologically extreme, one that could only 
be imagined with “out of the box”-​type thinking.

In the second half of his book—​inspired explicitly by Mandelbrot, whom he knew 
as a friend—​Taleb introduces a variant—​“gray swans”—​to designate the extreme 
events associated with Levy distributions. He justifies this because extreme Levy 
events can be anticipated, but only on the basis of unconventional (non-​Gaussian) 
theory. Hence their extremes were not truly black, only gray. The cascade extension 
from Levy to more general power law tails (i.e., with qD > 2) should therefore rightly 
also be referred to as “gray swans,” but this term never stuck. Hence, the term “black 
swans” is now often used for power law extremes in general.p

Let’s now examine such black swan extremes with an example from the climate 
that will be relevant later. First, let’s consider the probability distribution of daily 
temperature changes from a single station. Figure 3.1A shows the cumulative 
distributions of the temperature changes accumulating, starting from the largest 
value.31 We see that for both positive and negative temperature changes, the 
distribution has far more extreme events than would be expected from the classic 
Gaussian distribution. Indeed, the extremes are at seven standard deviations, 
corresponding to events with Gaussian probabilities of less than 10–​20. On the other 
hand, the data closely follow a power law with exponent qD ≈ 5. Moving to longer 
times (Fig. 3.1B), we see the same type of behavior, even in paleotemperatures. 
For the latter, modern data (far right) allow the tails to be examined more closely, 
yielding a more convincing result, again with qD ≈ 5. Note that taking differences 
over longer time scales shifts the tails by a constant factor corresponding to H = 0.4 
(the left plots in Fig. 3.1B).

Last, to evaluate the statistics of natural temperature changes—​and to avoid biases 
resulting from anthropogenic effects—​consider global-​scale preindustrial (1500–​
1900) temperatures. During the preindustrial period, global-​scale temperatures can 
be estimated using “multiproxy” reconstructions (Section 5.7). As the name suggests, 
they combine data statistically from diverse sources (“proxies”) that typically include 
tree rings, ice cores, and lake sediments to estimate temperature in the absence of 
instruments. Figure 3.1C shows the corresponding distributions for differences of 1, 2, 
4, . . . , and 64 years. It also shows that scaling is a reasonable approximation to the tails 
of the (preindustrial) distributions of temperature changes. This result will be used later 
for estimating the probability that industrial warming is no more than a GNF.

Although the larger temperature changes at the bottom right of the plots in 
Figure 3.1C are extreme compared to anything that would be expected from the bell 
curve, they may nonetheless be small compared to changes that might occur if some 
qualitatively new nonlinear mechanism kicked in: a “tipping point.” A tipping point 
denotes a change so strong as to be irreversible—​a change that cannot be undone. 

p Apologies to Taleb for this (slight) abuse of his excellent term!
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In the context of climate change, a commonly invoked example is the release of 
methane (CH4) from the thawing of Arctic permafrost caused by global warming. 
If enough CH4 leaks to drive up temperatures significantly, it would accelerate 
itself through positive feedback, leading to a temperature increase far in excess of 
the black swans predicted on the basis of power law probabilities. This leads to a 
conundrum: With black swans already leading to exceptionally large extremes, how 
could we distinguish a “mere” black swan from a tipping point?
  

Before we started analyzing the Landes data, following the prevailing theory, 
we expected that the basic dimensional transition did indeed occur, but that it 
did not happen as originally theorized as a sharp break at a well-​defined scale. 
Our hypothesis was that the transition was not seen in the area–​perimeter relation 
because of its extreme variability. If the transition scale was variable enough from 
place to place and from time to time—​for example, varying from hundreds of 
meters to hundreds of kilometers—​then the horizontal statistics might effectively 
“blur it out” so that it would not be seen. The idea could be investigated by con-
sidering the atmospheric stability that should be connected to such a transition.

Ever since 1920, when the stability of stratified flows was studied by Richardson,32 
it has been known that stability depended on his eponymous number. The 
Richardson number is the (dimensionless) ratio of the buoyancy force gradient33 
to the square of the vertical shearq; classically, a stratified flow is unstable when this 
ratio exceeds some threshold conventionally taken to equal 1/​4. Our idea was to 
use the radiosonde data to determine systematically the Richardson number over 
thicker and thicker layers. Because the Richardson number is notoriously vari-
able,34 we anticipated that vertical fluctuations would be extreme.

To capture the variability, we plotted the probability distribution of the 
Richardson number for layers increasing in thickness from 50 m to 3.2 km. 
Using log-​log coordinates allowed us to investigate huge ranges of fluctuations 
and to test Mandelbrot’s prediction about the black swans, which would ap-
pear as straight lines at the lower probability levels. The results were sensational 
(Fig. 3.2). First, the variability was so high that even the average Richardson 
number apparently diverged. This meant that when we tried to estimate it by 
averaging over more and more layers, the single layer (here, out of thousands) 
that happened to have the largest Richardson number had a value so large that it 
was roughly equal to the sum of all the others. No sensible average value could be 
obtained. Increasing the size of the sample to improve the estimate by averaging 
more values would simply give an even greater extreme with the same property. 
This huge variability is at the extreme end of the extreme and was itself a serious 
problem for the standard theory.

q The shear over a layer is the difference of the horizontal wind over the layer divided by the layer 
thickness.
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Figure 3.2  The probability (Pr) that the change in horizontal wind ∆V over layers exceeds 
a given threshold s (measured in meters per second). Each set of points (and the reference 
line) is for layers of thickness increasing by factors of 2 from 50 m (left) to 3,200 m (right). For 
example, the extreme point on the farthest right-​hand curve indicates that for layers 3,200 
m thick, there is about a 1% chance (Pr = 0.01) that a difference of horizontal wind speed 
will exceed 30 m/​s. The data were derived from eighty radiosondes from Landes, France. 
The reference lines have slopes of –​5, corresponding to black swan extremes. The left–​right 
separation of the lines corresponds to a vertical fluctuation exponent H = 3/​5.35

This is where things stood in summer 1982. While I ruminated on the implications 
of the probability tails, Schertzer went off for a few weeks to the Aspen Center of 
Physics. In Aspen, he realized there was something even more significant. When 
we compared the probabilities of wind, temperature, and humidity changes over 
layers of increasing thickness, we found they were nearly perfectly scaling. The 
curves in Figure 3.2 were parallel and equally spaced as the thickness of the layers 
were doubled. For the key wind speed, the spacing between the curves implies the 
fluctuation exponent had the value H = 3/​5 (Fig. 3.2). In comparison, self-​similar 
three-​dimensional turbulence has H = 1/​3, and self-​similar two-​dimensional tur-
bulence has H = 1. We had not anticipated an in-​between value!

Surveying the literature, we discovered that at the end of the 1960s, there had 
been two other experiments36 that had found H = 3/​5. One of the two had duly 
acknowledged that the experimental result was close to the value 3/​5, which had 
been predicted theoretically ten years earlier by Alexander Obukhov (1918–​1989) 
and by Ralph Bolgiano (1922–​2002)37 for buoyancy-​driven turbulence (Chapter 4). 
However, both Bolgiano’s and Obukhov’s theories had shared the prevailing self-​
similar mindset: They both were isotropic; their fluctuation exponent 3/​5 was sup-
posed to hold in both the horizontal and vertical directions! However, experiments 
in the horizontal had instead found the value 1/​3 associated with Kolmogorov’s 
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theory of self-​similar isotropic three-​dimensional turbulence (Chapter  4). Ten 
years after they were proposed, Bolgiano and Obukhov’s theories had already been 
forgotten.

At the same time that we were rediscovering the Bolgiano-​Obukhov law in the 
vertical, the results of the first large-​scale aircraft campaigns to study the wind in 
the horizontal direction started to appear.38 To the theorists’ embarrassment, these 
invariably found the value predicted for self-​similar three-​dimensional turbu-
lence: H was not the expected two-​dimensional value39 of 1. Instead, out to scales 
of at least hundreds of kilometers, they found the supposedly three-​dimensional 
value 1/​3.r Because the turbulence could not extend hundreds of kilometers into 
outer space, it could not possibly be isotropic three-​dimensional turbulence. The 
inescapable conclusion was that we had to deal with a single scaling, but with an 
anisotropic regime with H = 1/​3 in the horizontal and H = 3/​5 in the vertical. This 
clear case of anisotropic scaling could be dealt with by combining zooms with 
squashing; the 23/​9 D model was born.40 Formulating the whole problem in terms 
of scaling symmetries soon allowed for the generalizations discussed next, which 
include rotation, waves, and more.41

3.2  Zooming, squashing, and rotating, and the  
emergence of scale

3.2.1  The scaling of the laws

The previous argument about scaling as a symmetry is at a nearly philosophical, 
metascientific level. This is fine for a system about which we don’t have much 
detailed understanding. It is directly pertinent for many geophysics problems, 
such as understanding coastlines, topography, geomagnetism, geogravity, and 
earthquakes. But, for the weather and climate, we have a (fairly) well-​defined set of 
equations42 so that we can (and must) do much better than simply expound upon 
general considerations of scientific methodology. The equations are essentially 
those that were first written by Richardson, and they form the basis of numerical 
weather and climate modeling. To argue convincingly for scaling in the atmos-
phere, we must show that the equations themselves have the necessary scaling 
properties.

Since the 1950s, it had been known that the simpler equations of incompress-
ible hydrodynamicss are invariant under isotropic scale changes43—​symbolically:

r In Chapter 4, I discuss the story of the aircraft measurements that—​precisely because of the ani-
sotropic scaling—​turned out to be nontrivial!

s In incompressible fluids, gravity is irrelevant because there are no density differences upon which 
it can act. Water may often be treated as an approximately incompressible fluid, so this is by no means 
an academic situation. In the ocean, there are density variations resulting primarily from varying salt 
concentrations and temperatures, so that there, too, gravity is important.
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Incompressible fluid laws Isotropic blowup Factorl 

H

→
→

( λ
λ

)
(IIncompressible fluid laws .)

	

As we shall see in Chapter 4, this isotropic invariance of the laws is the theoret-
ical basis of the main scaling theories that describe the weather and climate. But 
once again, the question is: What do we do about gravity and stratification? It actu-
ally took a surprisingly long time—​and there are still outstanding issues—​to show 
that the equations of the atmosphere (i.e., that include the anisotropy induced by 
gravity) are indeed invariant under anisotropic scale changes44:

	 Atmospheric laws Anisotropic blowup Factorl AtmosphH→   ( )λ λ→ ( eeric laws).

In any case, the systematic analysis of the outputs of weather and climate models 
discussed in Chapter 4 confirms they are scaling accurately. For theoreticians, the 
problem is that most of their theories are unrealistic. For the moment, only one or 
two of the exponents can be derived theoretically, and are given only by numerical 
calculation or from experimentation!

3.2.2  What is scale?

Starting with stratification, let’s see how we can extend scaling from self-​similarity 
to a more general scaling symmetry. To do this, we need to go back to the ideas of 
scale and of size. What do we mean when we say that something is a certain scale or 
that it is a certain size? First, the usual idea of the scale of an object is just its length:

	 Scale  Length,= 	

where the length is a distance. Size is a related idea. It is a quantitative measure 
of the amount of “stuff ” in the system.45 For example in one, two, and three 
dimensions, it is46

	 Size = Length one dimension( ) 	

	 Size = Area Length two dimensions2≈ ( () ) 	

	 Size Volume Length three dimensions .3= ≈ ( () ) 	

Putting all this together, we may write

	 Size Scale D dimensions ,D≈ ( () ) 	

where D = 1, 2, 3 is the usual dimension. To generalize scaling, it turns out that, in 
addition to dimension (Chapter 2), we need to generalize both the notions of scale 
and size; but, we nevertheless retain this size–​scale relation.
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108	 Weather, Macroweather, and the Climate

Consider the problem of determining the scale of a tree (Fig. 3.3). How would 
we do it if all we were given was a stick and a rule that told us how to make a 
blowup by a small amount, by a factor only a little larger than 1? Our first step 
might be to use the stick as a compass, to trace out a circle 1 unit in radius, just 
as we were taught in school. Using the blowup rule, we could then take this unit 
circle and blow it up by a small factor. If the rule was isotropic—​the same in all 
directions—​then we would obtain a slightly larger circle. In Figure 3.3, I used the 
factor 1.26 (i.e., 26%), yielding the “1.26 circle” (i.e., at scale 1.26), but we could im-
agine using a factor of 1.01 (1%) or less, just slightly larger than one. We could then 
repeat blowing up circles iteratively until we got to a circle that was just big enough 
for the tree to fit inside. By knowing the total blowup factor, we would then know 
the size of the tree in terms of the original unit ruler. If we wanted to determine the 
height, because the tree is much taller than it is wide, and because the scale would 
be the radius and the height would be the diameter, our scale would be an estimate 
of half the height. As long as we applied our method to trees that are taller than 
their width, we would always get the usual height by doubling this scale.

10

8

4

2
1

4

2
1

Figure 3.3  To measure the size of a tree, we place a series of concentric circles at the 
midpoint and try to find the smallest circle that encompasses the tree. The radius of this circle 
is its scale. Here, it is 10 units.

What about applying the method to a cloud? Figure 3.4 (top) shows a vertical 
cross-​section of a cloud taken by the CloudSat satellite.47 We can make out a large, 
horizontally stratified structure,t but when we look closely (especially toward the 

t In this example, ignore the different shades of gray. Anything that is not dark black is taken to be 
a cloud.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   108 29-Dec-18   8:14:35 PM



How big is a cloud?	 109

lower right), we can see small vertically oriented ones. When we place our system 
of concentric circles on the image, we can already see a problem: For the large-​
enough clouds (structures), this way of determining the size will always end up 
measuring the horizontal extent, whereas for small-​enough clouds, it will, on the 
contrary, end up measuring their vertical extents.

Figure 3.4  A CloudSat vertical cloud cross-​section with three different scale functions 
superposed (400 km left to right, 16 km bottom to top; aspect ratio, 6.5:1). The top scale 
function is isotropic at all scales (circles). In the middle scale function, the rule to change 
scales is isotropic so that, although the shape of the contours is now anisotropic, it is exactly 
the same at all scales. The thick gray contour line indicates the (arbitrary) unit scale, and, 
starting from this, each outer contour is a factor 1.58 enlargement; each inner contour is a 
factor 1.58 scale reduction. The bottom scale function is the same at the unit scale (thick gray 
line) as the previous, but now the rule itself is also anisotropic, so that in addition to the 1.58 
enlargement, there is also a squashing of factor 1.23 in the vertical. This is the stratification 
measured for CloudSat vertical sections (Fig. 3.7A). It is close to the theoretical value 
corresponding to an elliptical dimension of 23/​9.

This manner of quantifying the cloud scale may seem academic. Why not 
simply define the scale as the horizontal length? The distance from one side to 
the other? But this would lead to the same problem. The horizontal length might 
be fine for quantifying the scale of a very wide, flat cloud deck, but it would be a 
lousy way of quantifying the scale of a system such as a tornado or a convective 
cell inside a thunderstorm, in which the physically important aspect is the vertical 
extent.
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110	 Weather, Macroweather, and the Climate

To get a physically meaningful measure of the scale of a cloud over the whole 
range from large to small, we could change the definition of scale to find a system 
of shapes that, when blown up or reduced, would fit all clouds (or at least fit “typ-
ical” or “average” clouds). The easiest way to modify our tree-​measuring recipe is 
simply to change the definition of the unit scale. Rather than starting with a circle 
and blowing it up—​or reducing it—​in scale, we could start with a more appro-
priate shape, one adapted to the cloud in the image—​for example, the “rounded 
triangles” in Figure 3.4 (middle). Using the same (isotropic) rule for blowing up 
as in the top case of Figure 3.4 (middle row) we would obtain a series of concen-
tric rounded triangles. These contours represent all the points that are at the same 
scale. They are called “balls.” Figure 3.4 shows that, at best, we will improve the fit 
of the balls to the larger cloud in the image, but there is no improvement in fitting 
the balls to the smaller vertically oriented ones.

Changing the definition of the unit scale didn’t help much. What is needed is a 
change in the blow-​up rule from one scale to another. Following what we learned 
from the analysis of the Weierstrass function, we could start with a conventional 
blowup, but follow it by a squashing in the vertical direction. By iterating the 
blowup and squashing, structures would become flatter and flatter at larger scales. 
Equivalently, going the other way—​reducing—​to smaller scales, the reduction 
would be accompanied by vertical stretching so that the structures would be more 
and more vertically oriented. In Figure 3.4 (bottom row), the blowup separating 
each of the balls is still by a factor of 1.58, but there is a final squashing by a factor 
of 1.23 in the vertical. Note that the same result would have been obtained by per-
forming a usual blowup of 1.28 (= 1.58/​1.23), followed by a stretch in the horizontal 
by a factor of 1.23. In both cases, the result is a blowup by a factor of 1.58 in the hor-
izontal and by a factor of 1.28 in the vertical. We can see from Figure 3.4 (bottom 
row) that we are now doing a lot better. Not only are the large contours fitting the 
outlines of the large cloud, but inside the red unit circle, the small contours are 
now aligned vertically, apparently making a reasonable fit with the smaller clouds 
(this may be more obvious in Fig. 3.5, which is explained later).

Figure 3.5  A possible covering of the CloudSat cloud using the rounded triangular balls 
with the stratified rule for changing scales (Fig. 3.4, bottom row). The size can be estimated 
by summing the areas of all the balls (without double-​counting the overlapping sections).

The choice of factor 1.58 for each iteration was done for convenience. In this 
way, we get exactly five contours for every factor of 10 (1.585 = 10). But what about 
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How big is a cloud?	 111

factor 1.28? Where did that come from? To see what’s going on, let’s repeat the 
anisotropic blowup n times on the unit shape. The horizontal will be blown up by 
factor 1.58n = (Horizontal scale), whereas the vertical will be blown up by factor 
1.28n = (Vertical scale). Eliminating n, we once again obtain a power law:

	 Vertical scale Horizontal sc le ,= a Hz 	

with the new exponent Hz = log1.28/​log1.58 = 0.55. If we had applied the same rea-
soning to the usual isotropic blowup, then we obtain

	 Vertical scale Horizontal scale,= 	

and we recover Hz = 1. However, whenever Hz is different from one, the aspect ratio 
of the contours change systematically with scale:

	
Aspect ratio (Horizontal scale Vertical scale) 

(Horizonta

=

=

/

ll scale) (Vertical scale) .1 1 1− −=H Hz z/ 	

We can see that if the unit scale is fairly roundish, that whenever Hz is less than 
one, the horizontal-​to-​vertical aspect ratio gets large for large scales so that the 
clouds become more and more horizontally stratified. Conversely, at small scales, 
the aspect ratio becomes large, so that the structures are vertically oriented. Figure 
3.6 shows the result of applying this rule to circles using various values of Hz.

Figure 3.6  This figure shows a series of ellipses, each separated by a factor of 1.26 in scale, 
with the thick black lines indicating the unit scales (here, circles). Upper left to lower right, 
Hz increases from 2/​5, 3/​5, and 4/​5 (top); and 1, 6/​5, 7/​5 (bottom, left to right). Note that 
when Hz > 1, the stratification at large scales is in the vertical rather than the horizontal 
direction.48 Note that the size of each family of balls has been slightly rescaled to fit on the 
page (this can be gauged by the relative sizes of the thick black circles).
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112	 Weather, Macroweather, and the Climate

We have discussed how to define the scale of a cloud in a way that takes into ac-
count its vertical stratification. We did this by finding a family of balls that defines 
all the points that have the same scale. Whether clouds are large or small, this 
definition of scale can be used to quantify their vertical and horizontal extents. 
But what about the size of a cloud? We already saw that, for simple balls (lengths, 
squares, cubes; or lengths, circles, spheres, for example) that the size is simply 
≈(Scale)D, where D is the usual dimension: one for a line, two for a plane, three 
for a volume. What about these new stratified balls that take into account the 
flattening at larger scales?

Let’s define the size of the unit ball as one. Then, every time we make a 
blowup and squashing operation to move from one ball to the next larger one, 
we can easily work out the factor by which the size increased. In the previous 
example, the blowup was by a factor of 1.58 in the horizontal and by 1.58Hz = 1.23 
in the vertical (Hz = 0.55). Then, the increase in the size of the ball is by a factor 
of 1.58 × 1.23 = 2.05. After any number of iterations, we would have

	

Size (Horizontal blowup factor) (Vertical blowup factor) = ×

= ((Horizontal blowup factor) .1+Hz 	

Because we started at the unit scale, the horizontal blowup factor is the scale, so

	 Size (Scale) .1= +Hz 	

This suggests that we define a new “elliptical dimension”49 Del = 1 + Hz, so that 
this is the same as the usual definition of size:

Size (Scale) .= Del

The new dimension is called “elliptical,” although, as we saw, the balls are not 
necessarily ellipses. Applying this to the balls in Figure 3.6, we see that the areas 
of the ellipses increase as the horizontal scale raised to the following of powers 
Del: 7/​5, 8/​5, 9/​5, 2, 11/​5, and 12/​5 (upper left to lower right). The elliptical dimen-
sion thus quantifies the degree of stratification of the balls. When Del is close to 
one (Hz is close to zero, upper left in Fig. 3.6), then the balls flatten rapidly at 
larger scales. When Del is two, Hz is one and the balls are the usual circles. When 
the elliptical dimension is greater than two, Hz > 1 and the balls become more 
and more stratified in the vertical (vertically aligned, lower right).50 We return 
to this relation later.
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How big is a cloud?	 113

We’ve gone to a lot of trouble to define the scale and sizes of simple shapes 
(the balls), but cloud shapes are complex. What about them? Recall the dis-
cussion in Chapter 2 about covering a fractal set with “boxes” to estimate its 
fractal dimension. With our new language, the boxes are nothing but the balls, 
and we now know the size of each ball, so that the basic strategy is straightfor-
ward (Fig. 3.6). We can take the family of anisotropic balls from the bottom 
of Figure 3.4 and “cover” the cloud with them. Our estimate of the cloud 
size is simply the sum of the sizes of all the balls used in the covering. We 
can see that the covering used in Figure 3.6 includes a lot of overlap, so we 
could improve our estimate of the size of the cloud by using a better selec-
tion of balls—​one that involves less overlap (if needed, we could even include 
infinitesimally small ones). Ultimately, the actual size of the cloud would be 
given by the “optimal” covering: the covering with balls that gives the smallest  
total sum.51

3.2.3  What about real clouds?

How can we tell what is the best definition of scale for real clouds? What is the 
best Hz (and hence the elliptical dimension)? It turns out that we can use fluctu-
ation analysis, which was described in Chapter 2. Averaging fluctuations over a 
CloudSat orbit enables us to obtain good statistics (Fig. 3.7A) and to use them 
to estimate statistically the relation between the horizontal and vertical extents. 
Let’s say that we want to know the typical vertical extent of a structure 10 km 
across in the horizontal. First, we use fluctuation analysis to work out the typical 
change in the CloudSat radar reflectively over horizontal distances of 10 km. We 
then simply ask: How far must we go in the vertical so that typical fluctuations 
have the same amplitude? From Figure 3.7A, we see that, because the gradients 
are much stronger in the vertical, the answer is about 1.2 km. Pairing horizontal 
with vertical fluctuations systematically over a range of horizontal scales, we ob-
tain Figure 3.7A. The figure shows that the results are close to the reference slope 
Hz = 5/​9 = 0.5555... . Also shown is the slope Hz = 1, corresponding to Del = 2—​
in other words, equal to isotropic (self-​similar) cloud sections. We see that iso-
tropic behavior can clearly be rejected by the data. The reference line with slope 
Hz = 5/​9 was hardly chosen at random. We mentioned earlier that, for wind, the 
fluctuation exponents were H  =  1/​3, 3/​5 in the horizontal and vertical, respec-
tively. The vertical must therefore be squashed using an exponent Hz  =  (1/​3)/​  
(3/​5) = 5/​9 = 0.55... . We have just confirmed the anisotropic scaling model using 
CloudSat data!
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Figure 3.7  (A) A space (horizontal)–​space (vertical) diagram estimated from the 
average absolute reflectivity fluctuations from sixteen CloudSat orbits.52 (B) The theoretical 
shapes of average vertical cross-​sections using the CloudSat-​derived mean parameters 
from (A): Hz = 5/​9, with spheroscales 1 km (top), 100 m (middle), and 10 m (bottom), 
corresponding roughly to the geometric mean (100 m), and typical fluctuations away from 
the mean. In each of the three shapes (separated by dashed lines), the distance from left 
to right horizontally is 100 km, and from top to bottom vertically is 20 km. The top shape, 
in particular, shows that structures 100 km wide will be about 10 km thick whenever the 
spheroscale is somewhat larger than average.53
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How big is a cloud?	 115

The analysis of this CloudSat data is enough to tell us the exponent Hz, and 
hence the anisotropic blowup needed to go from one scale to another. However, 
to define the scale completely, we also need a “unit” ball to define all the balls and 
scales. Studying Figure 3.7A more carefully suggests a simple way of doing this. The 
lines with Hz = 5/​9 and Hz = 1 meet at about 100 m, implying that moving 100 m in 
the horizontal direction would typically give the same change in radar reflectivity 
as moving 100 m in the vertical. The simplest shape that satisfies this is a circle 
100 m in diameter. In the full horizontal–​vertical space, this would correspond to 
a 100-​m-​diameter sphere, which is called the “spheroscale.” At this unique scale, 
let’s assume the cloud is isotropic.u However, there is no requirement that there be 
any ball that is exactly spherical—​and even if one did exist, choosing it to define 
the unit ball would simply be a matter of convenience. Any of the family of balls 
that are related by blowups and squashings would be equally valid choices. With 
the assumption of isotropy at 100 m, we have defined implicitly all the balls (and 
scales) in the system. Figure 3.7B (middle) shows some of the corresponding balls. 
At the top and bottom are two other examples that show the system of balls when 
the spheroscale is larger or smaller by a factor of 10, corresponding roughly to the 
observed orbit-​to-​orbit variations in the spheroscale.

3.2.4  Simulating anisotropic scaling,  
fractals, and clouds

It may now be helpful to do the opposite of analysis: construction. Starting with 
something simpler than a cloud—​a (black or white) fractal set—​we can construct 
an anisotropic version of the Sierpinski carpet (Fig. 3.8), which can be compared 
with the isotropic version in Fig. 2.8. Although the isotropic Sierpinski carpet was 
constructed by dividing a square into nine smaller ones and then removing the 
central square, the anisotropic Sierpinski carpet is constructed by dividing the 
same original square by five in the horizontal and by three in the vertical to create 
3 × 5 = 15 small rectangles, each of dimensions 1/​5 × 1/​3. Then, the middle three of 
the fifteen rectangles are removed, leaving only the twelve surrounding rectangles. 
The procedure is then iterated. After n iterations, each box has Width = (1/​5)n and 
Height = (1/​3)n. Eliminating n, we again find that

	 Height (Width) ,= Hz 	

with exponent Hz = log3/​log5 = 0.68, which is not too far from the clouds with Hz 
= 0.55. Each rectangular box has Size Area (Height) (Width) (Width) ,1= = × = +Hz  

u Actually, there may be more than one scale that is isotropic—​or they may never be such a scale. If 
the data permit, we can empirically determine the balls directly without any such assumptions. See, for 
example, Lovejoy, S., Schertzer, D., Lilley, M., Strawbridge, K. B., & Radkevitch, A. Scaling turbulent 
atmospheric stratification, part I: Turbulence and waves. Q. J. Roy. Meteorol. Soc. 134, 277–​300 (2008).
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116	 Weather, Macroweather, and the Climate

so that the elliptical dimension Del = 1 + Hz = 1.68. We can also consider the fractal 
dimension of the carpet (the black points). The number of black boxes at the nth 
iteration is 12n, and since Width = (1/​5)n, eliminating n we find Number = Width–​D,  
with the fractal dimension D = log12/​log5 = 1.54. Notice that if there are no holes—​
meaning, the entire square remains black—​then we would obtain log15/​log5 = 1.68, 
which is the elliptical dimension of the entire stratified space.v The latter is thus the 
maximum that is obtained when there are no holes. We can also notice that the 
holes (white) become more roundish eventually. At the smallest scales, they are 
even aligned vertically.

Figure 3.8  An anisotropic Sierpinski carpet (black), produced by dividing the horizontal 
iteratively by five and the vertical by three, then removing the middle three rectangles (upper 
left to lower right).54 Compare this with the original (isotropic) version of the carpet in 
Figure 2.8B. Notice that structures (holes) become more roundish, eventually even vertically 
aligned at the smallest scales.55

Last, because we’ve fit data to clouds and estimated the exponent Hz, we can 
now do the opposite: make cloud simulations and see if they are realistic. Figure 
3.9 compares the vertical sections of isotropic multifractal clouds (self-​similar, left 
column), with the corresponding stratified, anisotropic multifractal clouds (right 
column). Notice that although the simulation starts as stratified cloud layers (upper 
right), at the highest zoom (lower right), the structures are roughly roundish.

v Of course, if we didn’t remove any rectangle so that the final “fractal” was simply the same as the 
starting square, then we could use the usual definition based on square boxes, rather than rectangular 
stratified balls, and obtain the usual D = 2. Both dimensions are equally valid. They differ because of 
their different definitions of scale (the different series of boxes each uses).

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   116 29-Dec-18   8:14:39 PM



How big is a cloud?	 117

Figure 3.9  (Left column, top to bottom) A sequence “zooming” into the vertical cross-​section of 
an isotropic multifractal cloud (the density of liquid water was simulated and then displayed using 
a grayscale, with black sky below a low threshold). From top to bottom, we zoom in progressively 
by factors of 2.9 (total factor ≈ 1,000). We can see that typical cloud structures don’t change. (Right 
column top to bottom) A multifractal cloud with the same statistical parameters as at left, but it 
is anisotropic. The zoom is still by factors of 2.9 in the horizontal, but now by 2 9 1 8. .Hz = 0  in 
the vertical, with Hz = 5/​9. Notice that when at large scales, the clouds are strongly horizontally 
stratified; when viewed close up, they show structures in the opposite direction. The spheroscale is 
equal to the vertical scale in the rightmost simulation on the bottom row.56

3.2.5  The 23/​9 D model

Rather than restricting ourselves to vertical sections, let’s consider the implications 
for cloud structures in the full three-​dimensional space. Figure 3.10 shows typical 
“balls” that are obtained by assuming that the two horizontal directions are equiva-
lent on average and by using various values of the exponent Hz. In three-​dimensional 
space, the size of an object is its volume, and one can then see that because 
(Vertical) (Horizontal) ,= Hz  the typical volume of a three-​dimensional object is
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118	 Weather, Macroweather, and the Climate

	 Size Volume Horizontal Horizontal Vertical Horizontal= = × × = +( )1 1++Hz , 	

so that the exponent 1 + 1 + Hz is the elliptical dimension Del. If Hz = 1, then we 
would be back to the usual isotropic case and we see that the elliptical dimension 
would be equal to the usual dimension: 1 + 1 + 1 = 3. Using Hz = 5/​9, we obtain 
Del = 1 + 1 + 5/​9 = 23/​9 = 2.55, hence the name the “23/​9 D model.”

Del = 2

Del = 23/9 = 2.55

Earth

Del = 2.33

Del = 3

Figure 3.10  A schematic diagram showing the change in shape of average structures that 
are isotropic in the horizontal (slightly curved to indicate Earth’s surface), but with scaling 
stratification in the vertical. Hz increases from zero (upper left) to one (lower right); Del = 2 + 
Hz. To illustrate the change in structures clearly with scale, the ratio of tropospheric thickness 
to Earth’s radius has been exaggerated by nearly a factor of 1,000. Note that in the case of 
Del = 3, the cross-​sections are exactly circles; the small distortion is an effect of perspective 
resulting from the mapping of the structures onto the curved surface of Earth.57

Figure 3.10 shows several degrees of stratification ranging between two extreme 
cases: Hz = 1, the isotropic case we just examined, where the vertical and horizontal 
extents of clouds are always comparable; and Hz = 0, the completely flat case in 
which the thickness of the clouds is independent of their horizontal extent. These 
cases have elliptical dimensions three and two, respectively, and correspond to the 
predictions of classic isotropic turbulence in three-​ and two-​dimensional space, 
respectively. Two intermediate cases are also shown—​one corresponding to the 
CloudSat analysis, which we discovered turns out to be close to the theoretically 
predicted stratification, Hz = 5/​9; as well as a fourth example, which corresponds 
to a different anisotropic theory based on gravity waves.58

In many respects, the atmosphere is like an onion skin surrounding the planet. 
The most obvious evidence is the pressure that falls off by a factor of 2 every 5 km 
in altitude, and the temperature that, on average, decreases from the surface to an 
inversion at around 10 to 18 km, where the temperature is a minimum—​the “trop-
opause”—​above which (in the stratosphere) it starts to increase again.59

With this atmospheric thickness in mind, we can see a problem with three-​
dimensional isotropic turbulencew: the case of Hz = 1. Figure 3.10 (upper left) shows 

w Note that relative scales are exaggerated for graphical clarity.
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that it can only hold over a narrow range, and we are forced to introduce a scale 
break at a scale somewhere in the vicinity of the thickness, at a scale of roughly 10 km 
(see Chapter 4). We can now begin to understand the significance of the mesoscale. 
It is defined conventionally to be over the range of horizontal distances compa-
rable to the thicknessx—​roughly 1 to 100 km. Indeed, historically, the fundamental 
assumptions about turbulence have been scaling and isotropy—​in other words, 
scaling is necessarily isotropic. This leaves only two choices: self-​similar scaling in 
three dimensions or—​if the layers are ever flat enough—​self-​similar scaling in two 
dimensions (i.e., with Hz = 0) (lower right in Fig. 3.10). However, if the stratification 
is scaling with Hz between the extremes of zero and one, corresponding to an ellip-
tical dimension between three and two, then—​at least in principle—​it would allow 
the scaling to hold over the entire range of horizontal scales.

We can check the relation between the horizontal and vertical directly by using the 
lidar smog data shown in Figure 1.8A, B. If we analyze it with the method discussed 
for CloudSat, we find that the full horizontal extent of 20,000 km does indeed corre-
spond to layers about 10 km thick60 (Fig. 3.11). The vertical stratification thus removes 
the need for a horizontal break in the scaling! At first sight, this result might seem 
surprising. How is it that there is no obvious signature of the 10-​km vertical thickness 
in the horizontal direction? The answer is that the average atmospheric density and 
temperature are not dynamically important. What is dynamically important are the 
fluctuations, and they are not affected by the mean air density or mean temperature.

10 km
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1 km
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10 km

10 cm

10 m 100 m 1 km 10 km 100 km 103 km 104 km
Log10∆x

Log10∆z

20
,0

00
 k

m
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Figure 3.11  The horizontal–​vertical diagram for nine lidar smog data sets of the type shown 
in Figure 1.8A, B. The relationship was established using the same fluctuation analysis approach 
as for the CloudSat data in Figure 3.7A. It can be seen that the extrapolation to the size of the 
planet (dashed lines, up to 20,000 km) corresponds to about 10 km in the vertical. (The departure 
of three of the curves from linearity at the largest scales is an artifact of the poor statistics at these 
scales.) The steep solid line at the left shows the height–​width relationship for isotropic clouds of 
smog, and the point where it intersects the dashed lines (at about 20 cm for the bottom and 2 m 
for the top dashed lines) is the estimate of the spheroscale, which depends on the relative strength 
of the vertical and horizontal gradients, thus varying from one smog cross-​section to another.61

x Recall that Richardson’s diffusion data and the cloud area–​perimeter relation (Fig. 2.14, left and right) 
showed that nothing special happened in the mesoscale. The classic expectation that the finite atmospheric 
thickness would imply a horizontal scale break is simply wrong, as explained in detail in Chapter 4.
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3.2.6  The emergence of scale

What have we accomplished? Self-​similar isotropic scaling was too restrictive to 
be of much use in the real world. Either we find a way to generalize it to take an-
isotropy into account or we return to business as usual and try to find different 
scalebound mechanisms to account for the behavior over every factor of 10 or so. 
Although the problem also afflicts horizontal cloud structures, we restricted our 
attention to vertical stratification. We discovered that to obtain a meaningful con-
cept of cloud size—​one that could apply over the whole range, from very small to 
very large (potentially from millimeters to thousands of kilometers)—​we needed 
to take a lot of liberty with the way we defined size and scale. To be maximally flex-
ible, we used only two ingredients. We started with a definition of the unit scale—​
so far we’ve considered only circles and “rounded triangles,” but these were just 
simple examples—​and followed this with an anisotropic blowup operation that 
could be thought of as either a usual blowup (isotropic, the same in all directions) 
followed by a squashing, or else simply a different blowup in the horizontal and 
vertical directions.

By considering the blowup rule to act over only very small factors and 
building up large factors by iterating many times, we generated a whole family 
of balls, each one composed of all the points obtained by blowing up the initial 
unit ball by an identical amount:  the scale. The combination of the unit ball 
and the blowup operation was enough to define both scale and size in a way 
that is much more general than would have been possible if the blowups had 
been isotropic, which is appropriate only when the structures are self-​similar. 
By definition, all the points on a ball have the same scale. Our recipe defines 
the notions of scale and size. We even were able to use satellite data to deter-
mine the notions of scale and size appropriate to real clouds. At least in such 
a stratified system—​scale defined by atmospheric dynamics and size—​they are 
emergent quantities.

3.3  Zooming with squashing and rotation, and 
the phenomenological fallacy

3.3.1  Generalized scale invariance

So far, we have managed to save the scaling idea of atmospheric scaling even in 
the face of vertical sections with strongly anisotropic, nonself-​similar behavior. It 
may seem that we have done little more than extend self-​similarity to self-​affinity 
à la the Weierstrass function—​that by introducing families of balls we have need-
lessly complicated things. However, by turning our attention to the more challenging 
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horizontal direction, we’ll again see the usefulness of using the balls to define scale 
and size.

Unlike the vertical, there is no evidence for any overall stratification in the hor-
izontal analogous to the vertical,62 but there is still plenty of evidence for the exist-
ence of different shapes at different sizes, and the fact that shapes commonly rotatey 
by various amounts at different scales. We thus need to go beyond self-​affinity and 
(at least) add some rotation. The resulting framework that grew out of attempts to 
understand the vertical stratification has the insipid name “generalized scale invar-
iance” (GSI),63 but it allows scaling to be formulated as a very general symmetry 
principle, so that the notion of scale itself is effectively determined by turbulent 
dynamics.

It’s now pretty easy to add rotation to the blowup and squashing that we 
discussed earlier. Again, start with some convenient definition64 of the unit scale 
(ball, contour), and again, make a rule that tells us how to blow up by a factor 
close to one—​a rule telling us how to make the contour a little bit bigger.65 As 
before, the new rule will involve a regular blowup and squashing, but now add 
some rotation to the squashed, enlarged ball. In all of these examples, we have 
used a linear transformation: matrix multiplication of the scale ratio raised to 
the power of a matrix, called the “generator” of the scale transformation group. 
Figure 3.12A shows the result of a series of scale reductions of 28% applied to 
the acronym NVAG, which means nonlinear variability in geophysics. We see 
there is both a stretching and rotation (and hence deformation) of structures 
with scale.

y Here and later, when we refer to “rotation with scale,” we mean the systematic change of orien-
tation of structures with their size, not the rotation of a real structure changing its orientation as it 
evolves in time. Of course, the two phenomena are likely to be related to each other.
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(A)

(B)

Figure 3.12  (A) A generalized blow-​down (or reduction) of the acronym NVAG, with each 
reduced in scale by 28%.66 (B) Blowups and reductions by factors of 1.26, starting at circles 
(thick lines). The upper left shows the isotropic case, the upper right shows the self-​affine 
(pure stratification case), the lower left example is stratified but along oblique directions, and 
the lower right example has structures that rotate continuously with scale while becoming 
increasingly stratified.67 (C) The same as (B), except that now the unit ball is the rounded 
triangle. (D) The same blowup rule is used as in the lower right of Figure 3.7B, but this view 
shows an overall blowup by a factor of 1 billion. Starting with the inner thick gray ball in the 
upper left corner, we see a series of ten blowups, each by a factor of 1.26, spanning a total of 
a factor of 10 (the outer red ball). Then, that ball is shrunk (as indicated by the dashed lines) 
to show, conveniently, the next factor of 10 blowup (top middle). The overall range of scales in 
the sequence is thus 109 = 1 billion. The scale-​changing rule (matrix) used here is the same as 
that used for the lower right in (C). (E) A different example of balls with squashing but with 
only a little rotation. The maximum rotation of structures in this example, from very small to 
very large scales, is 55°.68
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(C)

(D)

Figure 3.12  Continued
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(E)

Figure 3.12B, C shows a few examples of contours at different scales, each 
representing the shapes of the balls at systematically varying scales. We can see 
that we have freedom to vary the unit balls (here, circles and rounded triangles) 
as well as the amounts of squashing and rotation. In Figure 3.12B, with unit balls 
taken to be circles, we show the self-​similar case in the upper left, a stratified case 
in the upper right, a stratified case with a small amount of rotation in the lower left, 
and another case with lots of rotation in the lower right. Figure 3.12C shows the 
same, but with unit balls as rounded triangles. Figure 3.12D takes the lower right 
example and displays it over a factor of 1 billion in scale. Figure 3.12E shows an ex-
ample with only a little rotation but over the same factor of 1 billion in scale. We 
can see that if these represent average morphologies of clouds at different scales, 
even though there is a single unique rule or mechanism to go from one scale to 
another, the average shapes change quite a bit with scale.

3.3.2  Anisotropic multifractals

We have explored ways in which quite disparate shapes can be generated using 
blowups, squashings, and rotations. With the help of a unit ball, we generated families 
of balls, any member of which would have been an equally good starting point. The 
unit ball has no particular importance; it does not have any special physical role to 
play. If we have a scaling model based on isotropic balls, then replacing them with an-
isotropic balls is also scaling when we use the anisotropic rule to change scales. Any 
morphology made using such a system of balls is scale invariant. We already examined 
a self-​similar and stratified example in which the balls were used to make a multifractal 

Figure 3.12  Continued
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cloud simulation of a vertical section (Fig. 3.9, left). Let’s now take a quick look at a few 
examples of horizontal and three-​dimensional multifractal cloud simulations.

The simulation of a cross-​section of a stratified multifractal cloud in Figure 3.9 al-
ready shows that the effect of changing the balls can be quite subtle. Let’s take a look 
at this by making multifractal cloud simulations with realistic (observed) multifractal 
parameters (which determine the fluctuation statistics, not the anisotropy), and vary 
the families of balls systematically (Fig. 3.13A). In Figure 3.13, all the simulations have 
the same random “seed,”z so that the only differences are the result of the changing 
definition of scale. First we can explore the effects of different degrees of stratification 
combined with different degrees of rotation. Let’s consider two cases. In the first (Fig. 
3.13A), there is roughly a circular unit ball within the simulated range; in the second 
(Fig. 3.13B), all the balls are highly anisotropic. Each figure shows a pair: the cloud 
simulation (left) and the family of balls used to produce it on the right.

(A)

(B)

Figure 3.13  (A) (Left) Multifractal simulations with nearly isotropic unit scales, with 
stratification becoming more important up and down away from the center line, and the 
rotation parameter (left to right) becoming more important as we move away from the 
third column. (Right) The balls used in the simulations to the left. This is an extract from 
the multifractal explorer website: http://​www.physics.mcgill.ca/​~gang/​multifrac/​index.htm. 
(B) The same as (A), except the initial ball is highly anisotropic in an attempt to simulate the 
effect of stretching that is a result of a wide range of larger scales.69

z This means that the different shapes, structures, have the same set of random weights produced by 
the same series of random numbers in the computer generation algorithm.
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From the third column in Figure 3.13A, with no stratification, we can note that 
changing the amount of rotation (moving up and down the column) changes 
nothing; this is simply because the circles are rotated to circles. Rotation is 
only interesting when combined with stratification. The simulations in Figure 
3.13B might mimic small clouds (for example, 1 km across) produced by com-
plex cascade-​type dynamics that started rotating and stratifying at scales per-
haps 10,000 times larger. In both sets of simulations, the effect of stratification 
becomes more important up and down away from the center line, and the effects 
of rotation vary from the left to the right, becoming more important as we move 
away from the third column.

Figure 3.14 shows examples in which rotation is strong and the scale-​changing 
rule is the same everywhere. Only the unit ball is changed. By making the latter 
have some long narrow parts, we can obtain quite wispy-​looking clouds.

Figure 3.14  Simulations of cloud liquid water density with the scale-​changing rule the 
same throughout. Only the unit balls are modified systematically to yield more and more 
wispy clouds.70

Figure 3.15A shows another aspect of multifractal clouds. In Chapter 2, we 
discussed the fact that, in general, the cascades occasionally produce extreme 
events (Box 3.1). If we make a sufficiently large number of realizations of the 
process (i.e., each time using a different set of random numbers), from time to 
time we will generate rare cloud structures that are almost surely absent on typ-
ical realizations. For example, a typical satellite picture of the tropical Atlantic 
Ocean would not have a hurricane, but hurricanes do appear there from time to 
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time. The multifractality implies that this could happen quite naturally, without 
the need to invoke any special scalebound “hurricane process.” In the examples 
in Figure 3.15A, we see a set of balls rotating with scale (Fig. 3.15B). However, to 
simulate occasional, rare realizations, the process is “helped” by boosting arti-
ficially the values in the vicinity of the central pixel. The two different rows are 
identical except for the sequence of random numbers used in their generation. 
For each row, moving from left to right, we boosted only the central region to 
simulate stronger and stronger vortices that are more and more improbable.71

As we do this, we see that the shapes of the basic set of balls begin to appear 
out of the chaos.

Figure 3.15  (A) Each row has a different random seed, but is otherwise identical. Moving 
from left to right, we see a different realization of a random multifractal process, with the 
central part boosted by factors increasing from left to right, to simulate very rare events. 
The balls are shown in (B). (B) The balls used in (A) exhibit the contours of the (rotation-​
dominant) scale function used in the simulations in (A).72

The cloud simulations in Figure 3.15 are for the density of cloud liquid water; 
they use false colors to display the more-​ and less-​dense cloud regions. Real 
clouds are, of course, in three-​dimensional space, and the eye sees the light that 
has been scattered by the drops. Therefore, if we make three-​dimensional cloud 
simulations, instead of simply using false colors, we can obtain more realistic 
renditions by simulating the way light interacts with the clouds.73 Figure 3.16A, B 
shows the top and side views of a multifractal cloud with the usual false colors. 
Figure 3.16C, D shows the same cloud rendered by simulating light traveling 
through the cloud (in both top and bottom views). Last, in Figure 3.16E, a sim-
ulation of thermal infrared radiation emitted by the cloud is presented, similar 
to what can observed from infrared weather satellites. We see that quite realistic 
morphologies are possible.
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(A)

(B)

Figure 3.16  (A) The top layer of cloud liquid water using a gray shade rendition. 
(B) A side view of (A). (C) The top view with light scattering from the sun (incident at 45° to 
the right). (D) The same as (C), except viewed from the bottom. (E) The same as (D), except 
for a gray shade rendition of a thermal infrared field, as might be viewed by an infrared 
satellite.74 (F) Examples of simulations in space-​time showing wavelike morphologies. The 
same basic shapes are shown, but with wavelike character increasing clockwise from the 
upper left.75
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(C)

(D)

Figure 3.16  Continued

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   129 29-Dec-18   8:14:47 PM



130	 Weather, Macroweather, and the Climate

(E)

(F)

Figure 3.16  Continued
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Up until now, we have only discussed space, but of course clouds and other 
atmospheric structures evolve in time. Because we have argued that the wind 
field is scaling—​and the wind moves clouds around—​it, effectively, couples 
space and time. We therefore have to consider scaling in space and in time: in 
space-​time. The time domain opens up a whole new realm of possibilities 
for simulations and morphologies. Although the balls in space must be 
localized—​because they represent typical spatial structures, “eddies”—​in 
space-​time they can be delocalized and form waves. In this case, it turns out 
that it is easier to describe the system using the Fourier methods mentioned in 
Chapter 2. Figure 3.16F shows examples of what can be achieved with various  
parameters.

3.3.3  Anisotropy that changes from place to place 
as well as scale to scale: Nonlinear GSI

To justify this rather lengthy excursion into GSI, I invoked the fact that zooming 
into clouds would display systematic changes of morphology with magnification, 
so that to be realistic, we needed to generalize the idea of self-​similar scaling. The 
first step was to account for the stratification. This was straightforward, because 
gravity acts everywhere and at all scales. The fact that it also has a well-​defined 
direction meant that the stratification was not rotating with scale and was in the 
horizontal (large) and the vertical (small). To model the horizontal plane, I needed 
to add rotation with scale. And, to a first approximation, we could think of the 
different cloud morphologies as corresponding to different cloud types: cumulus, 
stratus, cirrus, and so on.

But there is still a problem. We found a way of combining the scaling sym-
metry with morphologies that change with scale. But if this is all that we can 
do, then scaling is still implausible because cloud types and morphologies 
not only change with scale, they also change with spatial location (and in 
time). Figure 3.17A shows the problem with a real satellite infrared cloud pic-
ture. It seems clear that the textures and morphologies vary from one part 
of the image to another. Using a type of two-​dimensional fluctuation anal-
ysis, we can try to estimate the corresponding “balls.” When the image is 
broken up into an 8 × 8 array of subimages (Fig. 3.17B, with a fair bit of statis-
tical scatter), we can confirm that the balls are quite different from one place to  
another.
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(A)

(B)

Figure 3.17  (A) An infrared satellite image from a satellite at 1.1-​km resolution (512 × 512 
pixels). (B) Estimates of the shapes of the balls in each 64 × 64-​pixel box from the image 
in (A).76
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What we have described so far is only a special case of GSI—​the case in which 
the morphologies at a given scale are the same everywhere in space: “linear GSI” 
based on matrices. However, it turns out that it is possible to go beyond this to a 
more general “nonlinear” GSI, in which the notion of scale depends not only on the 
scale, but also on the location. Figure 3.18 shows an example. The physics behind 
this is analogous to those in Einstein’s theory of general relativity. In the latter, the 
distribution of mass and energy in the universe determines the appropriate notion 
of distance (i.e., the metric). With GSI, nonlinear turbulent dynamics determine 
the appropriate notions of scale and size.77

(A)
200 400

400
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1

Figure 3.18  (A) A multifractal simulation of a cloud with texture, morphology, varying in 
both location and scale, simulated using nonlinear GSI. The anisotropy depends on both scale 
and position according to the balls shown in (B). (B) The set of balls displayed according to 
their relative positions used in the simulation shown in (A).78
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(B)

With nonlinear GSI, a bewildering variety of phenomena can be described 
in a scaling framework. The framework turns out to be so general that it is 
hard to make further progress. It’s like saying, “The energy of the atmosphere 
is conserved.” Although this is undoubtedly true—​and it enables us to reject 
models that fail to conserve it—​this single-​energy symmetry is hardly adequate 
for modeling and forecasting the weather. One can imagine that if one must 
specify the anisotropy both as a function of scale and as a function of location, 
many parameters are required. At a purely empirical level, they are difficult to 
estimate because the process has such strong variability and intermittency. To 
progress much further, we’ll undoubtedly need new ideas. However, the gener-
ality of GSI does make the introduction of scalebound mechanisms seem par-
ticularly superfluous.

Figure 3.18  Continued
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3.3.4  The scalebound approach and 
the phenomenological fallacy

I’ve given you a taste of the enormous diversity of cloud morphologies possible 
within the scaling framework. We examined morphologies that were increasingly 
stratified at larger scales, that rotated with scale (but only a bit), or that rotated 
many times. There were filamentary structures, there were structures with waves, 
and there were structures with characters that changed with position. Although 
all of these morphologies changed with scale, they were all consequences of 
mechanisms that were scale invariant. The scalebound approach is, therefore, not 
only scientifically unjustified, it is logically wrong. When scalebound mechanisms 
and models based solely on phenomenological appearances are invoked, they 
commit a corollary of the scalebound approach: the “phenomenological fallacy.”79 
More concisely, the phenomenological fallacy is the inference of mechanism from 
phenomenology (from appearances).aa

Notes

1. An important example of this failure was in the application of scaling approaches to 
solid Earth geophysics. Numerous, seemingly promising applications of the scaling sym-
metry in solid Earth geophysics, including coastlines and topography, were stymied by the 
unnecessary restriction of scaling to fractal sets of points. By the early 1990s, this led to a 
backlash against scaling and to the unfortunate rejection of scaling altogether. If the ap-
propriate multifractal scaling concepts had been used, this might have been avoided. For a 
review, see Lovejoy, S. & Schertzer, D. Scaling and multifractal fields in the solid earth and 
topography. Nonlin. Proc. Geophys. 14, 1–​38 (2007).

2. Kadanoff, L. P. Fractals: Where’s the physics? Physics Today February, 6–​7 (1986).
3. Noether, E. Invariante Variationsprobleme. Nachr. kgl. Ges. Wiss. Göttingen 1918, 235–​

257 (1918).
4. Strictly speaking, these symmetries apply to the Lagrangians that determine the fun-

damental forces. It turns out that at cosmic scales, the expansion of the universe breaks the 
time symmetry and there is no cosmological conservation of energy.

5.  This term was coined a little later. Schertzer, D.  & Lovejoy, S.  The dimension and 
intermittency of atmospheric dynamics. In: Turbulent Shear Flow (eds. L.  J. S. Bradbury, 
F. Durst, B. E. Launder, F. W. Schmidt, & J. H. Whitelaw), pp. 7–​33. (Springer-​Verlag, 1985).
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aa In Box 3.1, we examined an extension of the phenomenological fallacy that arises when the prob-
ability of extremes is scaling so that a unique mechanism generates both weak and strong extreme 
events.
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13.  Schertzer, D.  & Lovejoy, S.  Multifractal generation of self-​organized criticality. 
In: Fractals in the Natural and Applied Sciences (ed. M. M. Novak), pp. 325–​339. (Elsevier, 
North-​Holland, 1994).

14. Schertzer, D., Lovejoy, S., & Lavallée, D. Generic multifractal phase transitions and 
self-​organized criticality. In: Cellular Automata: Prospects in Astronomy and Astrophysics 
(eds. J. M. Perdang & A. Lejeune), pp. 216–​227. (World Scientific, 1993).

15. Sardeshmukh, P. D. & Sura, P. Reconciling non-​Gaussian climate statistics with linear 
dynamics. J. Climate 22, 1193–​1207 (2009). This mechanism combines additive and multi-
plicative processes. It is similar to the multifractal butterfly effect.

16. One reason that scaling probabilities are disliked is that if we calculate the statis-
tical moments of order higher than qD, they do not converge. Common mathematical 
assumptions—​used, for example, in “statistical closure” theories and approximations—​are 
therefore inappropriate.

17. The power law can only hold for large fluctuations, ∆T, because the total probability 
is equal to one and so is bounded. In practical applications, it isn’t always obvious where the 
extreme power law probability “tails” start.

18. For the wind, the power law probabilities that Mandelbrot predicted theoretically 
more than forty years ago—​and even the value qD = 5, which was discovered empirically 
more than thirty years ago (Fig. 3.2)—​has recently been numerically confirmed for the first 
time. This was possible because computer technology allowed the equations of fluids to be 
solved on an enormous grid—​in a box of 8,192 × 8,192 × 8,192 points—​and the simulation 
generated histograms with more than a quadrillion events (1015). Ironically, the authors of 
the article were apparently unaware of these earlier, decades-​old results: Yeung, P. K., Zhai, 
X. M., & Sreenivasan, K. R. Extreme events in computational turbulence. PNAS 112 (41), 
12633–​12638 (2015).

19.  Adapted from Ladoy, P., Lovejoy, S.  & Schertzer, D.  In:  Non-​linear Variability in 
Geophysics: Scaling and Fractals (eds. D. Schertzer & S. Lovejoy), pp. 241–​250. (Kluwer, 1991).

20. Antarctica; paleotemperatures from 18O proxies. Reproduced with permission from 
Lovejoy, S. & Schertzer, D. Scale invariance in climatological temperatures and the local 
spectral plateau. Annal. Geophys. 4B, 401–​410 (1986).

21.  Reproduced with permission from Lovejoy, S.  & Schertzer, D.  The Weather and 
Climate: Emergent Laws and Multifractal Cascades. (Cambridge University Press, 2013).
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22.  Adapted from Lovejoy, S.  Scaling fluctuation analysis and statistical hypothesis 
testing of anthropogenic warming. Climate Dynam. 42, 2339–​2351 (2014).

23. This insensitivity to details is an example of “universality” (Box 1.1). For example, 
measurement errors may be the result of a large number of different factors, and the indi-
vidual contributions to the total error may be from distributions that are not at all Gaussian. 
This is a rather rough statement of a mathematical result called the “central limit theorem.” 
But to be more precise, we require extra and not always obvious assumptions. To start with, 
for the result to be Gaussian, the variances of each contributing factor must be finite; oth-
erwise, the result will be a (power law) Levy distribution. However, we also require that 
individual contributions be statistically independent of each other, or at least only weakly 
dependent. It is this assumption that is violated in multifractal processes; they have strong 
“long-​range” statistical dependencies.

24.  In Chapter  5, we look at a useful exception:  several (nearly) nonintermittent 
macroweather time series (but not their spatial transects!). For these, the fractional 
Gaussian noise process (which follows a bell curve) can be a good approximation, although, 
even here, the extremes are not quite Gaussian and may in fact be power laws with qD ≈ 5.

25. Early works that found power law extremes in precipitation, wind, temperature, and 
potential temperature are as follows: Lovejoy, S. Analysis of rain areas in terms of fractals. 
In:  Proceedings of the 20th Conference on Radar Meteorology, pp. 476–​484. (American 
Meteorological Society, 1981). Lovejoy, S. & Mandelbrot, B. B. Fractal properties of rain and 
a fractal model. Tellus 37A, 209 (1985). Schertzer, D. & Lovejoy, S. The dimension and inter-
mittency of atmospheric dynamics In: Turbulent Shear Flow (eds. L. J. S. Bradbury, F. Durst, 
B. E. Launder, F. W. Schmidt, & J. H. Whitelaw.), pp. 7–​33. (Springer-​Verlag, 1985).

26. Purely multiplicative random variables lead to somewhat less extreme log Levy and 
lognormal distributions (i.e., the logarithms are Levy or Gaussian; their tails are “long” but 
not “fat”). The enhanced variability of multiplicative processes when compared to mul-
tiplicative variables is a result of the singular small-​scale limit of the former; it has been 
theorized in the framework of multifractal phase transitions. Schertzer, D.  & Lovejoy, 
S. Hard and soft multifractal processes. Physica A 185, 187–​194 (1992).

27.  An entire book by Aitchison and Brown popularized the idea that multiplicative 
random variables could simply be handled by taking logarithms to yield log-​normal 
distributions [Aitchison, J.  & Brown, J.  A. C.  The Lognormal Distribution, with Special 
Reference to Its Uses in Economics. (Cambridge University Press, 1957).]. But as a result of 
their “pathological” small-​scale limiting behaviors, this reasoning doesn’t apply to multipli-
cative cascade processes (Box 2.2).

28. Mandelbrot, B. B. The variation of certain speculative prices. J. Business 36, 394–​419 
(1963).

29. Mandelbrot, B. B. How fractals can explain what’s wrong with Wall Street: The geom-
etry that describes the shape of coastlines and the patterns of galaxies also elucidates how 
stock prices soar and plummet. Scientific American February, 70–​72 (1999).

30.  Taleb, N.  N. The Black Swan:  The Impact of the Highly Improbable. (Random 
House, 2010).

31. It is one minus the usual cumulative distribution function that instead accumulates 
probability from the smallest value.

32. Richardson, L. F. The supply of energy from and to atmospheric eddies. Proc. Roy. 
Soc. A London A97, 354–​373 (1920).
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33. It is equal to the square of the Brunt-​Väiäsala frequency.
34. So much so that several “calmer” versions were invented to yield less variable results 

in the hope that these would be more meaningful.
35. Reproduced with permission from Schertzer, D. & Lovejoy, S.  In: Turbulent Shear 

Flow (eds. L. J. S. Bradbury et al.), pp. 7–​33. (Springer-​Verlag, 1985).
36. Endlich, R. M., Singleton, R. C., & Kaufman, J. W. Spectral analyses of detailed ver-

tical wind profiles. J. Atmos. Sci. 26, 1030–​1041 (1969). Endlich, R. M. & Mancuso, R. L. 
Objective analysis of environmental conditions associated with severe thunderstorms and 
tornadoes. Monthly Weather Rev. 96, 342–​350 (1968).

37. Obukhov, A. Effect of Archimedean forces on the structure of the temperature field 
in a turbulent flow. Dokl. Akad. Nauk SSSR 125, 1246 (1959). Bolgiano, R. Turbulent spectra 
in a stably stratified atmosphere. J. Geophys. Res. 64, 2226 (1959).

38. Nastrom, G. D. & Gage, K. S. A first look at wave number spectra from GASP data. 
Tellus 35, 383 (1983).

39. In terms of the spectral exponents, the three-​dimensional and two-​dimensional iso-
tropic values are 5/​3 and 3.

40.  Schertzer, D.  & Lovejoy, S.  The dimension and intermittency of atmospheric dy-
namics, In:  Turbulent Shear Flow (eds. L.  J. S.  Bradbury, F.  Durst, B.  E. Launder, F.  W. 
Schmidt, & J. H. Whitelaw), pp. 7–​33. (Springer-​Verlag, 1985).

41. Schertzer, D. & Lovejoy, S. Generalised scale invariance in turbulent phenomena. 
Phys. Chem. Hydrodynam. J. 6, 623–​635 (1985).

42.  The equations governing the basic attributes of a fluid—​wind, pressure, and 
temperature—​are well defined, but the equations are not so clear for clouds, precipitation, 
and radiation, which are heavily “parameterized.” In addition, the equations are solved on 
numerical grids that are far, far larger than the dissipation scale (typically 100 km compared 
to millimeters), so that it is by no means a trivial matter to solve them numerically (see 
Chapter 5).

43. The scaling symmetries of fluid equations are at the root of the many “similarity” 
laws of classic fluids mechanics. Sedov, L.  I. Similarity and Dimensional Methods in 
Mechanics. (Academic Press, 1959). Schertzer, D. & Tchiguirinskaia, I. Multifractal vector 
fields and stochastic Clifford algebra. Chaos 25, 123127 (122015), doi:10.1063/​1.4937364 
(2015).

44.  Actually, a slightly simplified set of atmospheric equations was used (the vor-
ticity equations); but, thanks to numerical analysis of the outputs of weather and cli-
mate models, there is no doubt about the basic scaling result for NWPs and GCMs (see 
Chapter 4). Schertzer, D., Tchiguirinskaia, I., Lovejoy, S., & Tuck, A. F. Quasi-​geostrophic 
turbulence and generalized scale invariance: A theoretical reply. Atmos. Chem. Phys. 12, 
327–​336 (2012).

45. The mathematically rigorous notion of the size of a set is its “measure.”
46. The approximately equal symbol (≈) is used because there will generally be unim-

portant numerical factors. For example, for a circle, if we take Length = Diameter, then its 
area is (π/​4)(Length)2, but we just write Area ≈ (Length)2.

47. Launched in 2006, CloudSat orbits at an altitude of 700 km and has a radar that 
has about a 1-​km resolution in the horizontal and about 250 m in the vertical. The satellite 
doesn’t scan from left to right, but builds up a vertical section from the profiles below as it 
revolves in its orbit.
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48. It turns out that this is required for modeling Earth’s geological strata. See a review in 
Lovejoy, S. & Schertzer, D. Scaling and multifractal fields in the solid earth and topography. 
Nonlin. Processes Geophys. 14, 1–​38 (2007).

49. Schertzer, D. & Lovejoy, S. Generalised scale invariance in turbulent phenomena. 
Phys. Chem. Hydrodynam. J. 6, 623–​635 (1985).

50. This brings out the fact that our definition of scale and size is somewhat arbitrary. In 
this case, we obtained the relation Del = 1 + Hz by identifying scale with the horizontal en-
largement factor. We could equally well have defined it as equal to the vertical enlargement 
factor. In the latter case, we would have obtained Size Area Vertical ertical= = ×( ) ( ),/1 Hz V  
so that, as before, we would have Size Scale ,= ( )Del  but with Del = 1/​Hz + 1. The elliptical 
dimensions in Figure 3.4 would thus be 7/​2, 8/​3, 9/​4, 2, 11/​5, and 3. This would be a perfectly 
valid system of scales and sizes.

51.  I  have just described in words the anisotropic generalization of the Haussdorf 
measure. See Schertzer, D.  & Lovejoy, S.  Generalised scale invariance in turbulent phe-
nomena. Phys. Chem. Hydrodynam. J. 6, 623–​635 (1985).

52. Adapted from Lovejoy, S., Tuck, A. F., Schertzer, D., & Hovde, S. J. Reinterpreting 
aircraft measurements in anisotropic scaling turbulence. Atmos. Chem. Phys. Discuss. 9, 
3871–​3920 (2009).

53. Adapted from Lovejoy, S., Tuck, A. F., Schertzer, D., & Hovde, S. J. Reinterpreting 
aircraft measurements in anisotropic scaling turbulence. Atmos. Chem. Phys. Discuss. 9, 
3871–​3920 (2009).

54. The elliptical dimension over the overall space (if there were no holes) is therefore 
log15/​log5 = 1 + log3/​log5 = 1.68. The elliptical dimension of the black areas (the anisotropic 
fractal Sierpinski carpet) is log12/​log5 = 1.54.

55. This figure is an elaboration on the original one that appeared in Schertzer, D. & 
Lovejoy, S. The dimension and intermittency of atmospheric dynamics. In: Turbulent Shear 
Flow (eds. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt, & J. H. Whitelaw), pp. 7–​
33. (Springer-​Verlag, 1985).

56. The film version of this (and other anisotropic space–​time multifractal simulations) 
can be found at http://​www.physics.mcgill.ca/​~gang/​multifrac/​index.htm. Reproduced 
with permission from Blöschl, G., Thybo, H., Savenije, H., & Lovejoy, S. In: A Voyage through 
Scales:  The Earth System in Space and Time (eds. G.  Blöschl, H.  Thybo, & H.  Savenije), 
pp. 13–​18. (Edition Lammerhuber, 2015).

57. Adapted from Lovejoy, S. & Schertzer, D. Towards a new synthesis for atmospheric 
dynamics: Space–​time cascades. Atmos. Res. 96, 1–​52 (2010).

58. Dewan, E. & Good, R. Saturation and the “universal” spectrum vertical profiles of 
horizontal scalar winds in the stratosphere. J. Geophys. Res., 91, 2742 (1986). These are the 
atmospheric analogues of waves on the ocean. They have nothing to do with Einstein’s 
undulations of the fabric of space–​time itself.

59. In the lower troposphere, the atmosphere is not heated directly by the sun; rather, the 
sun warms the surface, expanding the nearby air, which then rises and cools by expansion. 
Above the tropopause, the air is heated directly by ultraviolet radiation being absorbed by 
ozone, so that the stratosphere is warmer.

60. The smog data have a smaller spheroscale than the CloudSat data. Figure 3.11 graph-
ically shows that it is more typically about 10 cm to 1 m instead of 10 m to 1 km. The reason 
for the difference isn’t clear, except that that the spheroscale is highly variable and the lidar 
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data were acquired under calm conditions, whereas the CloudSat clouds are associated with 
more violent conditions.

61. Adapted from Lovejoy, S. & Schertzer, D. Towards a new synthesis for atmospheric 
dynamics: Space–​time cascades. Atmos. Res. 96, 1–​52 (2010).

62. Structures 10,000 km in the east–​west direction are typically “squashed” to a size 
about 1.6 times smaller than in the north–​south direction, reflecting the importance of the 
larger north–​south temperature gradients. However, there is no evidence of a systematic 
change in this aspect ratio as we move to smaller scales, nor is there a plausible theory that 
might explain one. Although this statement is true of the data, it turns out that one of the 
limitations of NWPs and GCMs is that they do have horizontal stratifications that are pre-
sumably spurious. If the east–​west direction is taken as the reference, then the structures 
in the models for north–​south direction follow (North South) = (East West)− − H y ,  with 
Hy = 0.80. For this, and an explanation, see Lovejoy, S. & Schertzer, D. Space–​time cascades 
and the scaling of ECMWF reanalyses: Fluxes and fields. J. Geophys. Res. 116, doi:10.1029/​
2011JD015654 (2011).

63. Schertzer, D. & Lovejoy, S. Generalised scale invariance in turbulent phenomena. 
Phys. Chem. Hydrodynam. J. 6, 623–​635 (1985). Lovejoy, S. & Schertzer, D. Generalized scale 
invariance and fractal models of rain. Water Resourc. Res. 21, 1233–​1250 (1985).

64.  The definition of the unit scale is quite flexible, but not completely so. When 
combined with the scale-​changing rule, it must not imply that any of the balls cross each 
other. If they did, then at the crossing point, the notion of scale would become ambiguous; 
it would not be unique.

65. Mathematically, the rule telling us how to make an infinitesimal scale change is the 
generator of the (Lie) group of scale changes. Up until now, all the blowup rules were ma-
trix multiplications and they were linear. The anisotropic blowup was defined by the scale 
change ratio to the power of a matrix, the latter being the “generator.”

66. The blowdown is based on the matrix 
1 3 1 3
0 3 0 7
. .
. .

.
−





 Adapted from Lovejoy, S. & 

Schertzer, D. Course Notes: Multifractals in Geophysics, AGU-​CGU-​MSA Spring Meeting, 
May 11, Montreal (1992).

67.  The matrices used are 
1 0
0 1

1 35 0
0 0 65

1 35 0 25
0 25 0 65



















,
.

.
,

. .

. .
,  and 

1 35 0 45
0 85 0 65
. .
. .

−





(upper left to lower right).

68. The matrix used here was 
1 1 0 02

0 18 0 9
. .

. .
.







69. Both views reproduced from Lovejoy, S. & Schertzer, D. In: Nonlinear Dynamics in 
Geophysics (eds. J. Elsner & A. A. Tsonis), pp. XX–​XX. (Elsevier, 2007).

70. Reproduced from Lovejoy, S., Tuck, A. F., Schertzer, D., & Hovde, S. J. Reinterpreting 
aircraft measurements in anisotropic scaling turbulence. Atmos. Chem. Phys. Discuss. 9, 
3871–​3920 (2009).

71.  Each simulation was made using 256 × 256  =  65,536 random numbers to form 
the “subgenerator.” Only a single value was boosted artificially to obtain the simulation 
shown here.
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72.  Both views reproduced from Lovejoy, S.  & Schertzer, D.  The Weather and 
Climate: Emergent Laws and Multifractal Cascades. (Cambridge University Press, 2013).

73. The study of radiative transfer in multifractal clouds is in its infancy. See, however, 
the following works: Naud, C., Schertzer, D., & Lovejoy, S. Fractional Integration and ra-
diative transfer in multifractal atmospheres. In:  Stochastic Models in Geosystems (eds. 
W. Woyczynski & S. Molchansov), pp. 239–​267. (Springer-​Verlag, 1997). Schertzer, D., S., 
Lovejoy, F. Schmitt, C.Naud, D. Marsan, Y. Chigirinskaya, & C. Marguerit. New developments 
and old questions in multifractal cloud modeling, satellite retrievals and anomalous ab-
sorption. In: 7th Atmos. Rad. Meas. (ARM) Meeting (ed. US Department Energy), pp. 327–​
335. (US Department of Energy, 1998). Watson, B. P., Lovejoy, S., Grosdidier, Y., & Schertzer, 
D. Multiple scattering in thick multifractal clouds part I: Overview and single scattering in 
thick multifractal clouds. Physica A 388, doi:10.1016/​j.physa.2009.05.038 (2009). Lovejoy, 
S., Watson, B., Grosdidier, Y., & Schertzer, D. Scattering in thick multifractal clouds, part 
II: Multiple scattering. Physica A 388, 3711–​3727, (2009).

74.  (A)  through (E)  reproduced from Lovejoy, S.  & Schertzer, D.  The Weather and 
Climate: Emergent Laws and Multifractal Cascades. (Cambridge University Press, 2013).

75.  Reproduced from Lovejoy, S., Schertzer, D., Lilley, M., Strawbridge, K.  B., & 
Radkevitch, A. Scaling turbulent atmospheric stratification, part I: Turbulence and waves. 
Q. J. Roy. Meteorol. Soc. 134, 277–​300 (2008).

76.  Both views reproduced from Lovejoy, S.  & Schertzer, D.  The Weather and 
Climate: Emergent Laws and Multifractal Cascades. (Cambridge University Press, 2013).

77.  The GSI notion of scale is generally not a metric. It is not a distance in the 
mathematical sense.

78.  Both views reproduced from Lovejoy, S.  & Schertzer, D.  The Weather and 
Climate: Emergent Laws and Multifractal Cascades. (Cambridge University Press, 2013).

79. Lovejoy, S. & Schertzer, D. Scale, scaling and multifractals in geophysics: Twenty 
years on. In: Nonlinear Dynamics in Geophysics (eds. J. Elsner & A.A. Tsonis), p. 311–​337. 
(Elsevier, 2007).
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 The weather: Don’t mind the gap

4.1  A convenient gap

“This afternoon, the sky will start to clear, with cloud shreds, runners, and thin 
bars followed by flocks.”

If Jean-​Baptiste Lamarck (1744–​1829) had had his way, this might have been an 
uplifting early-​morning weather forecast announcing the coming of a sunny day.a 
Unfortunately for poetry, in 1803, several months after Lamarck proposed this first 
cloud classification, the “namer of clouds,” Luke Howard (1772–​1864), introduced 
his own staid Latin nomenclature that is still with us today and includes terms 
such as “cumulus,” “stratus,” and “cirrus.” Howard not only had a more scientific-​
sounding jargon, but was soon given publicity in the form of a poem by Goethe; 
Lamarck’s names didn’t stand a chance.

For a long time, human-​scale observation of clouds was the primary source 
of scientific knowledge of atmospheric morphologies and dynamics. This didn’t 
change until the appearance of the first weather maps based on meager collections 
of ground station measurements around 1850. This was the beginning of the 
field of “synoptic” (literally “map-​scale”) meteorology. Under the leadership of 
Wilhelm Bjerknes (1862–​1951), it spawned the Norwegian school of meteorology 
that focused notably on airmasses, the often sharp gradients between them called 
“fronts,” and the stability of the airmass interfaces. This was the dominant view 
when, in the mid 1920s, Richardson proposed his scaling 4/​3 diffusion law. The 
spatial resolution of these “synoptic-​scale” maps was so low that features smaller 
than 1,000 kilometers or so could not be discerned. Between these and the kilo-
metric human “microscales,” virtually nothing was known. Richardson’s claim that 
a single scaling law might hold from thousands of kilometers down to millimeters 
didn’t seem so daring. Not only was it compatible with the scale-​free equations that 
he had elaborated, but also there were no scalebound paradigms to contradict it.
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a English translations fail to do justice to Lamarck’s poetry. Here are some of his cloud types in 
the original French:  brumeux, en voiles, lambeaux, boursouflés, attroupés, en balayures, en barres, 
pommellées, coureurs, diablotins, groupes, and en montagnes.
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By the late 1940s and ʼ50s, the development of radar finally opened a window 
onto the intermediate range. During the second world war, the first radars had 
picked up precipitation as annoying noise that regularly ruined the signals. In 1943, 
in an attempt to understand the problem better, the Canadian Army Operational 
Research Group initiated “project stormy weather.” After the war, the team—​
headed by John Stuart Marshall—​set up the Stormy Weather Group at McGill 
University, which—​thanks to the “Marshall-​Palmer relationb”—​soon established 
the quantitative basis for interpreting radar precipitation scans: the famous “Z-​R” 
relation (reflectivity–​rain rate).c Beyond this quantification of precipitation, the 
key advance of radar was the ability to image the first weather patterns in the range 
of 1 to 100 km in size—​the discovery of structures and motions in the middle 
(“meso”) scales between the human micro-​ and the synoptic-​map scales.1

As this window opened onto the mesoscale, the path pioneered by Richardson’s 
statistical theories of turbulence was rapidly advancing. The idea of turbulence 
theory was to derive high-​level statistical laws governing the collective statistical 
behavior of strongly nonlinear flows, such as those in the atmosphere, where the 
nonlinear terms were typically a thousand billion times larger than the linear 
ones.2 To make progress, three important simplifications were made. First, only 
incompressible fluids were considered. Because gravity acts on density varia-
tions, this had the effect of eliminating the main real-​world source of anisotropy 
and stratification at the very outset.3 Second, boundaries and walls, and—​for the 
atmosphere—​Earth’s surface and north–​south temperature gradients are also 
sources of anisotropy. Therefore, an additional assumption of statistical isotropy 

b This is still the name used by meteorologists for the humble exponential distribution of raindrops 
as functions of drop size. In 1948, Marshall’s graduate student Walter Palmer had used chemically 
coated blotting paper to relate the size of a drop to the diameter of a “blot.” Marshall and Palmer 
had used many such small pieces of blotting paper, placed in the bottom of jars, to establish the rel-
ative number of small and large drops. This information was needed to interpret radar microwave 
backscatter. But they had assumed the drops were distributed uniformly in space whereas—​thanks 
to turbulence—​they were in fact distributed in a hierarchical (cascade)-​like manner. Forty years later, 
using a huge (128-​ × 128-​cm) piece of blotting paper, a student and I recalibrated similarly coated paper 
in the same McGill staircase, only this time showing that the spatial distribution of drops was not uni-
form, but rather a fractal set. See Marshall, J. S. & Palmer, W. M. The distribution of raindrops with size. 
J. Meteorol. 5, 165–​166 (1948); Lovejoy, S. & Schertzer, D. Fractals, rain drops and resolution dependence 
of rain measurements. J. Appl. Meteorol. 29, 1167–​1170 (1990).

A decade later, images each containing tens of thousands of drops in volumes of 10 m3, were 
analyzed using stereophotography. This confirmed that, as a result of turbulence, Marshall’s homo-
geneity assumption is only valid up to about 40 to 50 cm, not up to kilometers, as is still routinely 
assumed. See Desaulniers-​Soucy, N., Lovejoy, S., & Schertzer, D. The continuum limit in rain and the 
HYDROP experiment. Atmos. Res. 59–​60, 163–​197 (2001); Lovejoy, S. & Schertzer, D. Turbulence, rain 
drops and the l1/​2 number density law. New J. Physics 10, doi:075010.071088/​071367-​072630/​075010/​
075017/​075017 (2008).

c After Marshall retired in 1977, my PhD supervisor, Geoff Austin, succeeded him as leader of the 
Stormy Weather Group and as director of McGill’s (later baptized) J. S. Marshall radar observatory, 
which was then attached to the physics department. When, in 1980, I gave my first seminar on fractal 
models of rain in the McGill meteorology department, Marshall attended as a still active professor 
emeritus.
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was made: that the flow itself was, on average, the same in all directions.4 This was 
an approximation believed to hold at small-​enough scales and far enough from 
surfaces. Third, although at any instant in time the actual turbulent flow would be 
highly variable from one place to another, it was assumed that, on average, the tur-
bulence was the same everywhere—​that it was statistically homogeneous.

It is important to take a moment to examine the notions of homogeneity and 
isotropy more closely. In common parlance, something that is homogeneous is 
spatially uniform—​the same everywhere, constant. Similarly, something isotropic 
is the same in all directions; it is spherically symmetrical. If the atmosphere was 
literally—​in this deterministic sense—​both homogeneous and isotropic, then 
wind, temperature, pressure, and other atmospheric parameters would have iden-
tical values everywhere, and so this would be a useless approximation.

The notion of a turbulence that is statistically homogeneous and statistically 
isotropic is much more subtle than this. It has to do with the same symmetries—​
translational and rotational invariance—​but over statistical averages. A statistical 
average is neither a spatial nor a temporal average; rather, it is an average over 
a statistical ensemble. To understand an ensemble, one must imagine reenacting 
(almost) exactly the same experiment a large number of times under identical 
conditions. For each experiment, the details of the resulting turbulent flow would 
be different because infinitesimally small differences are amplified by the strongly 
nonlinear character of the flow (the “butterfly effect”; see Chapter 7). Statistical av-
erages would then be obtained by averaging the flow over this huge (in principle, 
infinite) ensemble of experiments.

Each member—​“realization”—​of such a statistically homogeneous and statisti-
cally isotropic ensemble could easily be extremely inhomogeneous in space and could 
have a strong preferred direction.d However, the preferred locations of turbulent 
“hotspots,” or the preferred orientations of vortices, would be different for each exper-
iment, so that the average over all the experiments would be a constant everywhere 
and would display no preferred direction. The problem with testing this idea empir-
ically is that no one ever performs an infinite number of identical experiments. And 
when it comes to the weather and climate, there is only one planet Earth (although, 
in many respects, Mars comes pretty close, as discussed later!). Often, we, somehow, 
have to figure out what “typical” inhomogeneities and “typical” anisotropies might be 
expected on single realizations, even of processes that are known to be statistically ho-
mogeneous and isotropic. This underlines the importance of multifractals generated 
by cascades:  They can be constructed easily to be statistically homogeneous and 
isotropic, but nevertheless, on each concrete instance—​realization—​they are much 
more wildly variable than anyone had ever imagined!

Although these assumptions may sound academic, they are not unreasonable 
approximations to appropriately stirred water in a tank—​or even the coffee in 

d  Indeed, the breakthrough resulting from cascades and multifractals was precisely the under-
standing that we should expect extreme variations from one realization of a turbulent process to 
another.
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your cup. Of course, in practical terms, it is impossible either to stir your coffee 
in exactly the same way throughout the cup (homogeneously) or to do so in a 
way that is the same in all directions (isotropically). However, there are reason-
able arguments to the effect that if one was far enough from boundaries and at 
small-​enough scales, these anisotropies and inhomogeneities would no longer be 
important.5 This emboldened theorists to apply these ideas to the atmosphere—​
even if only over limited ranges of scales. Unfortunately for the isotropy assump-
tion, gravity acts at all scales, so that even if the boundaries affect only the nearby 
flow, and even if the north–​south temperature gradients are important only at the 
largest scales, the presence of gravity is sufficient to render the isotropic theories 
of the atmosphere academic.

We have considered statistical constancy in space and in direction, but what 
about in time? A vigorous stirring of your coffee might lead to some approxima-
tion of statistical homogeneity and isotropy, but if the stirring stopped, then—​as 
a result of friction (viscosity)—​the motion would die down. Therefore, an even 
simpler situation was usually considered:  “quasi-​steady” homogeneous and iso-
tropic turbulence in which the fluid was stirred constantly so that the stirring en-
ergy would, on average, be dissipated as heat at the same rate at which it was input 
by the stirring.6

Because large structures (“eddies”) tended to be unstable and to break up into 
smaller ones, it was enough for the stirring to create large whirls and let the turbu-
lence do the rest: to create smaller and smaller structures until, eventually, dissi-
pation took over. This hierarchical transfer of energy from large to small was what 
Richardson had referred to in his poem: “the big whirls have little whirls that feed 
on their velocity”; it was the basic cascade idea.7 Such a quasi-​steady state means, 
on average, everything is the same at all times. It is an approximation to the tem-
poral equivalent of statistical homogeneity: statistical “stationarity.”

The paradigm of “isotropic, homogeneous turbulence” emerged by the end 
of the 1930s.8 During this time, Soviet mathematician and physicist Andrey 
Kolmogorov (1903–​1987) was axiomatizing probability theory,9 thus laying the 
mathematical basis for the treatment of random processes. By the end of the 1930s, 
Kolmogorov had begun to turn his attention to turbulence. The breakthrough 
was the recognition that the key parameter controlling the flow of energy from 
the large-​scale stirring to the small-​scale dissipation was the energy rate density10 
(Chapter 1). Using this quantity, one obtainse the Kolmogorov law,11 which relates 
the turbulent velocity fluctuations across a structure to its scalef:

	 ( ( () ) )/ /Velocity Fluctuations Energy Rate Density Scale1 3 1= × 33 . 	

e The basic result follows from dimensional analysis, although various arguments and models—​
such as cascades—​are increasingly convincing.

f  This effectively explained Richardson’s 4/​3 law of turbulent diffusion, which Richardson had 
proposed largely on empirical grounds.
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Sometimes, scientific ideas are so ripe that they are “in the air.” The Kolmogorov 
law is a classic example. It was discovered independently no less than five times! One 
of them was at almost exactly the same time—​by another Soviet, Alexander Obukhov 
(1918–​1989)12—​but in the (equivalent) spectral domain, where it has the form k –​5/​3,  
where k is an inverse length called the “wavenumber” (the spatial equivalent of 
a frequency). As a consequence, the law is also referred to as the “5/​3 law” or the 
“Kolmogorov-​Obukhov” law. During the second world war, scientific exchanges were 
limited, so the next discovery was made several years later by Lars Onsager (1903–​
1976) in 1945.13 Onsager was the first to link the law explicitly to a cascade of energy 
flux from large to small scales.g But Onsager’s American publication only a short ab-
stract; it was no more visible than the earlier Soviet articles had been. This led, in 
1948, physicists Werner Heisenberg (1901–​1976)13 and Carl Freidrich von Weizacker 
(1912–​2007)14 to their own rediscoveries.

The pattern of independent Soviet and nearly concurrent western discoveries con-
tinued with the discovery (in 1951 and 1949, respectively) of the closely analogous 
turbulent laws of turbulent mixing, the (also scaling) “Corrsin (1920–​1986)-​Obukhov 
(1949) law”15:

	 ( ( () ) ) /Temperature fluctuations Turbulent fluxes Scale .1 3= × 	

This happened again in 1959, with the Bolgiano-​Obukhov16 law for buoyancy-​driven 
turbulenceh:

	 ( ( () ) ) /Velocity fluctuations Turbulent fluxes Scale .3 5= × 	

By 1953, the theory of isotropic homogeneous turbulence had evolved to 
the point that it was already the subject of the landmark book The Theory of 
Homogeneous Turbulence17 by George Batchelor (1920–​2000). By then, the role of 
isotropy had subtly changed. Although it had been introduced originally as a way 
of simplifying theoretical treatments of turbulence, it had now taken on a life of 
its own. And although the main application of the theory was to the atmosphere,i 
Kolmogorov noted that the rather stringent “inertial rangej” assumptions that he 
had used to derive it (including the neglect of gravitational forces) would only be 

g Looking back many years later, in an important update on his law (taking intermittency into ac-
count), Kolmogorov explained that—​although they had not mentioned it explicitly—​during the period 
1939 to 1941 both he and Obukhov had been inspired by Richardson’s cascades: Kolmogorov, A. N. 
A refinement of previous hypotheses concerning the local structure of turbulence in viscous incom-
pressible fluid at high Reynolds number. J. Fluid Mech. 83, 349–​369 (1962).

h See the left–​right shift in Figure 3.2.
i The theory was only valid at a very large Reynold’s number (i.e., strong nonlinearity, only barely 

attained in huge wind tunnels).
j So-​called because the law was valid only when the inertial terms in the equations dominated the 

dissipation/​friction terms.
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valid up to scales of several hundred meters—​a conclusion amplified by Batchelor, 
who speculated that the range might only be between 100 m and 2 mm.

Writing twenty years later in the influential book Weather Forecasting as a 
Problem in Physics,18 Andrei Monin (1921–​2007) reproduced (with embellishments) 
Richardson’s original 4/​3 law figure (Fig.  2.6), commenting—​in accord with 
Richardson—​that it “is valid for nearly the entire spectrum of scales of atmos-
pheric motion from millimeters to thousands of kilometers.”19

Yet, on the opposite page, he claims that the almost identical Kolmogorov law 
should hold only to about 600 m! In a later publication,20 the contradiction is 
noted with the following mysterious explanation: “in the high frequency region 
one finds unexpectedly, that relationships similar to those valid in the inertial 
subrange of the microturbulence spectrum are again valid.”

Although Richardson had been blissfully ignorant of isotropic theory and 
had dared to propose that his scaling law would hold over the whole range of 
atmospheric scales, the nearly equivalent Kolmogorov law was now claimed to 
be limited to a tiny range. This drastic limitation was neither the result of any evi-
dence nor the discovery of any scale-​breaking mechanism. Rather, the restriction 
and its implied scale break were hypothesized because atmospheric stratification 
contradicted isotropy. Isotropy had come to dominate the theory, and the reason 
for its introduction had been forgotten: theoretical simplicity! Rather than finding 
the best theory to fit reality, the theorists were trying to find realities to fit their 
theories.

To be savored, the full irony had to wait more than fifty years for the analysis 
of dropsonde data (Fig. 1.7). It turned out that scientists had been so confident in 
the isotropy assumption that they hadn’t bothered to check the Kolmogorov law 
in the vertical direction. And when they finally did so, at the end of the 1960s (see 
Chapter 3), the contrary Bolgiano-​Obukhov law resulted. This awkward experi-
mental result had simply been ignored rather than investigated and explained.k 
Isotropy was too beautiful to be disturbed by ugly data!

Figure 4.1 shows the analysis of the dropsonde data. The change (difference) of 
the horizontal wind was calculated over layers of increasing thickness, first only 
for the near-​surface region (bottom of the plot), then from the surface to higher 
and higher altitudes (with the upper curves offset for clarity). The clusters of points 
show the result using all the layers between the ground and 12.8 km (roughly the 
tropopause). For all altitude ranges, one obtains nearly perfect straight lines, 
indicating scaling over its internal layers, covering layers with thicknesses ranging 
from 5 m to nearly 10 km. Even at small scales, the Kolmogorov law (the line with 
the 1/​3 slope at the bottom of Fig. 4.1, next to the letter K) is completely unrealistic, 
with the real data being very close to the Bolgiano-​Obukhov law (slope 3/​5).

k Actually, their confidence in isotropy was so strong that, often, they didn’t even bother checking 
it in the horizontal. They measured the spectrum of a time series taken at a fixed location and then 
converted the result from time to space, as described later.
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Figure 4.1  The average mean absolute difference in the horizontal wind from 238 
dropsondes over the Pacific Ocean taken in 2004. The data were analyzed over regions from 
the surface to higher and higher altitudes. From bottom to top, the different lines are each 
separated by a factor of 10 for clarity. Layers of thickness ∆z, increasing from 5 m to the 
thicknesses spanning the region, were estimated, and lines were fit corresponding to power 
laws with the exponents as indicated. At the bottom, reference lines with slopes  
1/​3 (Kolmogorov, K), 3/​5 (Bolgiano-​Obukhov, BO), and 1 [gravity waves (GW) and quasi-​
geostrophic turbulence] are shown for reference.21

Although the slopes in the figure increase a little at higher altitudes, even the 
theories predicting a slope of one can be rejected (see the line marked GW, for 
“gravity waves”). This slope is predicted by gravity wave theories22 as well as by 
Charney’s quasi-​geostrophic turbulence theory, both of which are seen to be quite 
unrealistic. The conclusion from the data is unequivocal: The original (isotropic) 
Kolmogorov law simply does not hold anywhere in the atmosphere (unless it is 
hiding at scales less than 5 m!). Kolmogorov’s and Batchelor’s speculation that the 
Kolmogorov law would hold up to hundreds of meters was doubly wrong. In re-
ality, it holds much less in the vertical, but much more in the horizontal: up to 
planetary scales (as discussed later).

A corollary fundamental discovery is that the atmosphere is divided into a 
fractal hierarchy of stable and unstable layers. The traditional (low-​resolution) 
view is that the atmosphere was generally unstable near the surface and then stable 
at higher altitudes. However, the high-​resolution dropsondes showed that, within 
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each apparently stable layer, there were unstable sublayers; and within the unstable 
sublayers, there were stable subsublayers; and so on.23 This discovery proved to be 
difficult for various theories (in particular, of the propagation of gravity waves) 
that assumed that wide, stable layers existed.24

 4.2  The standard two-​dimensional/​three-​dimensional model 
and Richardson’s posthumous vindication

By the mid 1950s, empirically based synoptic-​scale meteorology had already 
relegated the microscales to mere turbulence, but this had been done mostly for 
practical reasons. Similarly, the new mesoscale was viewed pragmatically as the 
connection between the two, while simultaneously promising a better under-
standing of thunderstorms and other previously inaccessible meteorological phe-
nomena. The emerging synoptic-​, meso-​, and microscale regimes were thus not 
ordained theoretically; rather, they were practical distinctions awaiting theoretical 
clarification. Yet the theorists were loath to drop their isotropy assumptions and 
were happy to find convenient justifications for dividing up the range of scales into 
small-​scale isotropic three-​dimensional turbulence and something stratified—​
albeit not yet clearly discerned—​at the larger scales. It was already tempting to knit 
all this together and to identify the microscales with three-​dimensional isotropic 
turbulence, and the weather with a different, larger scale stratified turbulence.

That the larger stratified scales might be a different type of turbulence was al-
ready suggested by the discovery made by Fjorthoft (1953) that completely flat, 
two-​dimensional turbulence was fundamentally different from three-​dimensional 
isotropic turbulence.l Although Fjorthoft was cautious in interpreting his results in 
terms of real atmospheric flows, the seed had been planted for the isotropic two-​
dimensional/​three-​dimensional model that followed fifteen years later.

This was the situation when Panofsky and Van der Hoven began their famous 
measurements of the wind spectrum that they published between 1955 and 1957.25 
At this point, wind data at subsecond scales for durations of minutes had already 
confirmed the Kolmogorov law,m but data were lacking at the longer timescales. 
Given the lack of computers, the researchers averaged their data at ten-​second 
intervals using “eye averages” and collected data in this way for an hour or so. 
The spectrum was then calculated laboriously by hand. Last, knowing the average 
wind speed allowed the scientists to make a rough conversion from time to space. 
For example, if the average wind over one minute was 10 m/​s, then the variability 
at one minute was interpreted as information about the variability at spatial scales 
of 10 × 60 = 600 m. To investigate the mesoscale between 1 km and 100 km, such 
data were needed spanning periods of minutes to several hours.

The new element was the use of lower resolution series that could be eye-​
averaged at five-​minute resolutions and that lasted several days. When the 

l  This was not yet the discovery of Robert Kraichnan’s law of two-​dimensional turbulence. 
Kraichnan, R. H. Inertial ranges in two-​dimensional turbulence. Phys. Fluids 10, 1417–​1423 (1967).

m The confirmation was indirect because the measurements were in time, not in space.
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spectrum from this analysis was plotted on the same graph as a one-​minute spec-
trum that had been taken from a completely different experiment under different 
conditions, Panofsky and Van der Hoven discovered there was a dearth or “gap” in 
the variability, roughly in the range of about 1 to 100 km, centered on timescales of 
thirty minutes, corresponding to 10 km. In the authors’ words: “The spectral gap 
suggests a rather convenient separation of mean and turbulent flow in the atmos-
phere: flow averaged over periods of about an hour . . . is to be regarded as ‘mean’ 
motion, deviations from such a mean as ‘turbulence.’ ”26

The mesoscale gap was born.
However, the first (1955) article was based on a single location and on only two 

experiments, and the figures were not very convincing. This led Van der Hoven 
to perform another series of four experiments that produced what later became 
the iconic mesoscale gap spectrum (Fig. 4.2). The gap cleanly and “conveniently” 
separated the synoptic weather scales from small-​scale turbulence. With the de-
velopment of the first computer weather models with resolutions—​even today—​
that don’t include the microscales, this gap became even more seductive. At first, 
it justified simply ignoring these scales; later, it justified “parameterizing” them. 
The gap idea was so popular that Van der Hoven’s spectrum was reworked and 
republished many times, notably in meteorological textbooks throughout the 
1970s. Soon, the actual data points were replaced with smooth artists’ impressions 
(as in Fig 4.2), thus inadvertently hiding the fact that his spectrum was actually a 
composite taken under four different sets of conditions. Even today, his article is 
still cited frequently and approvingly.27
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Figure 4.2  The famous “mesoscale gap” is shown between the two dashed vertical lines. The 
ellipses show the rough ranges of the four experiments that were combined to give the composite 
spectrum (the actual data points had already been replotted from the original). The temporal 
limits of the gap (five minutes to two hours) corresponds roughly to 1 km and 100 km, respectively. 
The leftmost “bump” at about one hundred hours corresponds to the “synoptic maximum,” which 
is none other than the weather–​macroweather transition. It appears spuriously as a bump instead 
of as a smooth transition because the vertical scale is not the spectrum itself [E(ω)], but rather 
the spectrum multiplied by the frequency ω (for comparison, see, for example, the corresponding 
frequency range of the more usual log-​log spectrum in Fig. 2.3A).28
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Yet within ten years, the gap was strongly criticized,29 with critics pointing out 
that it was essentially based on a single high-​frequency bulge (Fig. 4.2, near scales 
of one hundred seconds) as a result of the data in that part of the curve being ac-
quired “under near-​hurricane” conditions. By the end of the 1970s, the gap idea 
was scrutinized by satellites that routinely imaged interesting mesoscale features.n 
Practitioners of the nascent field of mesoscale meteorology30 were skeptical of any 
supposedly barren “gap” that might relegate their entire field to a mere scientific 
footnote.o

Regardless of the gap, the mesoscale itself underwent a transformation. The 
new developments were of two-​dimensional isotropic turbulence by Robert 
Kraichnan (1928–​2000) in 1967,31 and, in 1971, its extension to “quasi-​geostrophic 
turbulence”32 by Jules Charney (1917–​1981).33 Although modern data had filled in 
the gap with lots of structures and variability, these isotropic turbulence theories 
supported a new interpretation of the mesoscale as a regime transition between 
isotropic three-​dimensional and isotropic two-​dimensional (quasi-​geostrophic) 
turbulence, supposedly near the atmospheric thickness, of about 10 km.

Although in some quarters the gap lived on, the development of two-​dimensional 
turbulence changed the focus. Rather than searching for the gap, the new goal 
was to search for signs of large-​scale isotropic two-​dimensional turbulence. Such 
a discovery promised to transform the mesoscale from a barren gap into a re-
gime transition from three-​dimensional to two-​dimensional turbulence: the site 
of a “dimensional transition.”34 Following Kraichnan, the two-​dimensional iso-
tropic turbulence idea was so seductive that claims of two-​dimensional turbulence 
sprang up almost immediately. Although three-​dimensional isotropic turbulence 
followed the k–​5/​3 law, two-​dimensional turbulence was expected to have a large-​
scale k–​3 regime,35 so that anything resembling a k–​3 regime was considered to 
be a smoking gun for the purported two-​dimensional behavior (recall that k is 
a wavenumber: an inverse length scale). Even tiny ranges with only two or three 
data points that were vaguely aligned with the right slope were soon interpreted as 
confirmation of the theory.p

The first experiment devoted to testing the new two-​dimensional/​three-​
dimensional model was the EOLE experimentq (1974). It dispersed 480 constant-​
density balloons36 (at about 12 km in altitude37) over the southern hemisphere, 
effectively an update38 of methods used by Richardson (see Fig.  2.6). Because 
Kolmogorov’s 5/​3 law was essentially the same as Richardson’s 4/​3 law, the 

n Because of the curvature of Earth, ground-​based weather radars start looking above the weather 
at distances of around 100 km; satellites give a much more satisfactory range of scales.

o  In his book on mesoscale meteorology, Atkinson approvingly quotes an early critic Gershen 
Robinson, who noted, “I find it unconvincing the argument that disturbances on scales between the 
cyclone and the thunderstorm do not exist because we do not see them on synoptic charts” (p. 417). 
Robinson, G.  D. Some current projects for global meteorological observation and experiment. Q. 
J. Roy. Meteorol. Soc. 93, 409–​418 (1967).

p Some early authors admitted to “eyeballing” their spectra over a mere factor of 2 in scales to back 
up such claims: Julian, P. R., Washington, W., M., Hembree, L., & Ridley, C. On the spectral distribution 
of large-​scale atmospheric energy. J. Atmos. Sci. 27, 376–​387 (1970).

q After the Greek god of wind.
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dispersion of the balloons was an indirect test of the former. By then, there had 
been several confirmations of Richardson’s law in the 1950s and ʼ60s (including in 
the analogously turbulent ocean). However, the original analysis of the EOLE data 
by Morel and Larchevesque39 contradicted Richardson’s law and concluded that 
the turbulence in the 100-​km to 1,000-​km range did not follow his law, but instead 
followed those predicted by two-​dimensional turbulence.

Yet even in the mid 1970s, internal discrepancies in the EOLE analysis were 
noted.r More importantly, the EOLE conclusions soon contradicted those of the 
Global Atmospheric Sampling Program (GASP) (1983) and, later, Measurement 
of Ozone by Airbus In-​service Aircraft (MOZAIC) (1999) analyses that found 
Kolmogorov turbulence out to hundreds of kilometers.s Two decades later, the 
original (and still unique) EOLE data set was reanalyzed by Lacorte et al.,40 and it 
was concluded that the original EOLE conclusions were not founded, and that, on 
the contrary, the data vindicated Richardson over the range from 200 to 2,000 km.

But the saga was still not over. Strangely, despite their support for Richardson 
at the largest scales, the reanalysis by Lacorte et al. contradicted him at the smallest 
EOLE scales—​from 200 km down to the smallest available scales (50 km)—​over 
which they claimed to have validated the original two-​dimensional turbulence 
interpretation! Nearly a decade later, this conclusion prompted a re-​revisit that 
found an error in this smaller scale analysis, thus eliminating any evidence for 
two-​dimensional turbulence up to the largest scale covered by EOLE—​2,000 
km—​thus (finally!) vindicating Richardson nearly 90 years later!41

4.3  Science: A human enterprise

Science is a quintessentially human activity. At each epoch, it depends on the avail-
able technology, the reigning scientific theories, and the key scientific problems—​
on its historical level of development. Yet it also depends on society’s attitude and 
on its willingness and ability to allocate resources. To understand the trajectory of 
atmospheric science following the heady nonlinear decade of the 1980s, we need to 
examine briefly the changing fortunes of fundamental science in scientifically ad-
vanced countries. Although the following account is tainted by my own situation 
in Canada, it reflects the Friedmanite economic policies that have been dominant 
in advanced industrial nations during the past few decades.

The post second world war élan of scientific optimism was expressed vividly in 
the title of Vannevar Bush’s famous report: Science, the Endless Frontier.t It was the 
beginning of the era of “Big Science,” of science being harnessed directly by big 

r Between the relative diffusivity and the velocity structure function results.
s The interpretation of aircraft data itself turned out to be nontrivial (see Box 4.1).
t The title of a report in July 1945 by Vannevar Bush, Director of the Office of Scientific Research 

and Development, US. Bush, V. Science: The Endless Frontier: A Report to the President on a Program for 
Postwar Scientific Research. (National Science Foundation 1960 [1945]).
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business, albeit in the form of a partnership between publicly and privately funded 
efforts. It was recognized that investment in inappropriate scientific concepts or 
unrealistic models could squander huge sums of money, and that no matter how 
urgent a problem might be, its solution required a balance between fundamental 
and applied research.

It was understood that fundamental research leads to new knowledge and, as 
Bush observed, “it creates a fund from which practical applications of knowledge 
must be drawn.”42

By the 1990s, in the wake of the atom bomb, DDT, Bhopal, Chernobyl, and 
other human and environmental catastrophes, the mood had changed radically 
and technology was no longer seen as a progressive, beneficial force. In the words 
of a prominent cultural critic, the “look” of the future “is a survivalist one, governed 
by the dark imagination of technological dystopias.”43 In his book Science: The End 
of the Frontier?44 Nobel Prize winner Leon Lederman counterpointed Bush and 
described a reigning “mood of deep depression in the research community,”45 
concluding “that it raises serious questions about the very future of science in the 
United States.”46

Then, in 1993, signaling the end of a half century of support for pure research, 
the US Congress canceled the Superconducting Super Collider.u

Disenchantment with the technological fruits of science was only one contrib-
utor to the unraveling of the “endless frontier.” A more pernicious factor was the 
growing influence of cognitive relativism that undermined science’s core intellec-
tual basis. Cognitive relativism is the philosophical position that claims that all 
truth—​including scientific truth—​is relative and ultimately no more than a sub-
jective system of belief. Accordingly, scientific theories of global warming are in-
trinsically no more valid than those of professional climate skeptics. Each simply 
represents a system of beliefs shared by different communities. Neither “belief ” 
has any greater or lesser worth. Although cognitive relativism can be traced back 
to the Greek Sophist philosophers, during the 1990s, in the wake of the academic 
fashion for postmodernism, it gained a new lease on lifev. Taking advantage of 
experience, tactics, and even personnel from the tobacco-​denial industry, the oil 
industry launched its own climate denialist machine.47,w Then, as today, it gives 

u According to analysis, since 1992, the use of the term “basic research” in the journals Science and 
Nature has steadily declined. See: Pielke, R. J. In retrospect: Science: The endless frontier. Nature 466 
(7309), 922–​923 (2010).

v For a more thorough discussion, see Gillott, J. & Kumar, M. Science and the Retreat from Reason. 
(Merlin Press, 1995).

w The origins of industrial climate denial can be traced to a speech made by Exxon Chief Executive 
Officer Lee Raymond to the world Petroleum Congress in October 1997, on the eve of the Kyoto 
meeting that gave rise to the Kyoto Accord. The subsequent American Petroleum Industry “Global 
Climate Science Communications Plan” marked the beginning of an all-​out campaign against climate 
science. Ironically, it also marked a reversal for Exxon, which—​until then—​had funded its own gen-
uine climate science research. For more details, see Otto, S. L. The War on Science: Who’s Waging It, 
Why It Matters, What We Can Do About It. (Milkweed Editions, 2016).
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154	 Weather, Macroweather, and the Climate

license to the media to present “both sides” of the climate debate and, more gener-
ally, it provides a context in which “alternative facts” can flourish.

Cognitive relativism attacked science’s intellectual foundation; its ability to pro-
duce truths of general, universal validity; to produce knowledge. By the mid 1990s, 
this was already perceived as a veritable “war on science,”x skillfully analyzed in 
Sean Otto’s book with the same title.48 In climate science, rather than asking, “Is 
Earth warming?” and “Why is its temperature rising?” postmoderns ask, “Who 
is making the claim?” and “Why are they making that claim?”y They will further 
draw attention to the fact that the scientists making these claims are mostly white 
Anglo-​Saxon men, the same group that holds a position of power, with claims 
that are therefore suspect and probably biased. In Canada, the situation has now 
evolved to the point where some granting agencies encourage environmental 
scientists to incorporate “indigenous knowledge” in their proposals, effectively 
placing the latter on a par with scientific knowledge.z

None of this would have mattered so much if fundamental science had con-
tinued to be highly profitable, but by this time it had become increasingly expen-
sive and—​worse still—​accountants were unable to determine the corresponding 
rates of return on investment.aa

Corporations were happy to let academic or other publicly funded institutionsbb 
pick up the bill. By the 1990s, high costs and risks had created a situation in which 
only a handful of giant corporations still carried out any fundamental research. 

x Calling postmodern philosophy “the higher superstition,” Levitt and Grossman defended the ob-
jectivity of scientific knowledge, but lumped inaccurately all the academic Left together with its extreme 
postmodern wing. Gross, P. R. & Levitt, N. Higher Superstition: The Academic Left and Its Quarrels 
with Science. (Johns Hopkins University Press, 1994). This prompted self-​described Left-​wing phys-
icist Alan Sokal to publish his famous hoax “Transgressing the boundaries: Toward a transformative 
hermeneutics of quantum gravity” in the postmodern journal Social Text. See Sokal, A. Transgressing 
the boundaries: Toward a transformative hermeneutics of quantum gravity. Social Text 46/​47, 217–​252 
(1996). The text was, in fact, a hilarious mishmash of scientific gobbledygook purporting to show that 
reality was no more than a social construct. Through careful use of postmodern language, the ed-
itor was tricked into thinking the article was a genuine contribution to a new postmodern physics. 
In his later book Fashionable Nonsense:  Postmodern Intellectuals’ Abuse of Science [Sokal, A.  & 
Bricmont, J. Fashionable Nonsense: Postmodern Intellectuals’ Abuse of Science. (Picador, 1998).], Sokal 
and Bricmont scathingly criticized the bogus use of physics concepts by key postmodern thinkers, in-
cluding Lacan, Latour, Deleuze, and Baudrillard: The emperor had no clothes.

y As described in Section 6.1, climate skeptics routinely accuse climate scientists of distorting their 
research for pecuniary gain: fat checks from granting agencies.

z  In Chapter  7, I  describe research that uses the atmosphere’s memory to make long-​range 
(macroweather) forecasts and climate projections (Sections 7.2 and 7.3). In an attempt to obtain 
funding, I applied for a grant from a federal source to develop these techniques in the Canadian north. 
Although the scientific aspect of the proposal was judged “excellent,” funding was denied because of 
weak “partnerships.” This included a failure to integrate Inuit knowledge into the stochastic forecast 
technique.

aa Although much attention has been paid to the various political, social, and ideological aspects of 
the war on science, there are surprisingly few analyses of trends in funding of fundamental science; my 
account is somewhat subjective.

bb In the United States, especially the military.
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Marking the end of an epoch, in 1996, even the famous Bell labs were sold off,cc 
whereas others were downsized or refocused toward more practical matters.dd 
Today, the fundamental research required for technological advance is virtually 
entirely publicly funded.

This evolution came at a price. Until then, fundamental-​sector scientists had 
been given free rein to investigate the areas of greatest scientific significance; it was 
“curiosity driven.” Now, all research required an economic justification, and curi-
osity and kindred terms became the kiss of death. Businesses lobbied governments 
for direct control over public research, over both its priorities and the manage-
ment of its funds. Violating its very nature as a long-​term enterprise, funding of 
fundamental science was retargeted toward short-​term corporate gain, with public 
research agencies reoriented accordingly. To smooth the transition and to reassure 
the public, officials mouthed the new mantra of “excellence” according to which 
special interests were also excellent and where doing more with less was particu-
larly excellent.ee

At the same time, official research and development figures were doped by 
including tax shelters for businesses claiming to invest in high tech,ff effectively 
hiding this pirating of public funds from close scrutiny.

Concomitant with the industrial focus was a growing disinterest—​even by 
scientists—​in fundamental issues, including those that the nonlinear revolution 
had promised to solve. In atmospheric science, resources were tightly concen-
trated on the development of NWP models and GCMs,gg which included satellites 
and other NWP and GCM inputs. The only acceptable justification for funding 
became the promise of improving model performance. In the past, it had been 
possible to obtain support for an applied science project and—​thanks to deliber-
ately loose controls—​scientists would regularly siphon off some of the funds (il-
licitly) to do “real science.” But in the brave new world of excellence, sponsors 
required excellent accountability. Not only were research priorities imposed from 

cc In 1996, the parent company, AT&T, sold Bell labs to Lucent Technologies. In 2006, Lucent was 
acquired by Alcatel and in, 2015, by Nokia.

dd In my case, Canada’s branch plant economy had never enjoyed much corporate research.
ee I can still remember the time before the excellence mania, when research was judged by peers 

on its scientific merit with at least some effort to make this objective. During the 1990s, industrial 
managers increasingly replaced the peers and substituted their own subjective notions of excellence 
that they could define and evaluate at will.

ff Specific Canadian examples that stick in my memory include a case in which hundreds of millions 
of dollars in tax relief was given to banks that had “invested” in science and technology simply by 
upgrading their office equipment. This was during the early 1990s, when the banks were doubling 
their profits every year. Another example from the same period was of tax relief given to a company 
“researching” new flavors of beer. This type of accounting trick allowed the government to boast of 
stable levels of support for science.

gg  In Canada, for example, the staff of the federal weather office, the Atmospheric Environment 
Service (now the Meteorological Services of Canada, part of Environment Canada) was cut by nearly 
50% during the 1990s, and this included the elimination of a small fund used to support academic 
research.
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without, but every dollar had to be spent exactly as specified in increasingly de-
tailed submissions often written years earlier.hh Rather than helping their faculty 
juggle grant deadlines and applications creatively to allow them to focus on the 
science, university accounting departments administering the grants played an in-
creasingly police role, protecting the sponsors’ money from being spent irrespon-
sibly in advancing science, rather than following the sponsors’ dictates. Academic 
scientists were gradually being transformed into cheap labor.

But technology continued to advance, and rapidly increasing computer sizes 
and speeds, improved algorithms, and mushrooming quantities of remotely 
sensed and other data ensured that the 1990s were a golden age for atmospheric 
science. Fundamental NWP and GCM issues were also being resolved. In partic-
ular, advances in data assimilation opened the doors to the widespread “inges-
tion” of satellite and other disparate and hitherto under-​ or unexploited sources of 
data,49 so that by the decade’s end, weather forecasts had improved significantly. 
During this decade, ways of using the usual deterministic forecasting procedure to 
generate an ensemble of slightly perturbed forecasts were being developed thanks 
to the pioneering work of Eugenia Kalnay and Tim Palmer: the “breeding vector” 
and singular perturbation” techniques. This marked the beginning of Ensemble 
Forecasting Systems (EFS), the first step towards truly stochastic forecasts. It fi-
nally allowed weather forecasts to be assigned probabilities of occurrence and 
hence quantitative uncertainties.

By the 2000s, NWPs and GCMs increasingly appeared to be atmospheric 
science’s way of the future—​indeed, the only way. In numerical models, scale 
and scaling could have intruded in the choice of model grid size; but, in prac-
tice, this was determined by computer technology. The main choice—​the ratio of 
the number of vertical to horizontal pixels—​was made by empirical experience 
rather than by using theory. The fact that it ended up following the 23/​9 D model 
(Fig. 1.9) was by empirical necessity, rather than by theoretical understanding.50 
Scale and scaling were abstract and seemed unnecessary.ii

The divorce between practical atmospheric science and turbulence theory 
was hardly new. Atmospheric science had always suffered from the gulf between 
the idealized smooth, calm models concocted by theoreticiansjj and real-​world 
wild irregularity. kk During the 1970s, a popular adage was:  “No one believes a 

hh Because the outcome of research is intrinsically unpredictable, the best strategy for scientists was 
to somehow get ahead of the game and ask for funding for projects that they had already performed, 
thus guaranteeing they could fulfill the precise terms of the grant.

ii By the end of the 1990s, the behavior of the atmosphere at scales less than those resolved by the 
grids (corresponding to 100 km or so) started to be parameterized stochastically using random num-
bers (“stochastic parametrization”). But even this was done in a relatively ad hoc way, without regard 
to the relevant (cascade) theory.

jj The first (potentially realistic) strongly nonsmooth, violently variable models came out of only 
one of the strands of turbulence theory—​the scaling strand: multifractals.

kk This was because, unlike scaling approaches, the dominant theories made many conventional 
smoothness and regularity assumptions that were totally unrealistic.
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theory except the person who invented it. Everyone believes the data except the 
person who took them.” In the new ambiance, cynicism about theory was espe-
cially strong. When discussing atmospheric scaling in the early 1990s, a prominent 
colleague commented:  “If no progress is made for long enough, the problem is 
considered solved and we move on.”51

It was thus not surprising that when the budgetary screws were turned, this am-
bient negativism hit the nonlinear revolution and conventional turbulence theory 
alike: Interest was scant, and funding even more so. Theory of any kind was in-
creasingly seen as superfluous; it was either irrelevant or a luxury that could no 
longer be afforded. Any and all atmospheric questions were answered using the 
now-​standard tools: NWPs and GCMs.

Unfortunately, these models are massive constructs built by teams of scientists 
spanning generations. They were already “black boxes,” and even when they 
answered questions, they did not deliver understanding. Atmospheric science was 
gradually being transformed from an effort at comprehending the atmosphere to 
one of imitating it numerically (i.e., into a purely applied field). New areas—​such 
as the climate—​were being totally driven by applications and technology: climate 
change and computers. In this brave new world, few felt the need or had the re-
sources to tackle basic scientific problems.

The sorry state of scientific research in general—​and climate science in 
particular—​was strikingly revealed in June 2017. Only weeks after being elected 
president of France, Emmanuel Macron loudly launched a French initiative to 
“Make the Planet Great Again,” generously extending the ambitions of the em-
blematic Reagan–​Trump slogan from the United States to encompass the globe. 
The initiative re-​earmarked a modest €60 million in funds.ll Beyond stealing the 
climate limelight, the aim was to incite fifty foreign climate scientists to exile 
themselves to France. The results were extraordinary. Within a month, more than 
2,500 scientists from all over the world (a third of these from the United States) 
as well as another 8,000 students and “climate entrepreneurs” had filled an online 
form asking for scientific exile to France. “March for Science” organizer Olivier 
Berné gave this appreciation:  “[W]‌e are irritated because we were expecting 
improvements in the work conditions of French scientists.”mm In December, when 
the names of the first cohort of eighteen scientists were announced,nn Patrick 
Monfort, Secretary General, National Union of Scientific Workers, commented:

There isn’t much enthusiasm for the project. We’re bringing our colleagues 
to France and telling them: “Come and share the means that we don’t have.” 
In addition, it’s very insulting for French scientists:  this project gives the 

ll It later became a French–​German initiative and the French government downgraded its contri-
bution to €30 million.

mm Larousserie, D. & Roger, S. Climate: 2500 chercheurs prêts à un exil en France [Climate: 2500 
Scientists ready for an exile in France]. Le Monde, July 10, 2017, p. 10. (my translation).

nn Not surprisingly, thirteen of these were from US institutions.
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158	 Weather, Macroweather, and the Climate

impression that French science is so bad that we have to bring 50 people to 
raise its level and they will be paid twice as much and they will take our re-
sources. How do you think they will be welcomed in our laboratories? It’s a 
terrible welcome.oo

4.4  The rise of nonlinear geoscience

So it was that the excitement engendered by the nonlinear revolution during 
the 1980s faded slowly and, with it, general scientific interest in geosystem 
scales and scaling. Yet the revolution had succeeded in establishing a beach-​
head, a community of like-​minded scientists organized first in the European 
Geophysical Society’spp (EGS) Nonlinear Processes divisionqq (in 1989), around 
the Nonlinear Processes in Geophysics journal (1994), and a little later in the AGU’s 
Nonlinear Geophysics (NG) focus group (1997). Following a 2009 workshop on 
geocomplexity,rr a dozen scientists published a kind of nonlinear manifesto titled 
“Nonlinear Geophysics: Why We Need It.”52 It proclaimed:

[T]‌he disciplines coalescing in the NG movement are united by the fact that 
many disparate phenomena show similar behaviours when seen in a proper 
nonlinear prism. This hints at some fundamental laws of self-​organization 
and emergence that describe the real nature instead of linear, reductive 
paradigms that at best capture only small perturbations to a solved state of 
a problem.53

It was largely in nonlinear geophysics that evidence for wide-​range atmospheric 
scaling slowly accumulated, notably by the study of radar rain reflectivities54 and 
satellite cloud radiances55 (see, for example, Fig. 4.3). But these analyses were gen-
erally restricted to scales smaller than 1,000 kilometers and, crucially, they didn’t 
involve the wind field, which could not be sensed reliably by remote means. For 
the wind field, the only alternative to aircraft data was the analysis of the outputs of 
numerical models and, at the time, these didn’t have a wide-​enough range of scales 
to be able to settle the issue either.56

oo  Patrick Monfort, interviewed by Thomas Baïetto. Projet “Make our planet great again”:  Les 
chercheurs américains “vont venir partager notre misère,” déplore un syndicat. France Info, December 
12, 2017. Available at https://​www.francetvinfo.fr/​monde/​environnement/​retrait-​americain-​de-​l-​
accord-​de-​paris/​projet-​make-​our-​planet-​great-​again-​les-​chercheurs-​americains-​vont-​venir-​partager-​
notre-​misere-​deplore-​un-​syndicat_​2509589.html. (my translation).

pp Since 2002, following a merger with the European Union of Geodesy, it has become the European 
Geosciences Union.

qq This precocious development was greatly helped by the EGS’s visionary director Arne Richter 
(1941–​2015).

rr Organized by Qiuming Cheng and myself at York University, Toronto, Canada.
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Figure 4.3  Spectra from three different satellites from largely cloudy regions. Meteosat, 
geostationary, 8-​km resolution; Landsat, at 83-​m resolution and the numbers 1 through 5 
from the NOAA-​9 satellite; with channel 1 in the visible; channel 5 in the thermal infrared, 
and channels 2, 3, and 4 in the in-​between wavelengths. Scaling power laws are straight lines 
on the log-​log plot; the range of 1 to 100 km is indicated by “mesoscale” and it shows no signs 
of a break in the scaling. Overall, the figure covers the range of 166 m to 5,000 km.57

The next major advance appeared during the second half of the 2000s, with the 
beginning of the widespread availabilityss of truly global-​scale atmospheric data 
sets—​notably, massive archives of satellite data—​and they invariably showed ex-
cellent wide-​range scaling, although, again, not for the hard-​to-​measure wind field 
(see Fig 4.4). Also at this time, the numerical models were getting big enough to 
analyze, and once again, wide-​range scaling was found58 (see the reanalyses, Fig. 
4.4, lower right). Regardless of whether meteorologists liked scaling (or were even 
aware of it!), their models respected the symmetry extremely well!tt By 2008, it 
seemed that the only evidence that apparently contradicted the wide-​range scaling 
hypothesis were aircraft wind spectra (see Box 4.1).

ss The key advance was not so much the actual existence of large-​scale data sets (this was not so 
new); rather, it was the rapidly increasing Internet speed that allowed them to be disseminated readily 
and be available online. For example, the single 30 MByte Landsat image analyzed in Figure 4.3 occu-
pied a full twelve-​inch-​diameter spool of magnetic tape and had to be ordered and paid for months 
in advance ($120/​tape). In comparison, after it was launched in 1998, the data from the TRMM satel-
lite analyzed in Figure 4.4 (top) took nearly ten years to become freely available on the Internet. But, 
when it did become available, there were hundreds of thousands of gigabyte images that could be 
downloaded easily and free of charge.

tt But this didn’t prevent the continued development of all kinds of simplified scalebound models 
attempting to understand NWP and GCM outputs more fully.
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Figure 4.4  (Upper left) Spectra from more than 1,000 orbits made during the Tropical 
Rainfall Measurement Mission (TRMM) of five channels visible through thermal infrared 
(IR) wavelengths displaying very accurate scaling, down to scales on the order of the sensor 
resolution (≈10 km). (Upper right) Spectra from five other (microwave) channels from the 
same satellite. The data are at a lower resolution and the latter depends on the wavelength. 
Again, the scaling is accurate up to the resolution. (Lower left) The zonal, meridional, and 
temporal spectra of 1,386 images [two months of data, September and October 2007] of 
radiance fields measured by a thermal infrared channel (10.3–​11.3 μm) on the geostationary 
Multifunctional Transport Satellite (MTSAT) over the southwest Pacific at resolutions of 30 
km and one hour over latitudes 40°S–​30°N and longitudes 80°E–​200°E. With the exception 
of the (small) diurnal peak (and harmonics), the rescaled spectra are nearly identical and 
are also nearly perfectly scaling. The black line shows exact power law scaling after taking 
into account various geometrical effects.59 The vertical axis is log10E(k) (i.e., the same as 
on the lower left plot). The bottom horizontal axis is frequency (applicable to the time 
spectrum), whereas the top horizontal axis is in wavenumbers—​spatial frequencies—​and 
is appropriate for the two spatial (east–​west and north–​south) spectra. (Lower right) Zonal 
spectra of reanalyses from the European Centre for Medium Range Weather Forecasting 
(ECMWF), once daily for the year 2008 over the band ±45° latitude.60

Box 4.1  Aircraft turbulence: It’s not just the bumps!

“Fasten your seatbelts. We are expecting turbulence.”
On long-​haul flights, this is a routine announcement intended for the lay public, 

yet it conveys a deep-​seated misconception about the nature of turbulence. It 
reinforces the idea that atmospheric air motions are basically smooth (technically, 
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“laminar”), interspersed occasionally with small, embedded turbulent zones. The 
subtext is that somehow the “smooth” and turbulent parts of the atmosphere are 
associated with distinct dynamics. From there, it is a small step to develop separate 
scientific theories for each.

The imputation of distinct mechanisms to (apparently) distinct phenomena is 
a species of phenomenological fallacy (Section 3.3.4). Here, the fallacy is making 
a qualitative distinction between miniscule bumps that are smoothed out by 
aircraft inertia and stronger ones that are easily discerned. Rather than making a 
spurious categorization of phenomena according to their spatial extent, it makes a 
qualitative distinction between phenomena based on their intensities. It has not only 
contributed to prolonging the life of outdated scalebound approaches to atmospheric 
dynamics and turbulence, but also is responsible for erroneous interpretations of 
aircraft measurements on which I elaborate in this box.

Figure 4.5 shows examples of legs of aircraft trajectories over the Pacific.61 Although 
this was an instrumented (scientific) aircraft, as with commercial flights, it flew at 
constant pressure levels:  “isobars” (constant here to within 0.1%). One can see that 
they move up and down, so the isobars are not at all the same as isoheights (levels of 
constant altitude). To see this more clearly, consider the zoom sequence in Plate 4.1. We 
see that both the wind speed and the altitude are highly variable at all observed scales. 
The aircraft trajectory is a fractal, although—​fortunately, for our comfort—​at scales 
smaller than a few kilometers, it is primarily smoothed out by the aircraft’s inertia.uu

z (m)

13500

13000

12500

12000
200 400 600 800

x (km)

Figure 4.5  Trajectories of an aircraft following lines of constant pressure to with 
0.1% near the 200-​mb pressure level (height in meters). Data were taken every second 
(horizontal distance, 280 m). The trajectories are far from constant in altitude (see 
Plates 4.1 and 4.2).62

This (smoothed) fractality superposed on a gently sloping isobar is by no 
means the whole picture. From experience, we expect that the aircraft’s sudden 

uu If the fractality continued to small scales, it would imply enormous accelerations. Thanks to the 
inertia of the aircraft, it (usually!) doesn’t jiggle up and down very much.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   161 29-Dec-18   8:14:56 PM
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“transitions from quiescence to chaos” (from apparent smoothness to bumpiness) 
to be episodic (i.e., intermittent). Recall (Fig.  1.6) that an innocuous-​looking 
fractal transect can hide violent spikiness that can be exposed by examining the 
absolute gradients. Wind is directly related to the turbulent energy flux (i.e., the 
energy rate density; Section 4.6), and this flux clearly displays its large spatial 
intermittency (Plate 4.2). From the blowups, we see that, even apparently calm, 
laminar regions have embedded regions of high activity. As we zoom into smaller 
and smaller regions, this strong heterogeneity continues in a scaling manner, 
presumably until we reach the millimetric dissipation scale. This explains why 
aircraft measurements of wind invariably find roughly Kolmogorov-​type (i.e., 
turbulent) statistics, even in apparently calm regions of the atmosphere. In any 
event, regions of true laminar atmospheric flow have yet to be documented by 
actual measurements. It would therefore be a mistake—​a phenomenological 
fallacy—​to separate these regions of high and low “turbulent intensities” and 
associate them with different mechanisms.

Aircraft measurements are often our only direct source of horizontal data about 
wind, temperature, humidity, and other atmospheric variables, and yet the very 
turbulence they seek to quantify modifies the trajectories that in turn modify the 
results of the measurements in ways that we are only now starting to understand. 
Certainly, we shouldn’t be surprised that, by itself, the constant up-​and-​down 
intermittent “jiggling” of aircraft taking the wind measurements leads to biases.63 
However, there is an even more important bias caused by the departures of the 
trajectories from levels of constant altitude. This is because the atmosphere is 
highly stratified (Chapter 3), so that moving up and down only a little bit can lead 
to much larger variations in the wind than simply moving along in the horizontal 
direction.vv

To understand the consequences of nonflat aircraft trajectories on measurements 
and to resolve the apparent contradiction between the scaling 23/​9 D dynamics 
and aircraft observations of broken scaling (e.g., Figs. 4.6 and 4.7A), we need only 
note that, at a critical scale—​which depends on aircraft characteristics as well as the 
turbulent state of the atmosphere—​the aircraft “wanders” sufficiently off a constant 
altitude level so that the wind it measures changes more from a result of the level 
change than from its horizontal displacement. It turns out that this effect can easily 
explain the observations. Rather than a transition from characteristic isotropic 
three-​dimensional to isotropic two-​dimensional behavior (spectra with transitions 
from k–​5/​3 to k–​3, where k is a wavenumber, an inverse distance), instead, one has a 
transition from k–​5/​3 (small scales) to k–​2.4 at larger scales (e.g., Figs. 4.6 and 4.7A), the 
latter being the typical exponent found in the vertical direction [e.g., by dropsondes 
(Fig. 4.164)].

vv If the turbulence really was isotropic, then the up-​and-​down movement of the aircraft would not 
be anything to worry about. It would not give spurious estimates of the scaling exponents. This explains 
why it was—​and still is—​ignored!
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Figure 4.6  The Global Atmospheric Sampling Program (GASP) spectrum of long-​haul 
flights (more than 4,800 km; two data sets are shown), with reference lines corresponding 
to the horizontal and vertical behavior expected from the two-​dimensional/​three-​
dimensional model (slopes indicated). The rough position of the scale break is shown. It is 
near 1,000 km and is much larger than any possible two-​dimensional/​three-​dimensional 
transition scale. I have added thin lines with a slope of –​2.4 that show the behavior 
expected if the aircraft spectrum was dominated by the vertical rather than the horizontal 
displacement of the aircraft. The largest scale in the usual mesoscale range (100 km) is 
shown at the right.65

(1000 km)–1

–2

–4

–6

(100 km)–1

Lo
g 10

 E(
k)

(10 km)–1

Mesoscale

(A) (1 km)–1

Figure 4.7  (A) Spectra from the Pacific Winter Storm experiment. Included are the 
averages over twenty-​four legs, each 280 m in resolution of length 1,120 km at 200 mb 
(altitude, ~12 km). The longitudinal and transverse components of the horizontal wind 
are shown, along with reference lines indicating the horizontal (Kolmogorov) exponent 5/​
3 and the vertical exponent 2.4 (close the Bolgiano-​Obukhov value 11/​5).  (B) This figure is 
the same as (A), except for temperature (T), humidity (h), and log potential temperatureww 
(logθ). A reference line corresponding to the k–​2 spectrum is shown . The mesoscale (1–​100 
km) is shown between the dashed lines.66

ww The log potential temperature is a measure of the entropy of dry air.
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Even if one accepted the original interpretation of the EOLE experi-
ment in terms of two-​dimensional turbulence, it measured the dispersion of 
balloons, not the wind speeds needed for a direct test of the two-​dimensional/​
three-​dimensional model.67 It was therefore only with the first large-​scale air-
craft campaigns in the 1980s that the theory could be tested seriously—​and 
this turned out to be the beginning of a multidecadal saga that paralleled the 
convoluted Richardson’s law tale. The first and still most famous of these was 
the GASP experiment, with data that were analyzed by Nastrom and Gage in 
a series of works from 1983 to 1986.68 The dominant interpretation was that 
the GASP spectrum did indeed show a transition from the Kolmogorov three-​
dimensional isotropic turbulence to two-​dimensional isotropic turbulence (see, 
for example, Fig. 4.6).69

The most glaring problem with the GASP results was that the apparent two-​
dimensional/​three-​dimensional transition scale was typically at several hundred 
kilometers.70 At such distances, three-​dimensional isotropic turbulence would 
imply that clouds and other structures extended well into outer space! Simply 
calling the phenomenon “squeezed three-​dimensional isotropic turbulence”71 or 
“escaped three-​dimensional turbulence”72 explained nothing. In 1999, an update 
of the GASP experiment—​MOZAIC—​found essentially the same results, which 
were strongly interpreted as support for the two-​dimensional/​three-​dimensional 
theory.73

Figure 4.7  Continued
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To get to the bottom of this, with the help of Daniel Schertzer and Adrian 
Tuck,xx we reanalyzed74 the published wind spectra and showed that a key 
point had been overlooked: The spectra did not transition between k–​5/​3 and 
k–​3, but rather between k–​5/​3 and k–​2.4 (see, for example, Figs. 4.5 and 4.7A). In 
an article published in 2009, titled “Reinterpreting Aircraft Measurements in 
Anisotropic Scaling Turbulence,”75 we proposed a simple explanation: The low 
wavenumber (k–​2.4) part of the spectrum was not simply a poorly discerned k–​3 
signature of isotropic two-​dimensional turbulence, but rather the spectrum 
of the wind in the vertical rather than the horizontal direction! If the turbu-
lence was never isotropic, but rather anisotropic, with different exponents in 
the horizontal and vertical directions, then a theory was needed to interpret 
aircraft measurements correctly.yy Our new theory easily explained the results 
by realizing that the aircraft were following gently sloping isobars (rather than 
isoheights) (Fig. 4.5 and Plate 4.1). The reason was simple: The change in the wind 
over even quite small vertical displacements could easily exceed its change over 
large horizontal displacements. On sloping trajectories, at large scales, the vertical 
statistics could easily become dominant.

But even this didn’t satisfy the diehard two-​dimensional/​three-​dimensional 
theorists—​notably, Eric Lindborg. He incited experimentalist colleagues at the 
National Center for Atmospheric Research, Rod Frehlic and Robert Sharman,76 to 
use the big Aircraft Meteorological Data Relay (AMDAR) database to disprove our 
hypothesis by attempting to demonstrate empirically the statistical equivalence of 
wind data at constant heights and constant pressures (isoheights vs. isobars). But, 
the AMDAR technology didn’t include global positioning satellite (GPS) altitude 
determinations, which were needed to distinguish accurately between the two. 
To prove that our explanation was correct and to close the debate,77 it was nec-
essary to determine the joint (horizontal–​vertical) velocity structure function.zz 
This was finally done with the help of wind data from 14,500 aircraft trajectories 
that allowed its first direct determination (Fig. 4.8). The aircraft used in our 
study had Tropical Airborne Meteorological Reporting (TAMDAR) technology, 
with the necessary metric-​scale GPS altitude measurements. The results of this 

AQ: Please 
verify the 

reference to 
figure 4.5 with 
respect to the 
renumbering.

xx Tuck was pioneer in aircraft measurements. At the time, he was head of the atmospheric chem-
istry group at NOAA in Boulder, Colorado. He was responsible for the Antarctic aircraft campaign 
that, during the late 1980s, established conclusively the existence of the ozone hole and the link to 
chlorofluorocarbons.

yy Until then, turbulence had always been assumed to be isotropic, and isotropy implied there was 
a unique exponent for each field, so that if aircraft measured scaling spectra, the resulting exponents 
would be unbiased. A theory of how the aircraft was affected by turbulence and of how the up-​and-​
down aircraft movement might bias the results hadn’t seemed necessary.

zz This means that we estimated the typical change in the horizontal wind for arbitrary displacements 
in vertical cross-​sections.
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166	 Weather, Macroweather, and the Climate

massive study78 showed that the horizontal wind was scaling with an anisotropic 
in-​between “elliptical dimension” of 2.56 ± 0.02, which is close to the theoretical 
value of 23/​9 (=2.555 ... ) discussed in Chapter 3.
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Figure 4.8  This figure shows typical variations in the transverse component of the wind. The 
solid lines are the measurements and the dashed lines are the theoretical contours for a 23/​9 D 
atmosphere. The contour lines indicate constant values of the typical change of the wind when 
comparing two points separated by ∆x in the horizontal direction and ∆z in the vertical direction. 
Note the very different units (meters and kilometers) in the horizontal and vertical directions; the 
aspect ratio of the figure is about 1,000:1. If this was plotted using the same units on both axes, the 
roundish cross-​sections marking the spheroscale would be only a few millimeters in size.79

4.5  The triumph of scaling stratification

I have summarized a series of attempts to shoehorn the atmosphere into theoreti-
cally inspired scalebound frameworks, followed by long struggles against them to 
exonerate Richardson’s wide-​range scaling idea. First, there was the mesoscale gap. 
Had it existed, it would have allowed the small scales to be explained by isotropic 
three-​dimensional turbulence theory and it would have justified Van der Hoven’s fa-
mously “convenient” division of the atmosphere into large-​scale weather and small-​
scale turbulence. Although the gap had never enjoyed much empirical support, it was 
marginalized not so much because it contradicted the data, but once again because 
of convenience—​this time of isotropic two-​dimensional and three-​dimensional 
theories. Although initial evidence that apparently supported the two-​dimensional/​
three-​dimensional theory was eagerly embraced (EOLE, GASP), decades later more 
careful analyses showed that the data supported scale symmetries rather than direc-
tion symmetries: Isotropy had become far too convenient to drop.

Instead of considering the (anisotropic) scaling of the equations themselves, or 
at least the scaling of model–​data hybrids [the reanalyses (Fig. 4.4 lower right)], at-
tention shifted to the numerical models that were called upon for support. The idea 
was to show that they reproduced “realistic” two-​dimensional/​three-​dimensional 
transitions (detected in spectra as transitions from k–​3 to k–​5/​3 behavior).80 Indeed, 
the failure of NWPs or GCMs to reproduce such spurious transitions is taken as a 
sign of model failure, rather than of model success!81
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Once again, the trouble is that most numerical weather models are scaling and do 
not display the transition,82 whereas others may display it but only over very small 
ranges. A complication is that the majority of models do not display a k–​5/​3 spectrum, 
but rather a spectrum close to k–​2.4, which we have seen is, in fact, the large-​scale 
spectrum found on isobars (and equal to the spectrum of the horizontal wind in 
the vertical direction). The likely explanation is that the models generally use an ap-
proximation called the “hydrostatic approximation,”83 so that the intrinsic horizontal 
direction in the models is also along isobars, not along isoheights. See, for example, 
the popular84 Weather Research and Forecasting (regional) weather model (Fig. 4.9). 
As for the minority (those numerical models that do seem to show transitions from 
k–​3 to k–​5/​3), their spectra are either unrealistic at large scales85 or, alternatively, in at 
least one prominent case of a quasi-​geostrophic simulation,86 are spurious.87
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Figure 4.9  This shows sample spectra from Weather Research and Forecasting forecasts 
of zonal wind averaged over the isobaric surfaces covering, roughly, a range from 3 to 9 
km in altitude.88 Although the authors claimed that this shows a “clear k–​3 regime” for the 
solid (oceanic) spectrum, it only spans a range of factor 2 to 3 in scale, and this at relatively 
unreliable, extremely low wavenumbers. Except for the extremes, the spectra again follow the 
isobaric predictions k–​2.4 (thin dashed line) very well over most of the range.89

Sixty years after the mesoscale gap, forty years after the EOLE experiment, 
and thirty-​five years after GASP, Richardson’s wide-​range scaling has finally been 
vindicated empirically. The last obstacle preventing closure of the scaling-​versus-​
scalebound debate was a theoretical demonstration that the observed anisotropic 
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168	 Weather, Macroweather, and the Climate

scaling is compatible with the equations. As discussed in Chapter 3, this was in-
deed done at nearly at the same time,90 so that the theoretical debate between the 
two-​dimensional/​three-​dimensional isotropic model and the anisotropic 23/​9 D 
scaling alternative is finally nearing closure.

4.6  The atmosphere as a heat engine and the  
lifetime–​size relation

We have examined in considerable detail the history and developments sur-
rounding the issue of wide-​range horizontal scaling. Not only is it important in its 
own right, but also—​because of the wind—​it implies temporal scaling, at least up 
to scales of about ten days (the size of the planet divided by the typical large-​scale 
wind speed). Figure 4.4 (lower left) shows that, indeed, up to scales of about 5,000 
km and seven days in time, the spatial and temporal spectra are essentially indis-
tinguishable from each other and are also scaling.

To understand this, and in particular to work out the fundamental timescale 
at which the weather regime breaks down and makes a transition to the lower 
frequency macroweather regime, we can again go back to the work by Van der 
Hoven.91 Aside from the ill-​starred spectral gap, his spectrum also showed a more 
robust feature: a drastic change in statistics at timescales of several days (Fig. 4.2, 
the “bump” on the left92). At first ascribed to “migratory pressure systems,” and 
later termed the “synoptic maximum,”93 it was eventually theorized to be a result 
of the unstable nature of atmospheric layers.94 However, neither its presence in all 
the atmospheric fields nor its true origin and fundamental implications could be 
appreciated until the mesoscale gap was eliminated and—​with the help of aniso-
tropic, stratified atmospheric scaling—​the turbulent laws were extended to plan-
etary scales.

The key feature of anisotropic scaling is that the vertical is controlled by the 
buoyancy force variance flux (the Bolgiano-​Obukhov law) and the horizontal dy-
namics by the energy flux to smaller scales (in units of watts per kilogram, also 
known as the “energy rate density”). This is the same dimensional quantity upon 
which the Kolmogorov law is based, although in the 23/​9 D picture, the law only 
holds in the horizontal, not the vertical. The classic lifetime–​size relation is then 
obtained by using dimensional analysis:

	 ( ( () ) )/Lifetime Energy rate density Scale .1 3 2/3= − 	

This is the space–​time relation for structures such as storms; it would be 
obtained if one followed an individual storm (or other structure, “cell” or “eddy,” 
that could be identified and tracked over time) as it propagated. This is the 
“Lagrangian” space–​time relation,95 and it explains the slope of the straight line 
in Figure 2.5. Rather than identifying a structure and following it, it is usually 
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easier simply to take a series of snapshots—​such as those taken by geostationary 
satellites to produce Figure 4.4 (lower left)—​and compare typical sizes in space 
with typical size in time (durations), which gives the fixed-​frame “Eulerian” 
space–​time relation.96 Using the same infrared imagery in Figure 4.4, one finds 
that this Eulerian space–​time relation is linear.97 Figure. 4.10 shows the relation-
ship that this spectrum implies:  an average wind speed of about 900 km/​day 
(≈11 m/​s).

Size

10000 km

1000 km
900 km

Speed 900 km/day

100 km

1 hour 1 day 10 days Lifetime

Figure 4.10  The Eulerian (fixed-​frame) space–​time diagram obtained from the satellite 
pictures analyzed in Figure 4.4 (lower left). The slopes of the reference lines are nearly the 
same and correspond to average winds of 900 km/​day (i.e., about 10 m/​s). The dashed 
reference lines show the spatial scales corresponding to one day and ten days, respectively.98

If the previous explanation for the space–​time relation is correct, then the 
energy rate density is a fundamental quantity and we should expect that it is 
linked directly to the main force driving the atmosphere: the sun. Think of the at-
mosphere as a giant machine—​a “heat engine”—​for converting solar energy into 
mechanical energy as wind. Almost all the solar energy is delivered to the atmos-
phere by solar heating of the surface, and then—​thanks to turbulent dynamics 
(the weather!)—​the average power is more or less redistributed uniformly over 
the atmosphere.99

The energy rate density turns out to be easy to estimate. Start with the av-
erage solar power delivered to Earth (about 238 W/​m2), 100 then divide it by the 
total atmospheric mass101 (about 10 t/​m2) to yield 0.024 W/​kg. This is the av-
erage amount of energy per unit time per unit mass that is received from the sun, 
and almost all of it is at the “short” (visible) wavelengths, and almost all of it is 
delivered to Earth’s surface.102 From the surface, warm air rises, distributing the 
energy throughout the troposphere, and north–​south winds distribute the en-
ergy from the equator to the higher latitudes. Most of this energy ends up being 
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170	 Weather, Macroweather, and the Climate

re-​emitted to outer space at “long” (infrared) wavelengths, with only a small frac-
tion doing work (i.e., being transformed into wind)—​and this is the part we seek 
(Box 6.1). This fraction is the thermodynamic efficiency of the atmospheric heat 
engine.aaa

To get an estimate of the efficiency, we can follow Pauluis,103 who modeled 
the atmosphere as a heat engine operating between 12°C and 27°C. The theoret-
ical efficiency of a (maximally efficient) Carnot cycle104 operating between these 
temperatures is 5%,105 but Pauluis also considers a “steam cycle,” which treats water 
vapor more realistically and with an efficiency that varies over a of range 1% to 
5% (low to high humidity). Using the intermediate value 4% yields an estimate of 
0.024 × 0.04 ≈ 0.001 W/​kg. This is essentially the same as the direct estimate of the 
energy rate density based on global wind data.106 Although the amount is some-
what variable with latitude and altitude, the global average value is indeed close to 
0.001 W/​kg.107

The thing about the thermodynamic analysis is that it only depends on the suc-
cession of thermodynamic states of “packets” of air. It doesn’t require assumptions 
about the detailed dynamics. Because the energy flux density is the basic hori-
zontal scale-​invariant quantity, this analysis reveals the physical mechanism be-
hind the thermodynamic cycle: turbulent cascades. If we analyze the data at any 
scale (above the millimetric dissipation scale), we expect to get—​on average—​the 
same value. Alternatively, we have found that by using turbulence theory to es-
timate the energy flux density from wind gradients, we are able to estimate the 
atmosphere’s thermodynamic efficiency.

4.7  The weather–​macroweather transition

Now that we have obtained an estimate of 0.001 W/​kg, we can use the formula 
(Lifetime) = (Energy rate density)–​1/​3(Scale)2/​3 to estimate the lifetime of the largest 
structures, which is also our estimate of the weather–​macroweather transition 
timescale. Using the largest great circle distance (20,000 km), we obtain a lifetime 
of approximately five to ten days. Figure 4.11 shows that this simple theory even 
explains the latitudinal variations: Because the winds (and hence the rate density) 
are lower near the equator, the transition timescale is a little longer, exactly as the 
theory predicts.

aaa For perspective, consider the gasoline-​powered internal combustion engine in your car, which is 
the product of centuries of development and has a thermodynamic efficiency of about 20%, implying 
that 80% of the fossil fuel energy is wasted. It ends up heating the environment without performing 
useful work.
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Figure 4.11  The weather–​macroweather transition scale (τw) estimated directly from break 
points in the spectra for the temperature as a function of latitude, with the longitudinal 
variations determining the dashed one-​standard deviation limits. The mean over all 
longitudes is represented by the solid black line; the spread (±34%) is indicated by thin dashed 
lines.108 The thick dashed curve is the theoretical τw obtained by estimating the distribution 
of ε from the European Centre for Medium Range Weather Forecasting reanalyses for the 
year 2006 (using τw = ε –​1/​3L2/​3, where L is half of Earth’s circumference). It agrees very well 
with the temperature τw. τw is particularly high near the equator because the winds tend to 
be lower, hence a lower e value. Similarly, τw is particularly low for precipitation because it is 
usually associated with high turbulence (high ε).109

According to our derivation, structures that are larger and larger live longer 
and longer, but eventually, because of the finite size of Earth, this must break 
down. The scale that we just estimated is the breakdown scale—​the lifetime of 
the largest possible structures. At the same time, because structures can only be 
forecast reliably over their lifetimes, this is also close to the overall deterministic 
predictability limit.bbb

If we go beyond this transition timescale, then we are effectively considering 
several lifetimes of the largest structures. We should not be surprised to find that 
the fluctuations over consecutive lifetimes tend to cancel. From the point of view 
of turbulent laws, the transition from weather to macroweather is a “dimensional 
transition” because, at longer timescales, the spatial degrees of freedom are essen-
tially “quenched,” so that the system’s dimension is effectively reduced from (Time 
+ Space) to (Time). Both turbulent cascade models and GCM control runs (i.e., 
with constant external forcings) reproduce the transition and also produce real-
istic low-​frequency variability.110 The fact that these weather models reproduce 
this justifies the term “macroweather” discussed in Chapter 5.

bbb This conclusion is actually not as obvious as it may seem. One of the consequences of the two-​
dimensional/​three-​dimensional model—​and one of its attractive features—​would have been a poten-
tially much longer predictability limit pertinent to two-​dimensional turbulence.
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172	 Weather, Macroweather, and the Climate

Surprisingly, this energy rate density-​based explanation was not discovered111 
until 2010,112 presumably because no one had dared to suggest that the Kolmogorov 
law could possibly be relevant at planetary scales! This result is so fundamental 
that we need to validate it as thoroughly as possible. For example, the ocean is 
also a turbulent fluid. In many respects, it is similar to the atmosphere, only it 
is stirred not so much by the sun but by the wind—​so that it too should have an 
“ocean weather”–​“ocean macroweather” transition determined by its own typical 
energy rate density. To test this, we used data from thousands of ocean “drifters” 
and estimated empirically the near-​surface113 energy rate density. We found that 
it was about 100,000 times smaller than in the atmosphere: 10 nW/​kg. This value 
yields an ocean weather–​ocean macroweather transition time of about one to two 
years, which is also observed (see Fig. 4.12).114

log10E (ω)

log10 ω

(K2S)

106

105

103

Earth
climate
(Industrial

epoch)

102

(100 yrs)–1 (6 yrs)–1 (1 yr)–1 (100 d)–1 (30 d)–1 (10 d)–1 (2 d)–1

SST

Viking data (Mars)

1 earth year

Macroweather Weather

104

Air over land

Figure 4.12  The three known weather–​macroweather transitions: air over Earth (black 
and upper left gray lines), the sea surface temperature (SST; ocean) at 5° resolution (lower 
thin black line), and air over Mars (thick black line). The air-​over-​Earth curve is from 
thirty years of daily data from a French station (Macon, black) and from air temperatures 
for the past one hundred years (5° × 5° resolution, the National Oceanic and Atmospheric 
Administration’s National Climatic Data Center). The spectrum of monthly averaged SSTs is 
from the same database. The Mars spectra are from Viking lander data. The strong “spikes” 
at the right are the Martian diurnal cycle and its harmonics.115

We have discussed the fact that these turbulent scaling laws are expected to hold 
“universally” (i.e., under fairly general conditions in roughly similar atmospheres). 
But, for the most convincing test of the scaling theory, we need another planet!
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ccc Venus is usually called the “sister” planet, and Mars the “red” planet. But now that we’re twins 
. . . .

ddd A sol is a Martian day, about 25 Earth hours.

4.8  The twin planet

“Good afternoon Martians, I bring good tidings from planet Earth: We’re twins!”
So began my presentation to a room packed with Mars specialists at a session 

at the European Geosciences Union in April 2016. Mars may be a sister planet,ccc 
but when it comes to its atmosphere, up until now, scientists had focused on the 
differences, not the similarities. My introduction caught the audience off guard 
because I had inverted the usual procedure. I had not gone to Mars to understand 
the red planet better; rather, I remained on the blue one.

The most important differences between the dynamics of the two atmospheres 
are the strong control of Martian atmospheric temperature by dust, the larger role 
of topography, the stronger diurnal and annual cycles, and the larger role of at-
mospheric tides. But these differences affect mostly the forces driving the system 
and the nature of the boundaries. If the turbulence approach is correct, at small-​
enough scales and far enough from the boundaries, then we expect to find the 
same statistics, the same scaling. The behavior was expected to be independent of 
the details; it should be “universal.”

Using the theory based on the energy rate density, we can easily calculate the 
Martian weather–​Martian macroweather transition timescales. All we need are its 
distance from the sun (and hence solar insolation per square meter, which is about 
55% of ours), the albedo (which is about 53% of ours), and the surface pressure and 
gravity (and hence the mass per square meter, which is about 1.3% of our value116). 
These values yield an expected 40 mW/​kg on Mars117—​about forty times larger 
than on Earth. Taking this and the small planetary size into account (about half 
the diameter of Earth), we predicted a Martian weather–​Martian macroweather 
transition timescale of about 1.8 sols.ddd

The problem was then to find data to test the prediction. There had been many 
Mars landers carrying meteorological instruments, but it turned out that the first 
and oldest—​the two Viking landers (1976, 1977)—​were still the best for our pur-
pose, with hourly temperature and wind data spanning three Earth years nearly 
continuously.118 The spectra obtained from these landers showed that the theory 
result is, indeed, well respected (Fig. 4.12). Because the spectrum implies that 
fluctuations longer than 1.8 sols have nearly identical behavior as those on Earth. 
As proclaimed in the title of our article: “On Mars too expect macroweather.”119

Our article was published in one of Earth’s leading geoscience journals,120 yet 
the Martians appeared to be far more interested than the Earthlings. A few days 
after the article was published, the story was picked up by the amateur Astronomy 
Magazine and was featured prominently on its website.121
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This happened to be at the same time that the first comet lander Philae dis-
covered organic molecules on comet 67P/​Churyumov–​Gerasimenko; the two 
stories were placed right next to each other on the website. Although Martian 
macroweather garnered 3,360 likes, poor Philae had only 324!

Along with the wind field, the other atmospheric fields were also expected to be 
universal, and this includes the spatial scaling. It turned out that full reconstructions 
of the Martian atmosphere existed for nearly three Martian years.eee These were cal-
culated using an Earth weather model adapted to Mars, then using an orbiting in-
frared satellite (Mars Express) to estimate the temperature profile. This was enough 
data to update Martian “reanalyses” constantly, which included the temperature, 
wind, and pressure. Figures 4.13 and 4.14 show that Earth and Mars do indeed have 
virtually the same statistics of pressure, wind, and temperature in the east–​west 
and north–​south directions. Even the turbulent intermittencies (Fig. 4.14) turned 
out to be the same.122 Thanks to Mars, we can be confident about scaling on Earth!
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Figure 4.13  A comparison of spectra from terrestrial and Martian reanalyses (left and 
right columns, respectively) showing the universality of the scaling behavior. The top row 
shows the zonal (east–​west) spectra; the bottom row shows the meridional (north–​south) 
spectra. [The drop-​off at high wavenumbers (the extreme right of each curve) is an artifact 
of the “hyperviscosity” used in the models needed for numerical stability.] P is pressure, v is 
north–​south wind, u is east–​west wind, and T is temperature. The value k = 1 (log10k = 0) 
corresponds to the half circumference.123

eee About eight Earth years. After this time, the Mars Express satellite went out of operation. The 
reanalysis had a resolution of 5° in space and six hours in time.
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Figure 4.14  A comparison of trace moments (M), terrestrial (left) and Martian (right), 
for moments q = 0.2, 0.4, 0.6, and 0.8 (downward sloping, at the bottom of each plot); and 
q = 1.2, 1.4, 1.6, 1.8, and 2 (upward sloping, bottom to top). The q = 1 moment is independent 
of the averaging scale, it is the flat line along the axis. The horizontal axis (log10λ) is the 
horizontal scale expressed as the fraction of the largest available scale [i.e., λ = (Half planet 
circumference)/​(Spatial resolution)]. (λ is the same as the nondimensional wavenumber 
k used in Figure 4.13.) At a given scale λ, the spread of the lines indicates the variability. 
By visual inspection, we see that variability increases from the large scales (left) to the 
small scales (right). The linearity shows that this occurs in a scaling power law manner, as 
expected for a cascade process. The place where the lines cross is the effective outer scale 
of the process, the scale from which the variability starts to build up. [In some cases—​for 
example, the pressure (top)—​the lines cross at a scale larger than the half circumference. 
This is because even at this largest scale, there is still variability present resulting from the 
interactions between the pressure and other fields.] The graphs (top to bottom) are for the 
surface pressure, north–​south (N-​S) wind, east–​west (E-​W) wind, and temperature (the 
latter three at an altitude of 70% surface pressure). The Martian plots should be compared 
to the terrestrial ones to the left of the thin black dashed lines on the right of each graph (the 
points to the right are at scales not represented in the lower resolution Martian reanalysis; the 
vertical dashed line indicates scales at 4% of the largest distance).

Notes

1. Because of the curvature of Earth, beyond about 100 km, ground-​based radars start to 
see over the top of the weather.

2. The ratio is the “Reynolds number.”
3. Later, various compressible approximations were made, such as the Boussinesq ap-

proximation, but the main theory was based on incompressibility. The atmosphere is 
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highly compressible and, consequently, is much more dense near the surface than at alti-
tude. However, if the atmosphere were “barotropic”—​with constant pressure and constant 
density surfaces parallel to each other—​this wouldn’t matter. It is the “baroclinicity” that 
quantifies the deviations from incompressibility.

4.  Taylor, G.  I. Statistical theory of turbulence. Proc. Roy. Soc. I–​IV (A151), 421–​478 
(1935).

5. For example, the idea of “return to isotropy” was interpreted in this way. See Rotta, 
J. C. Statistische theorie nichtonogenr turbulenz. Z. Phys. 129, 547–​572 (1951).

6. I say “on average,” because typical experiments would be far from smooth, with en-
ergy dissipation occurring very unevenly in both space and in time—​even in “bursts.” This 
was the phenomenon of intermittency discussed earlier—​the “spottiness” of turbulence—​
but its full significance was not understood until much later. For a discussion of bursts, 
see Schertzer, D.  & Lovejoy, S.  Uncertainty and predictability in geophysics:  Chaos and 
multifractal insights In: State of the Planet: Frontiers and Challenges in Geophysics (eds. R. S. 
J. Sparks & C. J. Hawkesworth), pp. 317–​334. (American Geophysical Union, 2004).

7. To obtain such a steady state requires a constant input of energy so that the overall 
system is very far from thermodynamic equilibrium.

8. Notably in the form of the Karman-​Howarth equations (1938).
9. Kolmogorov, A. N. Grundebegrisse der Wahrscheinlichkeitrechnung. (Springer 1933). 

An English translation by N. Morrison appeared under the title Foundations of the Theory 
of Probability (Chelsea) in 1950, with a second edition in 1956.

10. The units of the energy rate density—​watts per kilogram—​are the same as meters 
squared per cubic second.

11. Kolmogorov, A. N. Local structure of turbulence in an incompressible liquid for very 
large Reynolds numbers. Proc. Acad. Sci. URSS Geochem. Sect. 30, 299–​303 (1941). [English 
translation: Proc. Roy. Soc. A434, 9–​17 (1991)].

12. Obukhov, A. M. On the distribution of energy in the spectrum of turbulent flow. 
Dokl. Akad. Nauk SSSR 32, 22–​24 (1941).

13.  Onsager, L.  The distribution of energy in turbulence. Phys. Rev. 68, 286 (1945). 
(abstract.).

14.  Heisenberg, W.  On the theory of statistical and isotropic turbulence. Proc. Roy. 
Soc. A 195, 402–​406 (1948). von Weizacker, C. F. Das spektrum der turbulenz bei grossen 
Reynolds’schen zahlen. Z. Phys. 124, 614 (1948).

15.  Corrsin, S.  On the spectrum of isotropic temperature fluctuations in an isotropic 
turbulence. J. Appl. Phys. 22, 469–​473 (1951). Obukhov, A. Structure of the temperature field 
in a turbulent flow. Izv. Akad. Nauk. SSSR Ser. Geogr. I Geofiz. 13, 55–​69 (1949). The original 
and more rigorously justified Corrsin-​Obukhov law applied only to “passive scalars” (i.e., 
to the concentration of dyes or chaff that were pushed around by the flow but that did not 
themselves affect the flow). However, it is frequently applied to the temperature—​as here—​
even though, in the atmosphere at least, this is not a very good approximation.

16. Bolgiano, R. Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 
2226 (1959). Obukhov, A. Effect of Archimedean forces on the structure of the temperature 
field in a turbulent flow. Dokl. Akad. Nauk SSSR 125, 1246 (1959).

17.  Batchelor, G.  K. The Theory of Homogeneous Turbulence. (Cambridge University 
Press, 1953).

18. Monin, A. S. Weather Forecasting as a Problem in Physics. (MIT Press, 1972).
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19.  Monin, A.  S. Weather Forecasting as a Problem in Physics. (MIT Press, 1972); 
quote, p. 5.

20. Monin, A. S. & Yaglom, A. M. Statistical Fluid Mechanics. (MIT Press, 1975).
21. Reproduced from Lovejoy, S., Tuck, A. F., Hovde, S. J., & Schertzer, D. Is isotropic tur-

bulence relevant in the atmosphere? Geophys. Res. Lett. doi:10.1029/​2007GL029359, L14802 
(2007).

22. Dewan, E. Saturated-​cascade similitude theory of gravity wave spectra. J. Geophys. 
Res. 102, 29799–​29817 (1997).

23. Lovejoy, S., Tuck, A. F., Hovde, S. J., & Schertzer, D. Do stable atmospheric layers 
exist? Geophys. Res. Lett. 35, L01802, doi:01810.01029/​02007GL032122 (2008).

24. We later argued that the results of wave theories could be reinterpreted in terms of 
strongly nonlinear but scaling dynamics: Lovejoy, S., Schertzer, D., Lilley, M., Strawbridge, 
K. B., & Radkevitch, A. Scaling turbulent atmospheric stratification, part I: Turbulence and 
waves. Q. J. Roy. Meteorol. Soc. 134, 277–​300 (2008). Pinel, J. & Lovejoy, S. Atmospheric 
waves as scaling, turbulent phenomena. Atmos. Chem. Phys. 14, 3195–​3210 (2014).

25. Panofsky, H. A. & Van der Hoven, I. Spectra and cross-​spectra of velocity components 
in the mesometeorological range. Q. J.  Roy. Meteorol. Soc. 81, 603–​606 (1955). Van der 
Hoven, I. Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 
900 cycles per hour. J. Meteorol. 14, 160–​164 (1957).

26. Panofsky, H. A. & Van der Hoven, I. Spectra and cross-​spectra of velocity components 
in the mesometeorlogical range. Q. J. Roy. Meteorol. Soc. 81, 603–​606 (1955); quote, 606.

27. Panofsky, H. A. & Van der Hoven, I. Spectra and cross-​spectra of velocity components 
in the mesometeorological range. Q. J.  Roy. Meteorol. Soc. 81, 603–​606 (1955). Van der 
Hoven, I. Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 
900 cycles per hour. J. Meteorol. 14, 160–​164 (1957).

28. This uncommon way of plotting the spectrum was done because the areas under 
the resulting log ω versus ωE(ω) plot between any two frequencies could be interpreted 
as the total variance contributed by all the frequencies in the range—​an interpretation not 
possible on usual log-​log plots. Adapted from Lovejoy, S. & Schertzer, D. The Weather and 
Climate: Emergent Laws and Multifractal Cascades. (Cambridge University Press, 2013).

29. Robinson, G. D. Some current projects for global meteorological observation and 
experiment. Q. J. Roy. Meteorol. Soc. 93, 409–​418 (1967). Vinnichenko, N. K. The kinetic en-
ergy spectrum in the free atmosphere for 1 second to 5 years. Tellus 22, 158 (1969). Goldman, 
J. L. The Power Spectrum in the Atmosphere Below Macroscale. (Institute of Desert Research, 
University of St. Thomas, 1968).

30. Atkinson, B. W. Meso-​scale Atmospheric Circulations. (Academic Press, 1981).
31. Fjortoft, R. On the changes in the spectral distribution of kinetic energy in two di-

mensional, nondivergent flow. Tellus 7, 168–​176 (1953). Kraichnan, R. H. Inertial ranges in 
two-​dimensional turbulence. Phys. Fluids 10, 1417–​1423 (1967).

32. This was effectively a derivation of Kraichnan’s pure two-​dimensional turbulence, 
starting from a series of nontrivial approximations to the governing equations of the 
atmosphere.

33. Charney, J. G. Geostrophic turbulence. J. Atmos. Sci. 28, 1087 (1971).
34.  Schertzer, D.  & Lovejoy, S.  The dimension and intermittency of atmospheric dy-

namics. In:  Turbulent Shear Flow (eds. L.  J. S., Bradbury, F.  Durst, B.  E. Launder, F.  W. 
Schmidt, & J. H. Whitelaw), pp. 7–​33. (Springer-​Verlag, 1985).
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35. It also generally had a k–​5/​3 regime, only this was at very large scales—​a fact that was 
often conveniently forgotten.

36. Morel, P. & Larchevêque, M. Relative dispersion of constant level balloons in the 200 
mb general circulation. J. Atmos. Sci. 31, 2189–​2196 (1974).

37. More precisely, close to the 200-​mb pressure level.
38. The balloons stayed (nearly) on isopycnals (i.e., surfaces of constant density), not 

on isobars (surfaces of constant pressure)—​the key difference being that, although the 
latter are gradually sloping, the former are highly variable, with large-​scale average slopes 
diminishing at larger and larger scales.

39. Morel, P. & Larchevêque, M. Relative dispersion of constant level balloons in the 200 
mb general circulation. J. Atmos. Sci. 31, 2189–​2196 (1974).

40. Lacorta, G., Aurell, E., Legras, B., & Vulpiani, A. Evidence for a k–​5/​3 spectrum from 
the EOLE Lagrangian balloons in the lower stratosphere. J. Atmos. Sci. 61, 2936–​2942 (2004).

41. See Appendix 2A in Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent 
Laws and Multifractal Cascades. (Cambridge University Press, 2013).

42. Bush, V. Science: The Endless Frontier: A Report to the President on a Program for 
Postwar Scientific Research. (National Science Foundation 1960 [1945]); quote, p. 19.

43.  Ross, A.  Strange Weather:  Culture, Science and Technology in the Age of Limits. 
(Verso, 1991).

44.  Lederman, L.  Science:  The End of the Frontier? (American Association for the 
Advancement of Science, 1991).

45. Lederman, L. Science: The end of the frontier? Science 21 (Suppl.), 9 (1991); quote, p. 7.
46. Lederman, L. Science: The end of the frontier? Science 21 (Suppl.), 9 (1991); quote, p 5.
47. Oreskes, N. & Conway, E. Merchants of Doubt: How a Handful of Scientists Obscured 

the Truth from Tobacco Smoke to Global Warming. (Bloomsbury Press, 2010).
48. Otto, S. L. The War on Science: Who’s Waging It, Why It Matters, What We Can Do 

About It. (Milkweed Editions, 2016).
49. The development of revolutionary new data assimilation techniques: (spatial) “3D 

var” and, later, (space–​time) “4D var.”
50.  Recall that the necessary theory—​the 23/​9 D model—​had been around since the 

mid 1980s.
51. Quoted from memory from a discussion with Doug Lilly (1929–​2008).
52.  Lovejoy, S., Agterberg, F., Carsteanu, A., Cheng, Q., Davidsen, J., Gaonac’h, H., 

Gupta, V., L’Heureux, I., Liu, W., Morris, S. W., Sharma, S., Shcherbakov, R., Tarquis, A., 
Turcotte, D. & Uritsky, V. Nonlinear geophysics: Why we need it. EOS 90, 456–​457 (2009).

53. Lovejoy, S., Agterberg, F. Carsteanu, A. Cheng, Q., Davidsen, J., Gaonac’h, H., Gupta, 
V., L’Heureux, I., Liu, W., Morris, S. W., Sharma, S., Shcherbakov, R., Tarquis, A., Turcotte, 
D., & Uritsky, V. Nonlinear geophysics: Why we need it. EOS 90, 456–​457 (2009); quote, 
p. 456.

54. Schertzer, D. & Lovejoy, S. Physical modeling and analysis of rain and clouds by ani-
sotropic scaling of multiplicative processes. J. Geophys. Res. 92, 9693–​9714 (1987).

55. Gabriel, P., Lovejoy, S., Schertzer, D., & Austin, G. L. Multifractal analysis of resolu-
tion dependence in satellite imagery. Geophys. Res. Lett. 15, 1373–​1376 (1988). Lovejoy, S., 
Schertzer, D., & Tsonis, A. A. Functional box-​counting and multiple elliptical dimensions in 
rain. Science 235, 1036–​1038 (1987). Lovejoy, S., Schertzer, D., Silas, P., Tessier, Y., & Lavallée, 
D. The unified scaling model of atmospheric dynamics and systematic analysis in cloud 
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radiances. Annal. Geophys. 11, 119–​127 (1992). Lovejoy, S. & Schertzer, D. Multifractals, uni-
versality classes and satellite and radar measurements of cloud and rain fields. J. Geophys. 
Res. 95, 2021 (1990). Lovejoy, S., Schertzer, D., & Stanway, J. D. Direct evidence of planetary 
scale atmospheric cascade dynamics. Phys. Rev. Lett. 86, 5200–​5203 (2001).

56. A partial exception was seen in an article by Strauss and Ditlevsen that considered 
reanalyses. A reanalysis is a complex data–​model hybrid that, effectively, fills in holes in 
the data (and partially corrects for errors) by constraining the system using the equations 
of the atmosphere as embodied in a numerical model. Although these authors strongly 
criticized the reigning two-​dimensional picture, rather than analyzing the scaling of model 
outputs directly, they instead analyzed more complex, theoretically inspired constructs so 
that their conclusions were less clear. Strauss, D. M. & Ditlevsen, P. Two-​dimensional tur-
bulence properties of the ECMWF reanalyses. Tellus 51A, 749–​772 (1999).

57. Adapted from Tessier, Y., Lovejoy, S., & Schertzer, D. Universal multifractals: Theory 
and observations for rain and clouds. J. Appl. Meteorol. 32, 223–​250 (1993).

58. Stolle, J., Lovejoy, S., & Schertzer, D. The stochastic cascade structure of deterministic 
numerical models of the atmosphere. Nonlin. Proc. Geophys. 16, 1–​15 (2009).

59. Normally, a straight line on a log-​log plot shows scaling, but in this case there are 
spurious edge effects related to the geometry of the images with respect to the dominant 
directions of the structures.

60.  These views are adapted from Lovejoy, S.  & Schertzer, D.  The Weather and 
Climate: Emergent Laws and Multifractal Cascades. (Cambridge University Press, 2013).

61. This is the same experiment that included the data used in Figure 1.6. The fractality 
of aircraft trajectories (fractal dimension = 1.56) was first discovered in stratospheric air-
craft trajectories in Lovejoy, S., Schertzer, D., & Tuck, A. F. Fractal aircraft trajectories and 
nonclassical turbulent exponents. Phys. Rev. E 70, 036301–​036305 (2004).

62. Adapted from Lovejoy, S., Schertzer, D., & Tuck, A. F. Fractal aircraft trajectories and 
nonclassical turbulent exponents. Phys. Rev. E 70, 036306-​036301-​036305 (2004).

63. In turbulence jargon, it leads to “intermittency corrections” to the exponents so that, 
for example, the 5/​3 in the spectrum k–​5/​3 would be about 0.03 too big. It would be closer 
to k–​1.63.

64.  Lovejoy, S., Tuck, A.  F., Hovde, S.  J., & Schertzer, D.  The vertical cascade struc-
ture of the atmosphere and multifractal drop sonde outages. J. Geophys. Res. 114, D07111, 
doi:07110.01029/​02008JD010651 (2009).

65. Adapted from Gage, K. S. & Nastrom, G. D. Theoretical interpretation of atmos-
pheric wavenumber spectra of wind and temperature observed by commercial aircraft 
during GASP. J. Atmos. Sci. 43, 729–​740 (1986).

66. Both views are reproduced from Lovejoy, S., Tuck, A. F., Schertzer, D., & Hovde, 
S. J. Reinterpreting aircraft measurements in anisotropic scaling turbulence. Atmos. Chem. 
Phys. 9, 1–​19 (2009).

67. By making several additional assumptions, winds were deduced indirectly, but these 
assumptions later turned out to be questionable.

68. Nastrom, G. D. & Gage, K. S. A first look at wave number spectra from GASP data. 
Tellus 35, 383 (1983). Nastrom, G. D., Gage, K. S., & Jasperson, W. H. Kinetic energy spec-
trum of large and meso-​scale atmospheric processes. Nature 310, 36–​38 (1984). Nastrom, 
G. D. & Gage, K. S. A climatology of atmospheric wavenumber spectra of wind and temper-
ature by commercial aircraft. J. Atmos. Sci. 42, 950–​960 (1985). Gage, K. S. & Nastrom, G. D. 
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Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature 
observed by commercial aircraft during GASP. J. Atmos. Sci. 43, 729–​740 (1986).

69. Interestingly, Nastrom and Gage themselves interpreted their results as support for 
yet another theory based on gravity waves.

70. Lilly, D. K. Two-​dimensional turbulence generated by energy sources at two scales. 
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75. Lovejoy, Tuck, Schertzer, & Hovde. Reinterpreting aircraft measurements.
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L11803, doi:10.1029/​2012GL051698 (2012).
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vertical displacement of ∆z ≈ 20 m corresponds to a horizontal displacement of ∆x ≈ 
50 km. It can be checked that these values verify the relation (∆x/​ls)

1/​3 ≈ (∆z/​ls)
3/​5, with 

sphero-​scale ls ≈ 1 mm. Adapted from Pinel, J., Lovejoy, S., Schertzer, D., & Tuck, A. F. Joint 
horizontal–​vertical anisotropic scaling, isobaric and isoheight wind statistics from aircraft 
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& Bartello, P.  Three-​dimensionalisation of freely-​decaying two-​dimensional flows. Phys. 
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82. Palmer, T. N. A nonlinear dynamical perspective on model error: A proposal for 
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88. Adapted from Skamarock, W. C. Evaluating Mesoscale NWP models using kinetic 
energy spectra. Monthly Weather Rev. 132, 3020 (2004).

89. Reproduced from Lovejoy, S., Tuck, A. F., & Schertzer, D. The horizontal cascade 
structure of atmospheric fields determined from aircraft data. J. Geophys. Res. 115, D13105, 
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90. The article cited here actually showed the anisotropic scaling of the slightly simpler 
but still fundamental vorticity equation. Schertzer, D., Tchiguirinskaia, I., Lovejoy, S., & 
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92.  The fact that it was displayed as a “bump” rather than simply as a transition be-
tween two low-​ and high-​frequency regimes was an artifact in the way that the spectrum 
was plotted. As usual, the logarithm of the frequency was used to display a wide range of 
timescales; however, the vertical axis used the logarithm of the product of the frequency 
with the spectrum rather than just the spectrum itself. This was done so that, in the log-​log 
plot, the total area under a bump would be preserved. However, it had the perverse effect 
of transforming the smooth transition from one scaling regime to another into a bump 
that lent itself easily to scalebound interpretations as a simply localized quasi-​periodic 
phenomenon.

93.  Kolesnikov, V.  N. & Monin, A.  S. Spectra of meteorological field fluctuations. 
Izvestiya Atmos. Oceanic Phys. 1, 653–​669 (1965).

94. Specifically, a result of baroclinic instabilities. These occur when the pressure and 
density gradients in a stratified fluid are strongly misaligned. One of the many problems 
with this explanation is that it only works in mid latitudes whereas the transition time-
scale is not much different in equatorial regions (see Fig. 4.11). Vallis, G. Mechanisms of 

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   181 29-Dec-18   8:15:01 PM

shaun2008
Cross-Out

shaun2008
Cross-Out

shaun2008
Sticky Note
-3 is superscript

shaun2008
Sticky Note
-5/3 is a supeerscript

shaun2008
Cross-Out

shaun2008
Sticky Note
endnote 87 is incorporated into endnote 86



182	 Weather, Macroweather, and the Climate

climate variability from years to decades. In: Stochastic Physics and Climate Modelling (eds. 
P. Williams & T. Palmer), pp. 1–​34. (Cambridge University Press, 2010).

95. Pinel, J., Lovejoy, S., & Schertzer, D. The horizontal space–​time scaling and cascade 
structure of the atmosphere and satellite radiances. Atmos. Res. 140–​141, 95–​114, (2014). 
Lovejoy, S.  & Schertzer, D.  The Weather and Climate:  Emergent Laws and Multifractal 
Cascades. (Cambridge University Press, 2013).

96. There are many ways to determine this. The figure was constructed by considering 
how the average amplitudes of fluctuations in infrared radiances change as functions of 
spatial scale and then as functions of temporal scales. In this way, each timescale can be 
assigned to a spatial scale. For example, at a fixed location, the average fluctuation from one 
day to the next is the same as the average fluctuation at a fixed instant (image) between two 
points separated by 900 km. On average, moving 900 km at a single instant changes the 
radiances just as much as staying in a fixed location and waiting for a day to pass.

97.  For a theoretical explanation, see Radkevitch, A., Lovejoy, S., Strawbridge, K.  B., 
Schertzer, D., & Lilley, M. Scaling turbulent atmospheric stratification, part III: Empirical 
study of space–​time stratification of passive scalars using lidar data. Q. J. Roy. Meteorol. Soc. 
doi:10.1002/​qj.1203 (2008).

98. Reproduced with permission from Pinel, J. The Space–​Time Cascade Structure of the 
Atmosphere. PhD thesis, McGill University (2012).

99.  Due to intermittency ε varies hugely from day to day, place to place but when 
averaged over long periods, stable estimates can be obtained. The systematic variations are 
with altitude and with location, especially latitude, overall these variations are by the rela-
tively small factors of 2 and 6, respectively.

100. This average takes into account the day-​to-​night and latitudinal variations, as well 
as the average reflection coefficient (albedo) of the earth (about 30%).

101.  It might be a little more accurate to take only the lower atmosphere, the “tropo-
sphere,” but this has about 80% of the overall mass, so this distinction isn’t very important.

102. Very little is absorbed directly in the atmosphere.
103. Pauluis, O. Water vapor and mechanical work: A comparison of Carnot and steam 

cycles. J. Atmos. Sci. 68, 91–​102 (2011).
104.  The (simplest) cycle proposed by Pauluis is an isothermal expansion at 300K 

(the surface) followed by an adiabatic expansion (resulting from rising warm air), with 
the temperature dropping from 300K to 285K. This is followed by an isothermal compres-
sion at 285K and then an adiabatic compression that warms the air back to 300K again 
at the surface. See Laliberté, F., Zika, J., Mudryk, L., Kushner, P. J., Kjellsson, J., & Döös, 
K. Constrained work output of the moist atmospheric heat engine in a warming climate. 
Science 347 (6221), 540–​543 (2015).

105. This is determined by the theoretical Carnot efficiency: the temperature difference 
(27 –​ 12 = 15°C) divided by the absolute temperature (27 + 273 = 300 K): 15/​300 = 0.05.

106. The energy rate density was be estimated from gridded data by the turbulent for-
mula (Energy rate density) = (Change in the horizontal wind across a grid box)3/​(Grid size). 
Lovejoy, S. & Schertzer, D. Towards a new synthesis for atmospheric dynamics: Space–​time 
cascades. Atmos. Res. 96, 1–​52 (2010).

The value 1 mW/​m2 could be regarded as a modern estimate of the energy rate density ε. 
The calculation here is quite similar to that of Palmen (1959) who found a value of ε = 4 mW/​kg  
with an efficiency of 2%. Monin (1972) traces the earliest estimate of ε (5 mW/​m2) back 
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to 1926, cited in: Brunt, D. Physical and Dynamical Meteorology, 2nd edition. (Cambridge 
University Press, 1939). Palmen, E. In: The Atmosphere and the Sea in Motion (ed. B. Bolin), 
pp. 212–​224. (Rockefeller Institute Press in association with Oxford University Press, 1959). 
Monin, A. S. Weather Forecasting as a Problem in Physics. (MIT Press, 1972).

107. What about the other thermodynamic variable? The entropy? It turns out that the 
buoyancy force variance that is conserved in the vertical—​the quantity analogous to the 
velocity variance flux (which is the same as the energy rate density)—​is proportional to the 
entropy squared per unit mass per time (i.e., it is not the entropy directly, but rather its av-
erage squared that is constrained).

108. The data are from the 20CR [Compo, G. P., et al. The Twentieth Century Reanalysis 
project. Q. J.  Roy. Meteorol. Soc. 137, 1–​28 (2011).]. The τw estimates were made by per-
forming bilinear log-​log regressions on spectra from 180-​day-​long segments averaged over 
280 segments per grid point.

109. Adapted from Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws 
and Multifractal Cascades. (Cambridge University Press, 2013).

110. Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws and Multifractal 
Cascades. (Cambridge University Press, 2013).

111. Monin came remarkably close. On page 5 of his influential Weather Forecasting as a 
Problem in Physics, he invoked cascade processes proceeding at a constant rate ε from large 
to small scales and then used Richardson’s 4/​3 law to obtain the same lifetime–​size relation 
that we deduced directly from the energy rate density: τ = ε –​1/​3L2/​3. Then—​without further 
justification—​he invoked Obukhov’s estimate of the length scale of synoptic scale processes 
at 3,000 km, obtained as the ratio of the speed of sound to the Coriolis parameter (!). He 
then plugged this value into the lifetime–​size relation (using the value ε = 5 mW/​kg) to yield 
an estimate of about three days for the lifetime of large “synoptic-​scale” processes. Monin, 
A. S. Weather Forecasting as a Problem in Physics. (MIT Press, 1972).

112.  Lovejoy, S.  & Schertzer, D.  Towards a new synthesis for atmospheric dy-
namics: Space–​time cascades. Atmos. Res. 96, pp. 1–​52 (2010).

113. In the atmosphere, the average energy rate density is not very different throughout, 
so that a single value is already a good approximation. However, in the ocean, it decreases 
very rapidly, with depth implying—​as is well known—​that deep currents may live for 
thousands of years. Although this estimate of the ocean surface energy rate density gives a 
good estimate of the observed ocean weather–​ocean macroweather transition of the ocean 
surface temperature, the ocean is fundamentally different from the atmosphere inasmuch 
as the energy rate density is very far from being uniform. As we move from the surface 
to lower depths, it decreases very rapidly: by factors of thousands or more in the first 100 
m, and perhaps by as much as a billion over the first kilometer or so. Because the tran-
sition timescale varies as the inverse cubed root, this corresponds to deep currents with 
millennial-​scale lifetimes.

114.  Lovejoy, S.  & Schertzer, D.  Towards a new synthesis for atmospheric dy-
namics: Space–​time cascades. Atmos. Res. 96, pp. 1–​52 (2010).

115.  Adapted from Lovejoy, S., Muller, J.  P., & Boisvert, J.  P. On Mars too, expect 
macroweather. Geophys. Res. Lett. 41, 7694–​7700 (2014).

116. The surface atmospheric pressure is about two hundred times less than on Earth 
and, as a result of seasonal condensation of CO2 from the atmosphere, it is actually some-
what variable. The mass/​area estimate takes into account the reduced surface gravity.
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117. The value is forty times greater than the terrestrial, and it is primarily the result of 
the much smaller atmospheric mass.

118. This may be surprising. The reason is that more recent landers such as Pathfinder 
had a much greater frequency response (seconds), but the records were much shorter. The 
Viking data turned out to be optimal.

119. Lovejoy, S., Muller, J. P., & Boisvert, J. P. On Mars too, expect macroweather. Geophys. 
Res. Lett. 41, 7694–​7700 (2014).

120. Lovejoy, Muller, & Boisvert. On Mars too.
121.  The basic article can still be found at http://​www.astronomy.com/​news/​2014/​11/​

mars-​has-​macroweather-​too.
122. The hierarchy of multifractal exponents quantifying the intermittency were nearly 

identical.
123. Adapted from Chen, W., Lovejoy, S., & Muller, J. P. Mars’ atmosphere: The sister 

planet, our statistical twin. J. Geophys. Res. Atmos. 121, doi:10.1002/​2016JD025211 (2016).
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Macroweather, the climate, and beyond

5.1  Macroweather planet

“Expect the cold weather to continue for the next ten days, followed by a warm 
spell.”

This might have been the fourteen-​day weather forecast for Montreal on 
December, 31, 2006 (Fig. 5.1, top). But imagine what it might have been if Earth 
rotated about its axis ten times more slowly, so that the length of the day coincided 
with the ten-​day weather–​macroweather transition scale—​an alignment of scales 
almost achieved on Mars.a In that case (Fig. 5.1, bottom) we would have heard, 
“Expect mild weather on Monday, followed by freezing temperatures, until 
a warm spell on Thursday, followed by a brisk Friday and Saturday, a warming 
on Sunday and Monday, followed by freezing on Tuesday, then a four-​day warm 
period followed by freezing and then warming.” Although long-​term trends in 
weather can persist for up to ten days or so, in macroweather, the upshifts tend to 
be followed immediately by downshifts (and vice versa) and, although longer term 
trends exist, they are much more subtle, resulting from imperfect cancelations of 
successive fluctuations.

a In Chapter 4, we saw that Mars was nearly such a macroweather world, with the transition at 1.8 
sols. If the terrestrial transition time was one day, then within each day, the temperature variations 
would be like those at the top of Figure 5.1, except they would be superposed on a roughly sinusoidally 
varying diurnal cycle.
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Figure 5.1  (Top) Weather scales: the mean daily temperatures in Montreal, Canada, for 
January 1 through 14, 2006. (Bottom) Macroweather temperatures for Montreal obtained 
from fourteen consecutive monthly anomalies from January 2000 through February 2001. To 
bring out the difference in appearance, the mean (–​1°C) was adjusted to be the same as in 
the top graph and it was scaled so that the spread about the mean (the standard deviation, 
4.9°C) was also the same.

The tendency of macroweather fluctuations to cancel rather than to accu-
mulate is its defining feature, and cancelation is synonymous with stability.1 
Quantitatively, it implies that the temporal fluctuation exponent H is nega-
tive. In the weather regime with positive H, the temperature, wind, and other 
variables wander up and down with prolonged swings. The weather is a meta-
phor for instability. If we average macroweather over longer and longer times, 
its variability is reduced systematically so that it appears to converge to a well-​
defined value. In that sense, macroweather is what you expect, the weather is 
what you get.

But what about macroweather’s spatial properties? As usual, forecasts can be 
explained with recourse to maps. For example, Plate 5.1b (left) shows the day-​to-​
day evolution of the daily temperatures corresponding to the forecast in Figure 
5.1 (top). Focusing on Canada and the United States (within the green ellipses), 
we would have been told, “A mass of warm air will be displaced gradually by 
colder Arctic air descending from the northwest and covering the continent 

b In both weather and macroweather, to bring out the temperature changes that are relatively small 
with respect to the absolute temperatures, I use anomalies—​in the first case, with respect to the average 
for the whole month; in the second, for the previous thirty Januaries (as discussed later).
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by Thursday.” In the macroweather planet forecast, we might hear (Plate 5.1, 
right): “The mass of unusually cold air currently over the continent will shrink on 
Tuesday, spread to the northeast on Wednesday, and, by Thursday, will expand to 
cover most of North America.” Although the sequence of weather maps displays 
the typical midlatitude west-​to-​east movement of the weather, the macroweather 
maps have no such constraint; macroweather “disturbances” can move easily 
from east to west.c

Although the appearance of individual temperature maps for weather and 
macroweather are not so different, they are both fairly smooth in space, being 
mainly distinguished by the way they evolve in time: the signs of their temporal 
H values. But H only characterizes typical, average fluctuations. In Figure 1.6 and 
Box 4.1, we saw how a fairly innocent-​looking aircraft transect hid very strong 
variability, “spikiness,” “intermittency.” To bring this out, consider Figure. 5.2, 
which compares the spikiness of weather, macroweather, and climate both in 
space (bottom row) and in time (top row). To make the comparisons as fair 
as possible, I  present 360 points for each (corresponding to a spatial resolu-
tion of 1° of longitude and, respectively, one hour, four months, and 142 years 
in time; see Fig.  1.5C). I  took the absolute differences (so that the minimum 
is zero), divided them by their means (so that each series fluctuates around 
the average value of 1), and used a common vertical scale.2 By inspection, we 
can see that the macroweather time series is exceptional, displaying only small, 
nonintermittent fluctuations. The maximum is quite close to what would be 
expected if the process were Gaussian. On the contrary, in space (left column), 
macroweather is highly spiky, as are the weather and climate in both time and 
in space. Indeed, if any of the latter were produced by a Gaussian process, their 
maxima would correspond to probabilities of less than one in a million (the top 
dashed horizontal lines).d

c This may appear to contradict the fact that midlatitude winds are predominantly from west to east. 
However, over macroweather timescales, weather disturbances can travel around the planet so that 
macroweather disturbances can move either east or west.

d More spike plots can be found in Lovejoy, S. The spectra, intermittency and extremes of weather, 
macroweather and climate. Nat. Sci. Rep. 8, 1–​13 (2018).
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Figure 5.2  A comparison of the “spikiness” (intermittency) in time and space of weather 
and macroweather series. The graphs show absolute differences of east–​west spatial 
transects [bottom, all along the 45th parallel (north) and time series (top) at weather 
scales (left), macroweather scales (middle), and climate scales (right)]. The graphs are 
each from 360 points and show the absolute differences between consecutive values. All 
series were normalized by their means. Each graph has two parallel dashed lines; the lower 
one corresponds to a bell curve (Gaussian) probability of 1/​360, which is the level of the 
expected maximum value for a series with 360 points. The upper dashed line corresponds to 
a (Gaussian) probability of one in a million. Although the spatial intermittencies (bottom) 
are not too different, the temporal intermittencies are nearly absent from the macroweather 
series (upper middle). This spikiness is a typical consequence of multifractality (Box 2.2) and 
it implies that the spectrum will itself display spikes—​in this case, misinterpreted easily as 
spurious periodicities (see Fig. 2.2B). (Upper left) Hourly temperature data from January 1 
through 15, 2006, from a station in Lander, Wyoming. (Upper middle): Twentieth-​Century 
Reanalysis from 1891 to 2011. Each point is a four-​month average. The data are from a single 
2° × 2° grid point over Montreal, Canada (45°N). (Upper right) Greenland Ice Core Project 
(from Summit, Greenland, at about 75°N) paleotemperature absolute differences degraded 
to 240-​year resolution (present to 86,400 years before present, left to right, not right to 
left!). [The present (Holocene; discussed in Section 5.6) corresponds to the recent period (up 
to about the fiftieth time interval). It is not very spiky.] (Lower left) European Centre for 
Medium Range Weather Forecasting reanalysis for the average temperature of January, 21, 
2000, along the 45°N parallel at a resolution of 1° longitude. (Lower middle) The same as at 
left, but for the temperature averaged over the month of January 2000. (Lower right) The 
45°N spatial gradient (the resolution is actually 2° longitude) for the Twentieth-​Century 
Reanalysis, averaged from 1871 to 2012.
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The various definitions and illustrations relevant for this chapter are presented 
in Table 5.1.

Table 5.1  A comparison of different notions used in discussing the atmosphere, weather, 
macroweather, and the climate.

Weather Macroweather Climate

Definitions and timescales
The high-​frequency H > 
0 regime. The upper limit 
is the lifetime of planetary 
structures, less than five to 
ten days.

The H < 0 regime between 
the weather and the climate. 
Five to 10 days to ten to thirty 
years (Anthropocene), 100 to 
3,000 years (preindustrial).

The low-​frequency H > 0 
regime: The lower limit is the 
scale at which low-​frequency 
forcings increasing with 
scale begin to dominatea the 
macroweather forcing that 
decreases with scale: ten to 
thirty years (Anthropocene), 
100 to 3,000 years 
(preindustrial).

Some characteristics
Fluctuations increasing 
with scale.
High temporal and spatial 
intermittency (turbulence).

Fluctuations decreasing 
with scale.
Low temporal and high spatial 
intermittency.

Fluctuations increasing 
with scale.
High temporalb and spatial 
intermittency (climate zones).

States
Weather states depend 
on the spatial resolution. 
Temporal averages should 
be taken over the typical 
lifetimes of structures at the 
scales corresponding to the 
highest map resolution.

Macroweather states are 
averages over weather scales 
and then anomalies are taken 
with respect to the (seasonally) 
determined climate states 
(conventionally, 30 years).

Climate states are averages over 
weather and macroweather 
scales, conventionally up to the 
climate-​normal period of thirty 
years (adjusted seasonally).

Global Climate Model notions
The weather state is the 
collection of atmospheric 
fields at a single time step 
(e.g., ten minutes) at the 
model spatial resolution 
(e.g., 10–​100 km). The time 
step must be adjusted to 
correspond to the lifetime 
of structures at the highest 
resolution.

For long-​ or extended-​
range weather forecasts 
(conventionally thirty days 
or longer), the anomalies 
are defined as the difference 
between the monthly average 
and the most recent (now 
decadal) thirty-​year “climate 
normal” (adjusted seasonally).

The climate is the average 
obtained over very long control 
runs (i.e., runs with fixed 
external parameters). The 
convergence is ultraslow (see 
Fig. 5.1). Because in control 
runs macroweather continues 
to infinitely long timescales, the 
control run climate is a climate 
state.

Examples
Series: Figures 1.5D, 2.18B, 
5.1, and 5.2
Transects: Figures 1.6, 
4.5, and 5.2; and Plates 4.1 
and 4.2
Fig. 4.6D
Maps: Plate 5.1

Series: Figures 1.5C, 2.18B, 5.1B, 
5.2, and 5.7A; and Plate 5.3
Transects: Figure 5.2
Maps: Plate 5.1

Series: Figures 1.5B and 2.18B, 
(paleo)
Transects: Figure 5.4
Maps: Figure 5.4 and Plate 5.2

(continued)

AQ: Please 
clarify the 
reference 
to figure 
5.1B here. 
The figure 
does not 

have A and 
B in it.

AQ: Please 
clarify the 

reference to 
figure 4.6D 

here.
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190	 Weather, Macroweather, and the Climate

Weather Macroweather Climate

Analyses
Series: Figures 2.3, 2.5, 2.18A, 
3.11, 4.11, and 4.12
Maps: Figures 2.6, 4.4, 
and 4.6
Transects: Figures 3.2; 3.7; 
3.11; 4.1; 4.5; 4.7A, B; 4.8; 4.9; 
4.13; and 4.14

Series: Figures 2.3, 2.17, 2.18A, 
4.2, 4.11, 4.12, 5.2 and 5.8
Transects: Figure 5.2

Series: Figures 2.3, 2.17, 2.18B, 
9, and 5.2
Maps: Plate 5.2
Transects: Figures 5.2 and 5.4

aThere may also be new, slow internal sources of variability that have yet to be discovered.
bInferred from analyses of paleodata.

Table 5.1  Continued

5.2  Macroweather, climates, and climate states

The strong intermittency of the weather regime is not surprising and is a result of 
its multifractal turbulent nature (discussed in Chapter 4). However, the averaging 
over weather scales used to obtain the macroweather series greatly reduces the 
temporal intermittency, yet it completely fails to reduce the spatial intermittency. 
The intermittency of the spatial macroweather transect is even a bit stronger than 
in the weather regime! This turns out to be the statistical consequence of the ex-
istence of geographically distinct climate zones. It is the consequence of huge spa-
tial variability that persists over long periods of time characterizing very slowly 
changing climate states. Of course, at each location, the long-​term temperature 
fluctuations are combined (correlated) with long-​term fluctuations of other 
variables—​notably, precipitation—​to yield the climate types familiar from phys-
ical geography: “Mediterranean,” “temperate,” “desert,” and so on.

To highlight the relatively small month-​to-​month changes with respect to these 
longer term atmospheric conditions,e the maps in Plate 5.1 show “anomalies,” not ab-
solute temperatures. Just as the daily weather maps (Plate 5.1, left) define anomalies 
as differences of the daily temperatures (the daily “weather state”f) with the current 
one-​month average (the current “macroweather state”), the macroweather series 
and maps (Plate 5.1, right column) are for anomalies obtained as the differences of 
the actual macroweather temperatures with the standard thirty-​year average. This 
climate normal3 implicitly defines the current climate state.4

There are thus two conventional averaging periods: one month and thirty years, 
neither of which has been justified scientifically. Although the use of monthly aver-
ages is ubiquitous, it is not even an exact length of time! On the rare occasions when 

e By definition, the atmosphere is stable in the macroweather regime. What is not so obvious is that 
each distinct region has significantly different characteristics.

f In principle, a “weather state” could be a temporal average of the atmosphere over any weather 
timescale. However, as a result of the link between space and time, low temporal resolution weather 
states will also have low spatial resolutions (averaging in time filters out small structures that are 
short-​lived).
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Macroweather, the climate, and beyond	 191

attempts have been made at justifying it, they have only appealed to convenience. 
After all, monthly averages are obviously well adapted to national weather ser-
vice operations!g Fortunately, a one-​month duration is quite close to the weather–​
macroweather transition. Monthly averages effectively define “macroweather 
states.” Physically, these are averages over a couple of lifetimes of planetary 
structures. Macroweather states can then be used to define weatherh anomalies5 as 
the differences between the weather and the current macroweather state.

The weather–​macroweather transition justifies the use of monthly averages, 
but what about the thirty-​year climate-​normal period used to determine monthly 
macroweather anomalies? Certainly it is also convenient. Although, over the globe, 
the monthly absolute reference temperature varies from one region to another by 
70°C or more, the anomalies with respect to the thirty-​year normal typically vary 
over a range of only a few degrees.6 Had Plate 5.1 shown the monthly variation of 
the actual temperatures, we wouldn’t have seen much beyond the seasonal tem-
perature variation.7

In Chapter 1, we traced the origin of the thirty-​year timescale to the rather arbi-
trary “climate normal” defined by the International Meteorological Organization 
(IMO) as the period from 1900 to 1930. When it became clear that the climate was 
changing, the reference period was updated regularly (at first, every thirty years; 
now, it is every decade), but its thirty-​year duration is still with us.

Fortunately, nearly nine decades later8 an objective ex-​post facto justification 
was finally found, the basic evidence of which was given in Chapter 2 using both 
spectral and fluctuation analysis (Figs. 2.3A and 2.4). These analyses showed—​at 
least in the instrumental period (roughly, 1850 to presenti)—​that there is a new re-
gime that starts at around twenty to thirty years: the true climate regime. At longer 
times, the fluctuations increase rather than decrease, so this scale marks the end 
of macroweather and the beginning of climate. Figure 5.3 shows that the transition 
timescale9 varies somewhat with latitude. During the industrial epoch, a value of 
thirty years is a reasonable overall characterization.

g An informal minisurvey of colleagues revealed that most of them accepted monthly resolutions 
purely as a convenience. At best, one opined that averaging over a month “reduces noise,” but this only 
makes sense if one assumes there is a “weather noise” that is objectively distinct from a macroweather 
“signal.” So, to be justified objectively, monthly averaging still requires a weather–​macroweather 
scale break.

h  These are defined by averaging over a much shorter weather scale. Here, I  averaged over a 
day. Because of the weather regime space–​time relationship, averaging in time effectively smooths 
structures in space. For example, Figure 4.10 shows that daily averages correspond to a spatial resolu-
tion of about 900 km.

i Before this, some measurements exist but are too sparse or unreliable for global climate studies. 
It was only during the second half of the nineteenth century that they became sufficiently numerous 
for most climate applications. Modern campaigns to recover and digitize old naval and other historical 
records usually don’t attempt to go much further back than 1850.
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192	 Weather, Macroweather, and the Climate
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Figure 5.3  The variation of the weather–​macroweather transition scale (bottom, an extract 
of the curves in Fig. 4.11, where it is described) and the macroweather–​climate transition 
scale (this is only valid in the Anthropocene) (top) as functions of latitude (estimated by the 
position of scale breaks in Haar structure functions from the Twentieth-​Century Reanalysis 
data). The solid curves show the mean over all the longitudes; the dashed curved lines are 
the longitude-​to-​longitude variations (the one-​standard deviation limits). The macroweather 
regime is the regime between the top and bottom curves.10

In retrospect, it is hard to escape the conclusion that the choice of thirty years 
was fortuitous. Using preindustrial “multiproxies” (described later), we will see 
that, during the 1930s, the destabilizing anthropogenic warming was still too small 
to detect. For example (Fig. 6.4A), we find that over the original climate-​normal 
period (1900–​1930), there has only been a global increase of about 0.1°C as a re-
sult of anthropogenic warming.11 Because this is the same as the typical global 
scale year-​to-​year natural variability, it is impossible to detect the anthropogenic 
“signal” in the midst of the natural “noise.” To IMO scientists, the constancy of the 
first climate-​normal period would have been quite plausible.

A straightforward estimate of the macroweather–​climate transition scale is 
given by the time that it takes for the anthropogenic warming “signal” to equal 
the typical natural variability “noise.” During the 1930s, this was about sixty years 
(see Fig. 6.4A, B).12 Since then, emissions and other anthropogenic forcings have 
greatly increased, so that today it takes only about sixteen to eighteen years for the 
anthropogenic temperature increase to exceed the natural variability. As a conse-
quence, the thirty-​year weather–​macroweather transition time (Figs. 2.4A and 5.3) 
is, in fact, only an average over the recent epoch (since roughly 1880).

Now that we have justified the thirty-​year averaging period, we can use it to 
define Anthropocene climate states and see what they look like. Plate 5.2 shows 
the result using data over the 140-​year period from 1871 to 2010. The data were di-
vided into five nonoverlapping twenty-​eight-​year periods (nearly thirty years) and 
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Macroweather, the climate, and beyond	 193

the differences (anomalies) are shown with respect to the first of these (1871–​1898), 
taken as the reference period. Not surprisingly, the figure mostly displays warming 
trends, which are quite variable from place to place, reflecting the corresponding 
variations in “climate sensitivities” (Chapter 7j). Finally, we can consider the in-
termittency of the climate states. Although there are not enough climate states 
(four or five at twenty-​eight-​year scales) to analyze their temporal intermittency,13 
we can study it readily in space using the method of Figure 5.2 to determine the 
normalized absolute gradients (Figs 5.2 and 5.4). The figure shows that the inter-
mittency is indeed very strong and that it is largely (but not only) associated with 
coastlines and mountain ranges.

Gradient 45ºN
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Figure 5.4  The absolute east–​west gradients of the temperature climate state obtained by 
averaging over 140 years, from 1871 to 2010. The data are between 60°S and 60°N and were 
taken from the Twentieth-​Century Reanalysis at 2° spatial resolution. For each latitude, 
the gradients are normalized by the mean gradient at that latitude. (Left) The gradients 
from successive latitudes are offset by 2 units in the vertical. We can roughly make out the 
major mountain ranges and coastlines. (Right) Specific examples at 45°N and 45°S. Note the 
different vertical scales. They are highly non-​Gaussian and intermittent.

5.3  What’s macroweather like?

We defined macroweather as the regime where H < 0, so we must find out how 
H varies from place to place. Figure 5.5 shows its spatial distribution. Although as 
we move from one region to another, its value is variable and it has a remarkable 
feature: Its range is limited to the interval14 –​1/​2 to 0. This range is very significant. 
First, consider the lower limit, H = –​1/​2. This corresponds to taking a sequence of 
independent random numbers15: “white noise.” Time series with larger H values 

j Compare this with Plate 7.8 (upper left), which shows the warming trends over the whole period.
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194	 Weather, Macroweather, and the Climate

up to H = 0 are obtained by increasingly smoothing such white noise. Although 
white noise obviously cannot be predicted any better than a coin toss—​in other 
words, not at all—​the more it is smoothed, the more the neighboring values are 
likely to be the same, and the more predictable the process becomes (Chapter 7). 
The upper limit of the empirical range, H = 0, is even infinitelyk predictable.l It 
is therefore significant that although the oceans tend to have a typical value of  
H ≈ –​0.1, land typically has H ≈ –​0.3.16 Our ability to predict macroweather air 
temperature over the oceans is therefore much greater than our ability to predict 
it over land17 (Fig. 5.5).

–0.1

–0.2

–0.3

–0.4

–0.5

Figure 5.5  The spatial distribution of the fluctuation exponent H estimated from the 
National Center for Environmental Prediction reanalysis. Monthly anomaly data from 1948 
to 2015.18

To get an idea of what typical series with different H values actually look like, 
Plate 5.3 shows examples of both real macroweather anomalies (right column) as 
well as simulations using a simple (nonintermittent) mathematical process known 
as “fractional Gaussian noise” (fGn, left column). At the bottom of Plate 5.3, there 
is a sequence of independent values with no relation between them (H =  –​1/​2, 
white noise).19 As one moves from the bottom to the top, the value of H increases. 
Although fluctuations still tend to cancel as a result of correlations between suc-
cessive values, the cancelation is less and less perfect, so that for the H values near 
zero (top), there are coherent undulations present over most of the record. The 
correlations reflect the long-​range memory that can be used for forecasting (see 
Boxes 7.2 and 7.3).

k Of course, an infinite amount of past data would be needed to exploit this predictability fully!
l Predictability is the limit to which a process can be predicted using the best-​possible method with 

the best-​possible past information. As explained in Chapter 7, there are two different predictability 
limits that are important: the more familiar deterministic predictability limit (resulting from the but-
terfly effect) and the longer stochastic predictability limits, which are relevant here.
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We can now graphically illustrate the sensitivity of the results to the degree of 
averaging (the temporal resolution), which is a basic consequence of H < 0.  In 
Plate 5.3, the original 1,680-​point-​long series20 is shown in black. Superposed is 
the same series, but averaged over a factor of 12 in scale (i.e., at annual resolution; 
blue) along with the averaged and rescaled series (red). We know from Chapter 2 
that when H < 0, the effect of the averaging is to reduce the amplitude of the 
variations by a factor of 12H. The rescaling was done by dividing each series by 
the factor 12H to correct for it statistically. As expected, the averaging without this 
compensation (blue in Plate 5.3) can strongly reduce the amplitudes.21 Whereas, 
the compensated, annually averaged series has comparable variability to the orig-
inal one-​month resolution series.

Although this strong resolution dependence is a basic feature of macroweather, 
it is neither recognized explicitly nor taken into account either in GCM valida-
tion nor in empirical temperature estimates. In the case of monthly and longer 
GCM series, there is a glaring symptom of resolution dependence: The amplitudes 
of month-​to-​month model temperature variations are noticeably smaller than 
those of the data. But, instead of recognizing this as a resolution issue22 caused 
by the nominal GCM resolutions being lower (more averaged) than the data, it 
is simply treated as yet another model imperfection to be corrected by ad hoc 
“postprocessing.”23 Not surprisingly, the same resolution issue also turns out to 
be important in empirical estimates of Earth’s temperature:  a data–​reality mis-
match. This is because to make monthly temperature maps on regular grids (e.g., 
5° × 5°), the raw station and ship data are placed in grid squares, and all the data 
in the square for that month are then averaged.m Some grids have many meas-
urement points whereas some have few, and, typically—​since 1880—​about half 
have no data whatsoever!n Although more than half a dozen of such instrumen-
tally based, centennial-​length data sets have been developed, each handles the 
gridding and missing data issues differently, and this results in different effective 
resolutions, none of which are exactly the same as the nominal resolution of their 
gridded products.o Because this resolution effect is multiplicative, it is important 
at all timescales and it ends up dominating the errors in estimates of decadal-​ and 
centennial-​scale temperature changes that are needed, notably for estimating the 
amplitude of global warming.24 Box 5.1 gives more details.p

m The exact way that this is done depends on the approach, but because of the spatially pointlike 
nature of the raw in situ measurements, it never corresponds to a true areal average.

n This fraction is somewhat variable, depending on the data set in question, but 50% is typical. Data 
sets with fewer outages typically make various smoothness and regularity assumptions to fill in “holes,” 
and existing hole-​filling assumptions are scalebound (e.g., “Kriging”). They are not compatible with 
the spatial scaling.

o The typical magnitude of the effect is about 11% (see Box 5.1).
p Global temperature estimates are based on these gridded products so that these multiplicative 

biases in the gridded data are propagated to the global averages.
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Box 5.1  What’s the temperature of Earth?

Estimates of Earth’s past and present temperatures are politically charged. The 
IPCC’s 0.85°C estimate of industrial epoch warming is for the long-​term change 
(1880–​2012). Its uncertainty of ±0.20°C (with 90% confidence) is a result of the 
difficulties encountered in separating the centennial-​scale change from short-​term 
fluctuations. But, the IPCC numbers are valid only if the basic measurements are 
accurate enough. So, how accurate are they? In a recent article published in Climate 
Dynamics,25 I was able to show that, with 90% confidence, the true global monthly 
temperature lies in the range from –​0.109°C to 0.127°C of the reported values, and 
that the long-​term change can be estimated to nearly the same level of accuracy—​
small enough to justify the IPCC’s conclusions. I’ll now explain how this was done.

To quantify climate change, long records—​preferably at least centennial length—​
are needed. Over this period, the accuracy debate has focused almost exclusively on 
potential human bias. For example, thermometers change with technology and, often, 
so do their exact locations. Such changes are dealt with by numerous comparisons. 
To start with, absolute biases are eliminated by using station anomalies only. These 
are differences between the actual temperatures and the long-​term averages for the 
station itself. However, the anomalies may still be biased—​for example, when an 
initially rural site is later urbanized and the average temperature increases as a result 
of the “heat island effect.” In this case, comparisons are made with neighboring rural 
stations, and potentially biased contributions are weighted accordingly.

Although there is no question that many adjustments are required,q there is no 
absolute truth for validating them. This has allowed climate skeptics to accuse scientists 
regularly of selectively correcting the data to exaggerate the warming. Indeed, a new 
breed of “lukewarmers” have accepted that there is some warming, but claim that it is 
too small to worry about. The problem for the lukewarmers is that other independent 
datar sources—​such as satellite measurements—​show nearly identical overall trends, 
so we can be confident that human-​induced biases are small. But how small?

Ironically, the spotlight on human biases and errors is misplaced. It turns out,26 
that there are two much more important sources of error that have virtually escaped 
attention:  the unexpected long-​term consequences of missing data and biases 
arising when thousands of sparsely distributed measurements from the oceans and 
continents are combined to produce a single globally averaged value. Neither of these 
problems is human in the usual sense. They are consequences of huge variability in 
atmospheric temperature arising from “whirls” ranging in size from millimeters to 
the size of the planet, evolving over timescales from milliseconds to the age of Earth. 
A modern home thermometer can tell us the temperature in our backyard with an 
accuracy of a tenth of a degree, but how can we estimate the temperature of a city? Of 
a country? Of the whole planet? We don’t have thermometers everywhere, so how do 
we infer averages over large regions, and how accurate is our result?

q Even high-​quality surface networks, such as the US Historical Climatology Network, “have an 
average of six discontinuities per century and not a single station is homogeneous for its full period of 
record.” Peterson, T. C. Assessment of urban versus rural in situ surface temperatures in the contiguous 
United States: No difference found. J. Climate 16, 2941–​2959 (2003); quote, p. 2942.

r The 20CR series used here and elsewhere in this book is an example. It used only surface pressure 
and monthly SST measurements. There were no station temperature measurements at all.
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To quantify this, six different globally,27 monthly averaged temperature series were 
used from 1880 to 2012.28 Figure 5.6 (top) shows the typical fluctuations averaged 
over all the series—​the same analysis29 as in Figure 5.14, which shows the slow 
macroweather decrease (with H = –​0.1) followed by the increase at scales of twenty 
years or so, which is the climate regime associated with anthropogenic warming. The 
middle curve in Figure 5.6 shows the average differences of the series taken pairwise 
(there are fifteen independent pairs from the six series), and the bottom curve displays 
the fluctuations of the average difference of each curve with the mean of all six curves. 
We can see that these fluctuations fall off very slowly, indicating long-​range statistical 
dependencies (strong correlations, “memory”). In comparison, the dashed line at the 
far left (bottom) shows the behavior that would be expected if the differences were the 
result of measurement errors that were independent or otherwise of short range [such 
as the autoregressive (AR) or moving-​average (MA) processes discussed in Chapter 7].
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Figure 5.6  The root mean square Haar fluctuations [structure functions, S(∆t)] 
averaged over the six series (top), averaged over all the fifteen pairs of differences 
(second from top), averaged over the differences of each with respect with the overall 
mean of the six series (third from top). Also shown for reference (dashed) is the line 
that data with independent Gaussian noise would follow.30

The (roughly) scaling, long-​range statistical dependence of the differences cannot 
be explained by standard (short-​range) measurement errors, but instead through 
two scaling effects:  missing data and the scale reduction factor resolution effect 
(Plate 5.3). The missing data problem is easy to understand. Since 1880, for monthly 
temperatures on 500-​km-​sized grid boxes, more than half had no data, implying a 
large uncertainty in the global estimates. Here, the new element is the recognition 
that this would affect the accuracy of estimates over long periods: years and decades. 
The resolution effect is a space–​time generalization of the temporal resolution effect 
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in Plate 5.3, which is a consequence of H < 0. When pointlike data are “massaged” 
onto regular grids, there are often insufficient data to average them adequately to 
their nominal values (e.g., 500 km and one month). Although missing data turned 
out to be the main source of error for timescales less than a decade or so, I found that 
the resolution effect dominated the uncertainties at the centennial scales, which are 
relevant for industrial epoch warming. In comparison, standard human errors were 
negligible for periods of months and longer.

In conclusion, with 90% confidence, the temperature change since 1880 is correct 
to within 0.108°C of the true change. This is less than 13% of the IPCC estimated 
warming. Measurement errors are thus too small to alter the conclusion that 
we are living through a period of huge warming and that it is occurring over an 
unprecedentedly short period of time (see Section 6.3).
  

The geographical distribution of H values (Fig. 5.5) is only part of the spatial 
variability. When we move from one region to another, not only does the H value 
change, but also the amplitude of the fluctuations changes as well. Figure 5.7A 
shows a typical space–​time plot. Even a visual impression of the density of the 
lines shows that the amplitudes are far from uniform from one location to another; 
the exponents themselves are also spatially varying.

Sp
ac

e

Time

(A)

Figure 5.7  (A) Temperature anomalies (time, from left to right) for the 1,000-​month 
period from 1926 (left) to 2010 (right) as a function of longitude (every 6° along the 45°N 
parallel, from longitudes 0° to 354°, from bottom to top), from the Twentieth-​Century 
Reanalysis. Each series is offset in the vertical. Notice that the fluctuation amplitudes as well 
as exponents H depend on position. (B) A stochastic macroweather simulation using complex 
cascades displaying temporal fluctuations (left to right), with both amplitudes and H values 
that depend on position (bottom to top). In this simulation, both are random. The model is 
intended to simulate an Earthlike planet with similar space–​time macroweather statistics.
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Figure 5.5 and Plate 5.3 underline the fact that a full understanding of 
macroweather requires knowledge not only of the spatial and temporal varia-
bility as a function of scale, but also of the joint space–​time variability. Although 
little is yet known, there are theoretical reasons (from cascade models), numer-
ical reasons (from the analysis of GCM outputs), and empirical reasons (notably 
from temperature and precipitation data) to suppose that macroweather obeys 
a symmetry known as “space–​time statistical factorization” (STSF31,s). Such fac-
torization means that different (spatially distributed) climate zones modulate the 
local temporal statistics without changing their type (e.g., their temporal scaling), 
which explains the spatial variability of the amplitudes in Figure 5.7A. However, 
the only way to combine factorization with variable exponents H turns out to be 
to make space–​time models in which the H values themselves are random. Figure 
5.7B shows one such method based on cascades.32

This factorization principle is already used implicitly by weather services to 
“homogenize” data sets33 or to produce various climate indices that allow regions 
with different climates to be compared. Let’s look at an example. The northern 
part of Portugal is roughly ten times wetter than its southern region. Let’s com-
pare monthly precipitation series to determine whether they are both undergoing 
similar long-​term climate changes. In the dry south, a ten-​year rain rate change 
of 10  mm/​month would be highly significant, yet in the wetter north, it would 
simply correspond to the expected natural variability. A consequence of factori-
zation is that if we divide (normalize) each series34 by the typical amplitude of its 

s In Chapter 7, I discuss how STSF greatly simplifies macroweather forecasting.

Figure 5.7  Continued
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fluctuations, then the two can then be compared on an equal footing (hence the 
term “homogenization”).

5.4  Why not “microclimate?”

“Weather is the state of the atmosphere, to the degree that it is hot or cold, wet 
or dry, calm or stormy, clear or cloudy.”35 If we combine this definition with the 
usual view of the climate as average weather—​“the climate is what you expect; the 
weather is what you get”—​then there is no qualitative difference between them. 
The more that one averages the weather, the more climatelike the result becomes. 
In the long term, one finally obtains the climate. But if the weather–​climate tran-
sition is simply a question of the subjective averaging period, then how can the 
climate change?

Clearly, without objective definitions, our understanding is limited and scien-
tific progress is hindered. In retrospect, Van der Hoven’s discovery of the “synoptic 
maximum”—​which he spectacularly misrepresented as a scalebound spectral 
bump36 (Fig. 4.2), and its subsequent relegation to a minor role—​was an unfortu-
nate lost opportunity to clarify this.

We have argued that to tame atmospheric variability, we need a scaling frame-
work, and Figures  2.3A and 2.4A showed that, out to Ice Age scales, there are 
three—​not two—​regimes. There is no question that the high frequencies corre-
spond to our common idea of weather, but what about the other two? One option 
would be to insist that climate immediately follows the weather. In this case, slow 
variations over scales of thirty years and longer must be something else: “macro” 
(“big”) climate? This term would lead to some bizarre uses. For example, the “cli-
mate” would change from month to month, and “long-​range” weather forecasts 
(such as monthly predictions) would already be “climate forecasts.”t When 
referring to periods of thirty or more years in the past, we would talk about “past 
macroclimates.” Ice cores and other paleo proxy data would be “macroclimate 
indicators,” and the fight against global warming would be a struggle to stop 
“macroclimate change.”

To be consistent with common parlance, we should probably reserve the term 
“climate” for the third, longer timescale regime. This leaves us with the middle re-
gime. Why call it “macroweather” rather than “microclimate?” To answer this, we 
have to consider how climate states can change, and both GCMs and stochastic 
cascade models help us to understand this. GCMs are based on partial differ-
ential equations that embody the physical processes governing the atmosphere. 

t Admittedly, the current term “long-​range weather forecasts” is untenable and needs to be replaced 
by “macroweather forecasts” (Chapter 7).
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Similarly, cascade models are based on the corresponding, emergent higher level 
statistical laws.37 Both were originally weather models that were later extended to 
include the oceans, the cryosphere, and the carbon cycle, and both can be used to 
define the climates of models objectively.

Let’s focus on the more highly developed of the two approaches—​namely, 
the GCMs. At some initial instant, the state of the atmosphere (and in coupled 
models, the state of the ocean) is specified everywhere, and then the model is in-
tegrated forward to determine its later states. Mathematically, it is an “initial value 
problem.” We know from some theory—​going back to Lorenz’s inverse cascade 
of forecast errors38 (see Chapter 7) during the 1960s and also by direct analysis of 
GCM outputs—​that the errors in predicting large-​scale structures double every 
ten days or so. This error doubling time already provides a kind of operational 
definition of the weather. At scales longer than this, the results can no longer be 
interpreted deterministically because any small (microscopic) error doubles and 
rapidly destroy the forecast.39

Unlike the real atmosphere, GCMs can be integrated forward from their initial 
conditions with fixed solar output, fixed atmospheric composition (e.g., green-
house gases), no volcanism, and no land-​use changes (e.g., no deforestation)—​in 
other words, with constant external conditions. Runs with everything external to 
the atmosphere fixed are called “control runs.” In control runs, the atmosphere 
displays only “internal variability.” It varies in a quasi-​steady manner around a 
long-​term state:  the model’s “climate.” For each forcing, control runs thus both 
define the model’s climate and also determine the rate of its convergence to its 
climate.

Using 500-​year-​long control runs from eleven GCMs, Figure 5.8 shows the 
rate at which their average temperature fluctuations40 converge to their climates. 
As expected, as a result of the temporal scaling symmetry, one finds that the 
models have excellent scaling (straight lines in Fig. 5.8), and the convergence 
rate is quantified by the slope of the line, H. From Figure 5.8, we can also see 
that after 300 simulated years, the global temperature still typically fluctuates by 
±0.06°C about41 its long-​term climate.u To determine the model climates better, 
we could extend the simulations to one million years, but because H is near zero  
(H ≈  –​0.1542), this convergence is “ultraslow.”43 Temperature averages over a 

u This ultraslow convergence leads to technical difficulties in determining the model’s climate. This 
is because there is an initial “spin-​up” period during which the initial state of the atmosphere—​and 
especially oceans—​are “spun up” to adjust to their long-​term quasi-​steady state. Although spin-​up 
times of several (simulated) centuries are common, even these are not enough to prevent “model drift” 
[i.e., slow variations such as rising temperatures that are attributed to deep (and slow) ocean currents]. 
(They cannot be attributed to global warming because all the external conditions are fixed.) In Figure 
5.7, overall drifts were approximately removed by linear regression. Only the residuals, after removing 
these linear drifts, were analyzed.
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202	 Weather, Macroweather, and the Climate

million simulated years would still typically fluctuate by ±0.02°C from the 
model’s true climate!44

4 months 1

1

0.3

0.1

0.03

ΔT °C

3 10 30 100
Simulated years

300

Figure 5.8  (Top black line) The Haar fluctuations for eleven control runs from the Climate 
Model Intercomparison Project 5.45 The reference slope is H = –​0.15. (Bottom black line) Haar 
fluctuations from (multifractal) cascade simulations at a resolution of one day for 340 years. 
The reference slope is H = –​0.32.

In Chapter 4, we saw that GCMs had fairly realistic weather regime statis-
tics. Comparing Figure 5.8 with Figures 5.6, 5.9 and 5.14 shows that the value 
H ≈ –​0.15 is actually pretty close to the observed global macroweather tem-
perature variations (i.e., up to about twenty to thirty years). GCM control 
runs thus reproduce the basic weather and macroweather statistics accurately. 
Similarly, turbulent cascade models that were designed to reproduce weather 
statistics (including multifractal intermittency) also reproduce weather and 
macroweather, although with a somewhat more negative46 H value (Fig. 5.7). 
When extended to scales beyond the lifetimes of planetary structures, these 
(essentially) weather modelsv thus naturally produce macroweather, so we can 
finally conclude that the term “macroweather” not “microclimate” is indeed 
appropriate.

v For our current purposes, there are no essential differences between NWP models and GCMs.
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Figure 5.9  A comparison of the root mean square Haar fluctuations for both Vostok 
and Greenland Ice Core Project (GRIP) cores at resolutions of five years and fifty years, 
respectively, over the last 90,000 years. These series were broken into 10,000-​year sections. 
The dashed lines show the most recent of these (roughly, the Holocene). The paleo sea-​surface 
temperature (SST) series is the upper dashed black line.47 The solid lines are of the ensemble of 
the eight 10,000-​year periods from 10,000-​ to 90,000-​years BP from GRIP and Vostok cores.48

5.5  Climate states, climates of models, and historical and Last 
Millennium simulations

We defined the climate as the long-​time scale regime beyond macroweather when 
fluctuations begin to rise again with scale. Climate states are thus averages over 
weather and macroweather timescales, averaging up to the critical macroweather–​
climate transition scale. Defined in this way, climate states thus have relatively 
straightforward definitions and can be determined readily from data. Plate 5.2 
displayed the evolution of climate states in the recent period. The closest alterna-
tive definitions are theoretical and model based. They are synonymous with the 
climate of a GCM control run averaged over a very long time. For example, for 
the GCM climate, Bryson49 states: “Climate is the thermodynamic/​hydrodynamic 
status of the global boundary conditions that determine the concurrent array 
of weather patterns.” He explains that although “weather forecasting is usually 
treated as an initial value problem . . . climatology deals primarily with a boundary 
condition problem and the patterns and climate devolving therefrom.”50 This could 
be paraphrased as: “For given boundary conditions, the climate is what you ex-
pect.” Bryson’s definition of climate is essentially the same as a control run defini-
tion because for fixed boundary conditions, the climate is only uniquely defined 
if averaged for long enough. Because in GCM control runs macroweather extends 
to infinitely long timescales, the climate state of GCM with fixed conditions is the 
same as its climate.51
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204	 Weather, Macroweather, and the Climate

Although this control-​run definition may be fine for models, it is not so helpful 
in the real world. To start with, even for identical, fixed boundary conditions each 
different GCM generally has a control-​run climate that is quite different from that 
of other GCMs, and they can’t all be realistic. To test, validate, and improve them, 
we need to be able to compare model climates with the real world. The usual tests 
involve trying to keep the control-​run idea by comparing long-​time averages of 
the data and models. However, there are several reasons why data and model aver-
ages might disagree. To start with, the higher frequency weather and macroweather 
regimes might be different as a result of various model limitations or approximations 
used in modeling weather-​scale processes. Next, for realism, the models would 
have to include all processes relevant to the climate. Perhaps, because of our lim-
ited understanding, the model might have missed some slow decadal-​, centennial-​
, or millennial-​scale processes. In this case, even if—​at the higher macroweather 
frequencies—​model and data agreement are satisfactory, they would nonetheless 
disagree over the longer term climate scales. In other words, thanks to processes 
that are too slow to be relevant at annual or decadal scales, model climate states 
might still be quite different from real-​world climate states.

Further problems arise even when all the “internal” (both fast and slow) weather 
and macroweather processes have been included and are modeled realistically. The 
trouble is that, to understand and model climate change, we need to change the 
boundary conditions. Changing “boundaries” means varying the solar output and 
allowing volcanoes to erupt and humans to intervene. These external changes to 
the atmosphere force the system to evolve. They are “climate forcings.” This termi-
nology can sometimes be a bit confusing because, for example, the standard solar 
radiation reference level (the long-​term average) is not a climate forcing. However, 
the 1,000-​times smaller deviations from this level—​resulting from sunspots or 
other solar activity that changes the solar output—​are climate forcings. Because 
of these slow forcings, at decades and longer we have a superposition of long-​
time natural (unforced) macroweather fluctuations superposed on the slow and 
delayed response of the system to the forcings.52

In principle, the “internal” and “forced” responses might interact nonline-
arly, making the problem much more difficult.w In Box 7.1 we discuss this further 
with the help of Earth’s energy balance and show that, in reality, the responses 
to the forcings are nearly linear,x and also how scaling can be exploited to esti-
mate the climate response. The standard way to quantify the responsiveness of 
the climate to forcings is through equilibrium climate sensitivity (ECS). ECS is 
defined as the change of the control-​run mean climate temperature following an 
instantaneous doubling in CO2 concentrations. To determine ECS, one runs the 
model with fixed CO2 and other boundary conditions for long times, then doubles 
the CO2 concentrations, and then further integrates the models, waiting for their 

w  Nonlinear interactions potentially include tipping points and are already modeled by GCMs. 
However, in Chapter 7, we will see that over the standard forcing scenarios, the models behave es-
sentially linearly. This allows for alternative “historical” scaling-​based methods of climate projection.

x This is because the actual forcings are fairly small. Even doubling the CO2 amount of would in-
crease the power (energy per time) in the atmosphere by less than 2% (see Chapter 6).
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Macroweather, the climate, and beyond	 205

(ultraslow) convergence to their new climate state. The difference in global mean 
temperatures of the long-​time average before and after the doubling is the estimate 
of ECS. Because of its definition in terms of control-​run temperatures, ECS is a 
somewhat academic notion.53

In view of the problems discussed in validating a control-​run definition of climate 
states empirically, assessing GCM performance is difficult. Naturally, the main scru-
tiny has come from “historical simulations”—​conventionally from 1850 to the present. 
They focus on reproducing anthropogenic effects. A related, interesting approach is 
to make long historical-​based simulations since the year 1000 AD: “Last Millennium” 
simulations. Figure 5.10 shows the result when this is done using NASA’s Goddard 
Institute for Space Studies (GISS)54 model. To make the simulations, one must use 
appropriate boundary conditions—​notably, solar output and volcanic eruptions, 
and, more recently, land-​use changes, greenhouse gases, and aerosols (pollution).55 
For most of the period since year 1000, estimates (called “reconstructions”) of these 
“forcings” are in themselves highly challenging. Direct instrument records don’t exist; 
the forcings must be inferred directly from paleoindicators (see Box 5.2).
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Figure 5.10  (A) Haar fluctuation analysis of temperature fluctuations (black 
lines)—​these data were from the Climate Research Unit Hadley temperature version 3 
database: HadCRUtemp3—​and globally, annually averaged outputs of past millennium 
simulations (gray lines) over the same period (1880–​2008) using the National Aeronautics and 
Space Administration’s (NASA’s) GISS model with various forcing reconstructions. Also shown 
(dashed line) are the fluctuations of the preindustrial multiproxies, displaying the much smaller 
centennial-​ and millennial-​scale variability, which holds during the preindustrial epoch. The 
dashed vertical lines indicate the transition scales for the industrial and preindustrial epochs. 
(B) Haar fluctuation analysis of globally, annually averaged outputs of Last Millennium 
simulations over the preindustrial period (1500–​1900) using the NASA GISS model with various 
forcing reconstructions. Also shown (thick black lines) are the fluctuations of the preindustrial 
multiproxies, indicating they have stronger multicentennial variability. Last (bottom, thin 
black lines) are the results of the control run (no forcings), showing that macroweather (slope 
< 0) continues to millennial scales. The reference line has slope –​0.2, nearly the same as that in 
Figure 5.5, which is the average over many different model control runs.56
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Box 5.2  Volcanic and solar forcings

Since 1880, the anthropogenic forcing has grown and is currently close to 2 W/​m2 (see 
Fig.  6.5B). How does this compare with the main centennial-​ and millennial-​scale 
natural forcings, both solar and volcanic?57 To answer this, we need to “reconstruct” 
these forcings, and this must be done primarily from indirect sources. For example, 
systematic, direct satellite observation of the solar constant has only been made since 
the 1980s and, as a result of satellite calibration drift, the critical decadal and lower 
frequencies are unreliable.58 One way to reconstruct past solar variations is to use the 
correlations between sunspots and solar activity observed over the past few decades. 
Because reliable sunspot recordsy exist only since 1610, this is the limit of sunspot-​
based reconstructions. Figure 5.11A shows the “background” solar anomalies (with the 
eleven-​year solar cycle removed). We see that the inferred total solar irradiance (TSI) 
seems to wander. Figure 5.12 confirms the visual impression that that H > 0 for this 
signal (it has H ≈ 0.4).
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y Sunspots were discovered by the Chinese as long ago as 800 BC. Unfortunately, systematic, quan-
titative records had to await the discovery of the telescope and date from 1610 AD.

Figure 5.10  Continued
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Figure 5.11  The solar forcing (total solar irradiance) measured in watts per square 
meter reconstructed from sunspot records since 1610.59 The eleven-​year solar cycle has 
been removed; only the background is shown. Notice the wandering character, H ≈ 0.4 
(see Fig. 5.12). (B) The solar forcing.60 (C) Volcanic forcing reconstruction from the year 
500 AD.61 These forcings are, in fact, negative (cooling), but have been plotted in the 
positive sense to emphasize the similarities with other highly intermittent processes 
discussed throughout this book.
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Figure 5.12  A comparison of typical fluctuations (estimated by the root mean square 
of the fluctuations) of the typical solar and volcanic forcings (measured in watts per 
square meter) used in Last Millennium simulations (e.g., Fig. 5.10B). The volcanic 
reconstruction is from Figure 5.11C; the bottom right 10Be solar is from Figure 5.11C. The 
top 10Be curve is based on the same data, but with a different model used to infer solar 
activity from the same 10Be fluxes. The solar reconstruction at the lower left is a “hybrid” 
that uses the sunspot-​based reconstruction back to 1610 (Fig. 5.11A), and the lower right 
10Be series is at longer timescales. All the curves have straight, dashed reference lines with 
the slopes (H values) indicated. The total anthropogenic forcing since 1880 is indicated 
for reference as the top horizontal dashed line.62

Long reconstructions going back nearly 10,000  years are possible but use 
extremely indirect techniques, the main ones being based on concentrations of the 
isotope beryllium 10 (10Be) found in ice cores. 10Be is deposited by the solar wind 
and its concentration varies depending on the solar magnetic field, which allows 
either more or less 10Be to escape from the sun, and the solar magnetic field in 
turn depends on overall solar activity. Solar models are then used to relate the 10Be 
fluxes to the TSI. Figure 5.11B shows a reconstruction with a forty-​year resolution. 
From Figure 5.11B, we can immediately notice the canceling character of the signal, 
and Figure 5.12 confirms that H < 0 (≈–​0.3). The problem is that, although the 
sunspot-​based reconstructions indicate that solar forcings increase with scale, on 
the contrary, the 10Be reconstructions decrease with scale, so they can’t both be right. 
To make matters worse, the amplitude of the reconstructed forcing depends greatly 
on the model assumptions. Figure 5.12 shows that the same 10Be data can lead to a 
difference in reconstructed forcing amplitudes of nearly a factor of 10!

In practice, Last Millennium simulations are based on a “hybrid” series that 
splices the sunspot-​based TSI estimates back to 1610 with the lower resolution 10Be 
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reconstruction back to the year 850. Because the resolution of the 10Be reconstruction 
is much lower, it contributes nothing to the variability below about 2 × 40 = 80 years. 
As a consequence, up to nearly centennial scales, the fluctuations of the hybrid series 
in Figure 5.11 are dominated by the H > 0 sunspots, whereas the longer scale scales 
are dominated by the H < 0 10Be data. This analysis shows that the centennial-​scale 
fluctuations of the hybrid are maximal at around 0.2 W/​m2 at about centennial scales 
(i.e., ±0.1 W/​m2). This is about a tenth of the anthropogenic warming indicated by 
the dashed line at the top of Figure 5.11, and it explains why solar variability has not 
much affected the climate for the past century. It is interesting to speculate that the 
sunspot-​based reconstruction with H ≈ 0.4 continues to much lower frequencies. 
Extrapolation of the solar hybrid curve in Figure 5.12 to long times implies that, at 
10,000  years or so (where the dashed lines cross), the typical forcing fluctuations 
would be about 2 W/​m2 (±1 W/​m2), resulting in something like ±0.3°C of global 
temperature variation.63 However, even during the preindustrial epoch, this is 
probably still too weak to explain the macroweather–​climate transition at scales of 
millennia (see Fig. 5.7 and the discussion in Section 5.6).

Volcanoes are also important. Volcanic ash generally reflects visible sunlight. Big 
eruptions can throw huge quantities of material into the stratosphere, where their 
cooling effects can last for several years, and the eruptions appear to be clustered.z 
Figure B5.11C shows a reconstruction based on volcanic dust from ice core 
records. The radiative forcing has been estimated with the help of radiative transfer 
models. The reconstruction is incredibly intermittent and the largest eruptionaa (in 
1257) shows a very large (30 W/​m2) cooling effect. But does this and other volcanic 
spikes affect long-​term temperatures? The obvious way to answer this is to look, 
in the usual way, at the fluctuations in volcanic cooling as a function of timescale. 
Figure 5.12 shows that, not surprisingly, the fluctuations are indeed roughly scaling 
and decrease rapidly with scale (H ≈ –​0.3),64 so that much beyond centennial scales, 
they can be neglected compared to the solar forcing.

  

Given the forcings, the model still needs to be “spun up.” This is the technical 
term for the fact that the model initial state can only be guessed at; the model 
itself is run for a long period (here, 150 simulated years, from 850 AD), so that 
the model generates plausible atmospheric and (more importantly) oceanic flows, 
which take a very long time to reach realistic patterns. This long period is needed 
simply to start the more trustworthy part of the simulation; it is a symptom of the 
ultraslow model convergence. Nevertheless, just as with the control runs, even 
after the spin-​up period, the model tends to “drift,” with temperatures changing 
spuriously and slowly over long periods. In Last Millennium simulations, this has 
been corrected approximately by the modelers using ad hoc “postprocessing.”

AQ: Please 
verify figure 
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scheme.

z Interestingly, the clustering is not necessarily a consequence of correlations between successive 
eruptions. It may be simply a consequence of the extreme black swan intermittency statistics.

aa  Interestingly, the volcano associated with this eruption (Mount Samalas) was only identified 
in 2013.
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210	 Weather, Macroweather, and the Climate

These Last Millennium runs were divided into industrial and preindustrial 
periods, using 1880 as the dividing line.65 Although this is somewhat arbitrary, 
it corresponds to the beginning of the period of steep increase in fossil fuel use 
and also to the period when the instrument record begins to be more reliable and 
complete. Figure 5.10A shows the GISS Haar fluctuations over the industrial pe-
riod (thin lines) compared with those from an instrument data set, both global 
and northern hemisphere (thick lines). The three simulations all include the 
same greenhouse gases and solar reconstructions. They are distinguished by three 
different natural forcing scenarios:  the two different volcanic reconstructions 
(top: “Gao” and “Crowley,” for their authors; Box 5.2) and (at the bottom) solar 
variability only—​no volcanoes.66

By comparing the results with the instrument fluctuations (solid lines in  
Fig. 5.10A), we see that the variability of the simulations is fairly realistic and that 
it doesn’t make much difference which volcanic reconstructions are used—​or—​
whether any are used at all (thin bottom line in Fig. 5.10A). From the figure, we 
can conclude that, since 1880, greenhouse gases dominate the natural forcings, 
and that the timescale (twenty years) at which the natural fluctuations become 
dominated by these anthropogenic forcings—​the industrial epoch macroweather–​
climate transition scale—​is reproduced fairly realistically. Also shown for reference 
is an estimate of the preindustrial variability deduced from temperature proxies 
(discussed later), which show that the industrial epoch variability is indeed quite 
different from the preindustrial one.

Now compare this with the same Last Millennium simulations, but over the 
preindustrial epoch (1000–​1880)—​notably, with virtually no greenhouse gas 
forcings (Fig. 5.11B; i.e., the atmospheric composition is fixed to preindustrial 
levels). We see that at scales up to about a century, the volcanic-​induced varia-
bility is much too high, and then at scales of several centuries, that strong volcanic 
forcings are not enough; the long time variability has become too small. We also 
see that, by itself, the solar forcing is so small that the solar-​only run is essentially 
indistinguishable from the control run (no forcings at all). If the thick black line 
marked “Multiproxies 1500–​1900,” representing ground truth, is to be believed, the 
preindustrial macroweather–​climate transition occurs at about centennial scales 
(the vertical dashed lines in Fig. 5.10A). We see that contrary to the fairly real-
istic industrial epoch variability, that before 1900, there is a problem of missing 
multicentennial variability (discussed later).

5.6  Is civilization the result of freak macroweather?

“The long, stable Holocene is a unique feature of climate during the past 
420,000 years, with possibly profound implications for evolution and the devel-
opment of civilizations.” So concluded an influential analysis by Petit et  al.67 of 
the 3,300-​m-​long Vostok (Antarctic) ice core record that spans four complete 
Ice Age cycles (see Fig.  1.5B). The second half of the sentence assumes there is 
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Macroweather, the climate, and beyond	 211

a direct link between stable temperatures since the end of the last Ice Age (the 
Holocene) and the development of civilization. The link is that farming developed 
less than 1,000 years after the retreat of the ice sheets, and agriculture was crucial 
for transforming society.

In the article by Petit et al., Holocene stability was inferred by eyeballing the 
Vostok record over the recent period. Its uniqueness was noted by comparing it 
with temperature plots over similar periods earlier in the same record. Estimating 
fluctuations on the same data (Fig. 5.9, top, dashed curve) confirms the stability 
quantitatively. We see that the stable H < 0 regime extends at least to several millennia, 
implying a preindustrial macroweather–​climate transition at multimillennial scales 
(or more). For comparison, Figure 5.9 also shows the Haar fluctuations averaged 
over the previous 80,000 years of the same core, indicating an average H > 0 (un-
stable) behavior for scales as short as one hundred years.bb Turning to another long 
ice core, this time from Greenland (the GRIP core at five-​year resolution; Fig. 1.5B, 
middle), it turns out that the Holocene is apparently even more exceptional (Fig. 
5.9, bottom, dashed curve), with the pre-​Holocene GRIP and Vostok (top, thin 
solid) curves agreeing remarkably well with each other.68 The radical Holocene 
uniqueness can be confirmed simply by visual inspection. Figure 5.13 shows earlier 
10,000-​year segments (top three segments) each with strong variability, each “wan-
dering” (due to H > 0) over a total range of about 5°C, evidently quite different from 
the fourth (Holocene) series. Using the same data to determine the spikiness (Fig. 
5.2, upper right plot), we see that the recent period (at the left, from 0 up to about 
50 units = 12,000 years) also has anomalously low intermittency.cc

bb As we go back into the past, we use information from deeper and deeper parts of the core, and 
these data suffer increasingly from compression and, ultimately, molecular diffusion that spoils the 
distinct layers that define the temporal resolution. A general feature of the Antarctic is that it is ex-
tremely dry, so that snow accumulates very slowly. In general, the resolution of temperature proxies is 
thus not very high—​here, around one hundred years. Dust does not suffer from the same problem and 
has thus been measured at decadal timescales back 800,000 years in another Antarctic core (EPICA; 
see Fig. 1.5C).

cc The Holocene is an interglacial and it seems that all interglacials—​at least in Antarctic cores—​are 
exceptionally stable parts of the Ice Age cycle. This is the conclusion of a study using the dust data 
(Fig.  1.5A), which is the only data of sufficiently high resolution to permit detailed analysis of each 
phase of each cycle. Lovejoy, S. & Lambert, F. High resolution EPICA ice core dust fluxes: Intermittency, 
extremes and Holocene stability. Climate Past (submitted, August 2018). The analysis shows that the 
macroweather–​climate transition scale is indeed systematically longest in the interglacials—​typically 
about 2,000 years—​and that in the Holocene the transition time is the longest of all eight interglacials, 
with a transition at about 7,900 years. Although this Antarctic dust record has the longest stability du-
ration of any interglacial, it is apparently only a little bit extreme, not an outlier.

Yet, before concluding that the Holocene is miraculously stable, consider a final core, this time 
from ocean sediments off the coast off Greenland and only 1,500 km from Summit, Greenland, where 
the GRIP core was taken (bottom segment, Fig. 5.10). The ocean sediment temperature proxy is based 
on the 18O isotopes in layers of planktonic foraminifera that sank to the ocean bottom after living their 
lives in near-​surface waters, taking their temperature signal with them. Although the temporal reso-
lution of the data is lower (about one hundred years), its character, including its range of temperature 
variations (Figs. 5.7 and 5.10), is very similar to the pre-​Holocene ice cores. The difference in appear-
ance between this SST proxy and the ice proxies—​the patently unstable character of the former—​led 
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5,000 years

5  ºC

5  ºC

5  ºC

10,000 years

30–40 kyrs

20–30 kyrs

10–20 kyrs

0–11 kyrs

0–10 kyrs

Figure 5.13  The top part of the figure shows four successive 10,000-​year sections of the 
five-​year resolution Greenland Ice Core Project (GRIP) data (from Fig. 1.5B, middle), with 
the most recent to the oldest from bottom to top above the horizontal dashed line. Each 
series is displaced in the vertical for clarity, and the original data (in parts per thousand of 
isotope excess) were converted to temperatures using the official calibration. The resulting 
5°C spread is shown by double-​headed arrows on the left (using a calibration constant of 
0.5K per mil). When compared to the previous 10,000-​year sections (Fig. 5.9), we see that 
the bottom Holocene GRIP series is indeed relatively devoid of low-​frequency variability. 
This is quantified by the solid diamond-​headed horizontal lines that indicate the estimated 
duration of the macroweather–​climate transition time. Shorter segments of the curves tend 
to be canceling (H < 0), whereas longer segments tend to wander (H > 0). We can see that in 
the bottom Holocene record, the transition time is many millennia, whereas for the earlier 
sections it is only on the order of a few centuries.
In contrast, the bottom curve shows a paleo sea-​surface temperature record from ocean core 
LO09-​1469 taken from a location only 1,500 km distant and displaying far larger variability 
with a multicentennial transition time.70

Both ice core and ocean proxies are generally regarded as robust, trustworthy 
paleoindicators, so which one is right? Have our species been spoiled by a long and 
blissful macroweather hiatus, or—​on the contrary—​did harshly varying climate 

AQ: Please 
spell out 

“mil.”

Berner et  al. to conclude that the Holocene was, on the contrary, unstable. Berner, K.  S., Koc, N., 
Divine, D., Godtliebsen, F., & Moros, M. A decadal-​scale Holocene sea surface temperature record 
from the subpolar North Atlantic constructed using diatoms and statistics and its relation to other cli-
mate parameters. Paleoceanography 23, doi:Doi:10.1029/​2006pa001339 (2008).
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Macroweather, the climate, and beyond	 213

adversity force us to invent new ways of coping? Perhaps the final answer is more 
mundane: that climate was much less important than other factors, such as rising 
population levels or technological progress.

Keeping to the climate side of the debate, there may be a simple resolution of 
this apparent paradox. What if the ice cap Holocene climate is not representative of 
global conditions? What if the transition from macroweather to the climate varies 
strongly from place to place? To answer this, we need global-​scale, not only regional 
and high-​latitude, temperature proxies. Although the exact timescale of the transi-
tion may be poorly discerned, we know that macroweather does indeed eventually 
give way to the climate. We may be certain of this because, at scales of 50,000 years 
(half a glacial–​interglacial cycle), the temperature varies by ±2 to ±3°C (i.e., a total 
range of 4–​6°C, somewhat less near the equator), so that the typical Holocene 
fluctuations in Figure 5.9 must increase rapidly at timescales only a little larger than 
those shown (the glacial–​interglacial window of Fig. 2.4A and Fig. 5.14).

5

2

0.5 Instrumental >2003 multiproxies

<2003 multiproxies0.2

1 10 100 1000 10 kyrs

Vostok

±3

±2

100 kyrs

30 kyr 50 kyr

∆T ºC

Figure 5.14  A comparison of typical temperature fluctuations from three globally 
averaged instrument series (upper left, from 1880), from the five pre-​2003 multiproxy series 
(upper curves in Fig. 5.15, covering the preindustrial period, 1500–​1900), and three post-​
2003 multiproxies (the lower curves in Fig. 5.15). Also shown for reference is the Vostok core 
(proxy data from the past 420,000 years) and the glacial–​interglacial window (the upper 
right rectangle). Finally, a reference line (slope, H = 0.5) is shown. Although the instrument 
series are too variable (as a result of anthropogenic warming), and the pre-​2003 multiproxies 
seem to have overly weak variability at centuries and longer, the post-​2003 multiproxies 
extrapolate nicely to the Vostok variability at longer timescales. This is as expected if the 
global Holocene (represented by the multiproxies) was the same statistically as the pre-​
Holocene Vostok proxies.

In 2015, the question of Holocene stability and its regional variations were a 
main theme at a workshop I organized with colleague Anne de Vernal in Jouvence, 
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Quebec. The interest that it sparked in understanding and quantifying centennial 
and millennial Holocene variability led to its support by the international organi-
zation Past Global Change (PAGES). A series of three PAGES workshops is cur-
rently attempting to answer this question more completely by bringing together 
experts on paleodata with nonlinear geoscience specialists.

Box 5.3  Hockey stick wars and multiproxy science

After the basic technique for producing multiproxies was known, they rapidly 
proliferated so that, by 2002, there were already five covering the northern 
hemisphere. Not surprisingly, the hockey stick was scrutinized—​and vilified—​
intensely by climate skeptics (notably, statistician Steven McIntyre and engineer Ross 
McKitrick71), who spent considerable effort attacking it. Even today, skeptics refer 
ritualistically to multiproxies as “the discredited hockey stick.”

To understand the issues, consider the original series72 (which soon extended 
back to 1000 AD73), which illustrates both the technique and its attendant difficulties. 
The problems are in the longer timescales and the low frequencies. A basic issue was 
in getting long series that were both uniform temporally and representative spatially. 
For example, the original six-​century-​long multiproxy series presented in Mann 
et al.74 had 112 indicators going back to 1820, 74 to 1700, 57-​seven to 1600, and only 
22 to the year 1400. Because only a few of the series went back more than two or 
three centuries, the series’ “multicentennial” variability depended critically on how 
the loss of data at longer and longer time intervals was taken into account.

A somewhat different low-​frequency issue concerns the EOF technique, which 
is critical for calibrating the proxies and rejecting noise. Theoretically, it only works 
properly if H < 0, yet global warming means that H > 0 at scales of twenty to thirty 
years and longer.dd This means that today’s EOFs are effectively a little bit different 
from those of the preindustrial past, and this can potentially lead to errors in 
extrapolating current calibrations into the past. The politically charged issue at stake 
was whether the warming, such as the one we have enjoyed for the past century, was 
rare or common in the preindustrial record. In particular, skeptics seized on the 
fact that the hockey stick did not corroborate the “medieval warming event” and 
claimed that its nonappearance in the multiproxy reconstruction proved that the 
multiproxies were wrong. In actual fact—​being a northern hemisphere, rather than 
European, average—​Mann’s hockey stick simply demoted medieval warming from 
an event of global significance to a regional one.ee More generally, the multiproxies 
allow us to address the question: Does the global temperature record exhibit GNFs 
at centennial scales? This is the subject of Chapter 6.

Awareness of low-​frequency problems meant that increasing attention was paid to 
the treatment of the centennial and longer scales. One way to do this is to use borehole 
data, which—​when combined with the use of the equation of heat diffusion—​has 

dd This point is still not fully appreciated.
ee It didn’t eliminate a European warming, only a general hemispheric warming.
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essentially no calibration issues whatsoever. Huang75 used 696 boreholes, obtaining 
significant low-​frequency variability (Fig. 5.15).76 Similarly, to give proper weight 
to proxies with decadal and lower resolutions, especially lake and ocean sediments, 
Moburg et  al.77 used wavelets to calibrate separately the low-​ and high-​frequency 
proxies. Once again, the result was a series with increased low-​frequency variability. 
Ljundqvist78 used a more up-​to-​date and more diverse collection of proxies to 
produce a decadal resolution series going back to 1 AD, also with stronger centennial 
and millennial variability. Finally, Marcott79 created the first multiproxy for the entire 
Holocene, going back 11,000 years at twenty-​year resolution.80

T (ºC)

0.4

0.2

1500 1600 1700 1800

Moberg

Huang

1900

Crowley

Mann

Briffa

Jones
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Ljundquist

pre 2003
post 2003

–0.2

–0.4

Figure 5.15  Eight multiproxy reconstructions published since 1998, from 1500 to 
1900, and smoothed to thirty-​year resolution to bring out the low frequencies. This 
range was chosen to reflect the preindustrial fluctuations; pre-​1900 anthropogenic 
warming is quite small. The multiproxies are divided into two groups: at the top, the 
pre-​2003; at the bottom (shifted by 0.3°C for clarity) are four post-​2003 multiproxies.ff 
The names correspond to the first authors of the articles in which the series were 
described. All the series have been shifted up and down to agree on the temperature 
in the year 1900 AD. At the left, we can clearly see the wide range of the inferred 
temperature change since 1500 AD, and the fact that, in general, the post-​2003 
multiproxies are more widely varying.81

We can compare several of the reconstructions visually. Figure 5.15 shows that 
more recent reconstructions (those published after 2003; thick lines in the figure) 
generally have considerably larger overall temperature variations than the earlier 

ff “Pre-​” and “post-​” 2003 refer to the publication dates of the multiproxies, not to the range of dates 
covered in the reconstructions.
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(pre-​2003) multiproxies (top). Quantifying this using fluctuations, we see in Figure 
5.14 that, up to scales of 150 years or so, they all agree pretty well with each other, 
but for scales longer than a century or two, the more recent multiproxies are more 
variable at long times. There are two arguments in their favor: First, one of them is 
the borehole-​based series and, because it is a direct physical measurement, it avoids 
all the usual proxy calibration issues. Second, Figure 5.14 also shows that the low-​
frequency variability seems to be more or less what is needed to explain the lower 
frequency Vostok paleodata—​assuming, of course, that the global-​scale (northern 
hemisphere) Holocene has the same type of variability as the previous epochs. These 
multiproxies are consistent with the hypothesis that, at global scales, the Holocene 
is statistically much like the previous periods. Also shown in Figure 5.14 is the 
industrial epoch instrument-​based Haar fluctuations confirming they are too strong 
to be compatible with the preindustrial multiproxies, so industrial epoch warming is 
indeed unprecedented (see Chapter 6).
  

5.7  The multiproxy revolution

The key discovery that transformed climate science—​and that can potentially 
answer the question about the Holocene stability—​was the development in 1998 
by Mann, Bradley, and Hughes of “multiproxy reconstructions.”82 Up until then, 
numerous individual climate series from tree rings (dendrochronology), varves 
(lake sediments), palynology (pollen, dust), ice cores, magnesium/​carbon varia-
tion in shells, 18O in foraminifera, diatoms, speleothems (stalagmites), biota, and 
other sources had began to proliferate, leading to numerous local reconstructions 
of past climates. Not surprisingly, they were all highly variable in time and in 
space, and their chronologies and calibrations in terms of temperatures were 
poorly discerned. The wide sweep of global climate change was only qualitative 
and it was quite Eurocentric, being heavily based on historical evidencegg such as 
records of vines growing in Britain during the Middle Ages, illustrating the “me-
dieval warming event,” or Pieter Breugel’s sixteenth-​century renditions of skaters 
on frozen Dutch canals, illustrating the “little Ice Age.”

Although each individual proxy series has climate information,hh up until the 
advent of multiproxies, they were noisy and the calibration required knowledge of 
the temperatures at the proxy sites over decades and longer, and these data were 
rarely available. In addition, although neighboring proxies could potentially back 
up each other to reject noise and to detect systematic regional changes better, there 
was no proper way of combining them statistically. The multiproxy breakthrough 

gg  At the time, the classic reference was Horace Lamb’s monumental “Past Present and Future.” 
Lamb, H. H. Climate: Past, Present, and Future. Vol. 1, Fundamentals and Climate Now. (Methuen and 
Co., 1972).

hh For simplicity, we restrict our attention to temperature proxies, which are the most reliable; but 
others—​notably, precipitation—​do exist.
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was to use a technique called “empirical orthogonal functions” (EOFs), which 
allowed the instrument record to determine the main components (EOFs) of the 
temperature variability both to reject noise and to determine the temperature at 
locations where there were no direct measurements: to fill in data “holes.”

By using hundreds of proxy series, including (annual resolution) 
dendrochronologies, Mann et al. thus developed the first quantitative reconstruc-
tion of global-​scale (northern hemisphere) temperatures—​at first, since 1500 AD,83 
but they soon extended it back to the year 1000 AD.84 The result was the instantly 
acclaimed “hockey stick”—​a version of which is shown in Figure 5.16, a graphic 
showing a gradual decline of northern hemisphere temperatures since 1000 AD, 
followed by a (relatively) rapid warming since the end of the 1800s. The period of 
long gradual decline is the stick handle; the recent rapid warming is the business 
end. The hockey stickii was the first quantification of industrial epoch warming, and 
it underlined its rapidity visually. This led to the famous conclusion—​showcased 
in the 2001 IPPC AR385—​that the twentieth century was the warmest century of 
the millennium, that the 1990s was the warmest decade, and that 1998 was the 
warmest year. It foisted its feisty lead author, Michael Mann, onto center stage in 
the developing “Climate Wars,” which are discussed in more detail in Chapter 6.

T (ºC)

1.0

0.5

1200 1400
Date

1600 1800 2000

Figure 5.16  An updated version of Mann’s hockey stick using the three post-​2003 multiproxies 
in Figure 5.13 (thin solid lines, with a thirty-​year smoothing, from 1500–​1900 only), and the 
annual resolution, globally averaged temperatures since 1880 to 2013 (thick, solid, the same 
National Aeronautics and Space Administration GISS series as in Fig. 6.4). The dashed line is 
the Moburg multiproxy at annual resolution from 1000 AD [taken from Fig. 1.5D (bottom); it 
is the same as the one with the thirty-​year smoothed data from 1500 to 1900 that was used in 
Fig. 5.15]. The legendary hockey stick has been superposed, showing slowly cooling preindustrial 
temperatures followed by a sharp increase during the industrial period.

ii At first, this was a climate skeptic term of derision, but it was soon adopted by Mann himself. See 
his excellent work, Mann, M. E. The Hockey Stick and the Climate Wars: Dispatches from the Front Lines. 
(Columbia University Press, 2012).
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5.8  Ice Ages and the macro-​ and megaclimate regimes

Although there is still much uncertainty about the time scales of the transitions 
between macroweather and climate, we have seen (Figs. 2.4A and 5.14) that if one 
averages over long ice or ocean cores (i.e., many epochs, glacial cycles), one finds a 
transition at about one hundred years, and scaling behavior out to 50,000 years or so. 
But what happens in the vicinity of 100,000 years, and at the really long timescales 
from millions of years to the age of the planet? Although we have just seen that the 
external or internal origin of the centennial and multimillennial scaling is still not 
clear, thanks to astronomical forcing theory (Milhutin Milanković, 1879–​1958), cli-
mate signals from scales of tens of thousands to hundreds of thousands of years are 
apparently the result of classic scalebound causes: the precession of the equinoxes 
(23,000 years), changes to the obliquity of Earth’s orbit (41,000 years), and changes 
in the eccentricity (ellipticity) of Earth’s orbit (95,000  years, 125,000  years, and 
413,000 years). Box 5.4 gives more detail on this.

Box 5.4  Ice Ages and orbital forcing

I have deliberately focused on the broad sweep of scales from millennia on up, showing 
how the data—​such as they are—​broadly support the existence of a megaclimate 
regime beyond 1,000,000  years and a fairly narrow macroclimate regime with a 
character that is unclear. In this sweep, I have deliberately underplayed astronomical 
forcings and responses. The main reason for this choice is that astrophysics provides 
textbook examples of extreme scalebound—​with an even “clockwork”—​regularity 
and, as a consequence, there is a large body of literature on the subject of the 
corresponding “Milanković” climate forcings.

Although there is no doubt that signatures of Milanković forcings can be found 
in the climate record, the subject is far from settled. To start with, over the range 
of timescales between 20,000  years and 400,000  years, there are seven or eight 
astronomical forcing frequencies, and they can potentially interact with each other. 
Consider the precession of the equinoxes, the fact that the axis of Earth’s rotation 
slowly changes direction so that the dates of the equinoxes shift. There are actually 
two precessions. The first is the “axial” precession, with a period of 26,000  years. 
This is the time that it takes for the axis of Earth to rotate once about a direction 
perpendicular to the ecliptic (the orbital plane) with respect to the fixed stars.jj It is 
caused by the solar and lunar tidal forces exerted on the solid Earth. The second, the 
“apsidal” precession, refers to the precession of the (elliptical) orbit of Earth about 
the sun, with a period of 112,000 years relative to the fixed stars. The apsidal and axial 
precessions combine to vary the position in the year that Earth reaches perihelion 
(maximum distance from the sun). On average, apsidal precession shortens this 
period to 23,000 years (varying between 20,800 years and 29,000 years).

jj Hence, for example, Polaris would no longer be the north pole star.
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Because Earth’s orbit around the sun is slightly elliptical,86 the precession of the 
equinoxes implies that the northern hemisphere summer is sometimes at the point 
of closest approach to the sun whereas, half a cycle later, the closest point would 
occur in the northern hemisphere winter. Because the opposite relationships hold 
for the southern hemisphere, a north–​south symmetrical planet would display no 
overall increase in incoming solar radiation/​solar forcing. Although Earth is not 
north–​south symmetrical, having most of its landmass in the northern hemisphere, 
the precession of the equinoxes has a small effect and, not surprisingly, any 
paleotemperature response is undetectable.

However, at 41,000  years, Earth’s axis itself (the obliquity) varies in direction 
periodically, from a minimum of 22.1° to a maximum87 of 24.5°, with respect to the 
normal to the orbital plane (it is currently at 23.5°). Because the tilt is responsible for 
the seasons, greater tilts mean more extreme seasons, effectively varying the amount 
of summer insolation in northern high latitudes, where there is a large landmass that 
can accumulate ice. This periodicity was the one that Milanković originally singled 
out as dominant, and it turns out that he was right—​at least for times between 
2,500,000 years ago and 800,000 years ago! Indeed, in Figure 1.5A, it can be seen 
as a fairly uniform oscillation, before disappearing below the background around 
800,000 years ago (spectral analysis shows it is still there, but that in the recent epoch 
it has been much, much weaker than the 100,000-​year cycle). The replacement of the 
then-​dominant 41,000-​year cycle with a dominant 100,000-​year cycle is called the 
“100,000 year problem.”

Moving to longer astronomical timescales, which are the result of changes in the 
orbit of Earth around the sun, there are “wobbles” caused largely by interactions 
with Jupiter. These cause the eccentricitykk of Earth’s orbit to change. The main 
periodicities in the wobble are at 95,000 years, 125,000 years, and 405,000 years, yet 
it is the weakest at 95,000 years and apparently has been dominant over the others 
during the past 800,000 years.88 This is sometimes called the “unsplit peak problem.” 
Indeed, spectral analysis of a new EPICA (Antarctic core) dust data set, with a 
remarkable 25-​year temporal resolution (Fig. 1.5C), shows that, over the range of 
frequencies corresponding to 50  years to 800,000  years, 15% of all the variability 
can be attributed to this single 95,000-​year spectral spike, with only a percent or 
two attributable to all the other astronomical forcing frequencies. The rest—​the 
majority—​are associated with the scaling background.89

Naturally, these findings have spawned numerous models, especially of the 
deterministic chaos variety, but the problem is still unsolved.90

  

Milanković proposed his theory just before the first world war, but it took 
more than fifty years before it was widely recognized, and sixty years before 
early paleodata gave it convincing support, first by the Climate:  Long-​Range 

kk The eccentricity is a measure of how noncircular the orbit is, with a value of 0 corresponding to a 
perfect circle. The eccentricity of Earth’s orbit varies from a nearly circular value of 0.000055 to a mildly 
elliptical maximum value of 0.0679. Currently, it is 0.017 and decreasing.
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Investigation, Mapping and Production project in 1972 and then by an influential 
article by Hayes, Imbrie, and Nicholas Shackelton (1937–​2006) titled “Variations 
in the Earth’s Orbit: Pacemaker of the Ice Ages.”91

 By the time (1976) that Mitchell proposed his wide-​scale-​range spectral com-
posite of climate variability (Fig. 2.3A), in accordance with Milanković the Ice Ages 
were already represented as a cluster of scalebound spectral “bumps” superposed 
on his otherwise flat (white noise) background. In 1990, on the basis of early 
ocean cores, Shackleton and Imbrie92 made an important advance, noting that the 
spectrum of benthic δ18O was “approximately” scaling from about 1,000 years to 
100,000,000 years, so that the Ice Ages were instead a scalebound spectral bump 
on an otherwise scaling background.ll Looking at the paleodata composite spec-
trum in Figure 2.3A, we see that this interpretation is tempting. It is easy to im-
agine a single line through the broad spectral bump at around 100,000-​year scales. 
If this interpretation was correct, it would imply—​interrupted only by a short as-
tronomically forced bump—​that a single scaling climate regime would be valid 
from centuries to hundreds of millions of years.

Although this “scaling with a bump” picture is certainly a much better charac-
terization of the variability than Mitchell’s “white noise with a bump,” it is worth 
revisiting this scale range with the benefit of both improved data and the use of 
fluctuation analysis. Figure 5.17 shows the result, focusing on the longer series 
presented in Figures 1.5A and 2.4A, B (those covering the timescales from 1,000 to 
550,000,000 years). With the exception of a single ice core (EPICA, dashed line), 
the data used in the figure are “benthic”; they come from δ18O analyses of CaCO3 
exoskeletons of ancient planktonic creatures taken from ocean sediment cores. In 
the benthic series (see Fig. 1.5A), δ18O varies both as a result of temperature as well 
as of the mean δ18O of the water in which the foraminifera lived. The basic rela-
tionship between δ18O and temperature is an inverse one: Increasing δ18O is asso-
ciated with decreasing temperatures, although this relationship is complicated by 
the change in the δ18O composition of the seawater resulting from the preferential 
sequestering of light seawater in ice caps (see Box 1.2). There are thus both direct 
and indirect links to the temperature via the ice sheets.93 In addition, tempera-
ture variations are latitude dependent, so that high-​latitude temperature variations 
are amplified by roughly 50% above global variations.94 In Figure 5.17, I’ve given a 
simplified presentation.95 A full discussion is provided elsewhere.96

ll  A  few years earlier, I  had focused on scaling up to Ice Age scales. The single benthic series 
in the scaling composite (see Fig.  2.18) was used only “to get a feel for the temperature variations 
over the very long timescales” and, retrospectively, it was spuriously flat because it used difference 
fluctuations: Lovejoy, S. & Schertzer, D. Scale invariance in climatological temperatures and the local 
spectral plateau. Annal. Geophys. 4B, 401–​410 (1986).
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Figure 5.17  A composite focusing on the macroclimate and megaclimate regions using part 
of the Antarctica ice core analyses (only the part ∆t > 1,000 years is shown; EPICA, dashed 
line, left) with the benthic series (thick line, Zachos; thin line left, Huybers). The Veizer 
series is the thin line at the upper right. The proxies all agree quite well for ∆t below about 
200,000 years and for ∆t greater than about 20,000,000 years.97

At the shorter scales, from roughly 1,000 to 100,000 years, we see that both the 
ice cores and the benthic data agree very well with each other. They both show 
quite accurate scaling, with H ≈ 0.4, and give significant support for the robust-
ness of our conclusions about the overall scaling in the climate regime. Similarly, at 
very long timescales, beyond 10,000,000 years, two different benthic “stacks” (in 
Fig. 5.16, the thick line using more than 14,000 measurements and the thin line, 
upper right, with nearly 3,000 points) give agreement on a fairly linear (scaling) 
regime at very long times, right up to the “Cambrian revolution,” when the first 
hard-​shelled creatures appeared—​the limit of this method. Although the beha-
vior in the range 100,000 to 10,000,000 years is not so clear, the analysis does 
show convincingly that, despite the near (probably fortuitous) agreement of the 
fluctuation exponents (H values) for the climate and the long-​time “megaclimate” 
regime,mm the latter is not simply a continuation of the former with a “Milanković 
bump” as in the early Shackleton and Imbrie picture. The climate and megaclimate 
regimes are clearly distinct so that, for example, the fluctuations at 100,000 years 
are of about the same magnitude (8°C; i.e., ±4°C) as those at 20,000,000 years. 
Physically, megaclimate variability is presumably mostly the result of the rear-
rangement of landmasses by plate tectonics. An example of this is the current 
Quaternary period (the past 2,500,000 years), during which glacial–​interglacial 
cycles occur. Before that, the distribution of land in the polar regions couldn’t 

mm The new lower frequency regime was dubbed “megaclimate” because “mega” means “large” and 
the term evokes the megafauna of these ancient climes.
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support the buildup of significant ice sheets and there were apparently no such 
cycles.nn

Viewed in this way, perhaps the most significant feature of the scale range be-
tween 100,000 years and 1,000,000 years is the significant drop in the variability by 
a factor of about 5 over this fairly narrow range of scales. In Figure 5.17, this appears 
as a kind of “macroclimate gap.” Focusing on the dashed line (ice core analysis), 
the decline in variability actually seems to be quite linear—​scaling—​with an ex-
ponent H = –​0.8. Whether this scale range is best characterized as a “gap” or as a 
short “macroclimate” scaling regime is thus a matter for debate.

5.9  The death of Gaia

There is no question that the evolution of life on Earth has transformed the at-
mosphere, and that life continues to influence the climate. This is the starting 
point of James Lovelock’s (b. 1920)  Gaia hypothesis that Earth itself is a giant 
“superorganism.” For this to be more than just a metaphor, Lovelock claims that, 
just like a living organism, the entire planet displays homeostasis. Homeostasis 
denotes the fundamental self-​regulating attribute of living beings—​their ability to 
maintain their internal conditions close to a point optimal for their development. 
If the Gaia hypothesis is true, it would mean that, thanks to negative feedbacks, 
Earth maintains conditions (including temperatures) in a range fit for life (i.e., 
itself). A  major Gaian example is the apparent stability of the concentration of 
atmospheric oxygen. Over the past hundreds of millions of years, it seems to have 
remained within the bounds of 15% to 35%. Although data are limited, it is plau-
sible that it is indeed stable, with canceling fluctuations favoring a long-​term mean 
value not far from the current concentration (21%). If true, in our language, the 
megaclimate H value for oxygen concentration would be negative.

However, Lovelock has had more difficulty in justifying homeostasis for Earth’s 
temperature, producing essentially speculative mechanisms rather than hard evi-
dence. For example, in 1983, Lovelock and colleague Andrew Watson pioneered the 
use of low-​dimensional deterministic chaos models of the climate: “Daisyworld.”98 
Daisyworld is a model of a planet covered with two types of daisies: black and 
white. White daisies have a high albedo but they like warmer temperatures 
whereas black daisies have low albedos but they prefer cooler temperatures. The 
resulting Daisyworld model exhibits chaotic temperature variations around a well-​
defined, long-​term fixed temperature. Daisyworld demonstrates that life can po-
tentially regulate temperature in a nontrivial (chaotic, randomlike) manner. Yet 

nn Tens of millions of years earlier still, there were likely to have been other epochs with distributions 
of continents favorable to the operation of glacial cycles. In the much more distant past before the 
Cambrian about 600 million years ago, there was even believed to be a state called “snowball Earth” in 
which virtually the entire planet was covered with ice.
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one is struck by the artificiality—​and given the assumptions—​the predictability of 
the Daisyworld result.

In an attempt to provide more realism, Lovelock later developed another mech-
anism, postulated to have operated over megaclimate scales, baptized the “CLAW 
hypothesis,”99 after the authors’ initials.oo The CLAW hypothesis is a negative tem-
perature feedback mechanism based on planktonic production of dimethyl sul-
fide (DMS). It is hypothesized that increasing temperatures (a positive fluctuation) 
leads to increasing planktonic production of DMS. DMS acts as cloud conden-
sation nuclei that tend to increase cloud cover; increasing cloud cover tends to 
decrease the temperature (a negative fluctuation). Conversely, negative tempera-
ture fluctuations lead to (at least partially canceling) positive fluctuations later on, 
hence there is overall stability—​ homeostasis.

But whatever its exact mechanism, by its very definition, negative feedbacks 
imply that successive temperature fluctuations tend to cancel each other out so 
that H < 0. However, the proxy evidence from the megaclimate regime (Fig. 1.5A, 
top series, Fig. 5.14) is that, on the contrary, H > 0, so that the temperature changes 
are actually more like a drunkard’s walk, tending to grow rather than diminish 
with timescale. There is no evidence that the temperature tends to return to a 
well-​defined value. Even its visual appearance in Figure 1.5A shows a “wandering” 
rather than a canceling character. Quantitative fluctuation analysis (Fig. 5.17) 
confirms that, at least during the past 550,000,000 years, H > 0. Because temper-
ature is obviously fundamental for life, this is strong evidence against the Gaia 
hypothesis.

This criticism based on the analysis of megaclimate temperature proxies adds 
to the already widespread scientific skepticism toward Gaia (see Tyrrell,100 for 
example, for a critical survey). Unfortunately, inasmuch as the hypothesis has 
attained nearly religious status, with Gaia replacing the sun god, these analyses are 
unlikely to influence its cult followers.pp

Beyond its overall quasi-​periodicity, we may ask whether these astronomical 
cycles might help us understand our current interglacial epoch, the Holocene 
(Section 5.6). Because this is the epoch of agriculture and civilization, for hu-
manity, the key issues are the duration of warm, largely ice-​free Holocene 
conditions and the stability of such conditions. If we compare the Holocene 
length—​already about 11,700 years—​to the lengths of earlier interglacials, we find 
that the last time that an interglacial was longer than about 3,200 years was the 
24,000-​year-​long interglacial that ended 395,000  years ago. The 400,000-​year 
timing between these long interglacials is at least consistent with the astronomical 
forcing theory. A possible link is provided by the 405,000-​year eccentricity cycle 

oo Robert Jay Charlson, James Lovelock, Meinrat Andreae, and Stephen G. Warren. More recently, 
Lovelock proposed the “anti-​CLAW” hypothesis—​a positive feedback mechanism that should apply 
under conditions of anthropogenic warming. In such scenarios, the mechanism effectively amplifies 
anthropogenic warming. Lovelock, J. E. The Revenge of Gaia. (Penguin, 2007).

pp Lovelock seems quite happy to cultivate some of the more esoteric interpretations.
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that modulates the precession of Earth’s axis.101,qq Yet when we consider the entire 
set of eight interglacials, we find that the even earlier interglacials were all around 
10,000  years long, and the average over the eight is 9,900  years, with a typical 
spread of ±7,500 years. From this perspective, the Holocene does not seem so long.

Although not astronomical, I could mention another theory that has been put 
forward to explain a long Holocene: the Early Anthropocene Hypothesis (EAH) 
by William Ruddiman.102 The EAH posits that the current interglacial has been 
prolonged artificially by the development of agriculture. According to the EAH, 
starting around 5,000 years ago, early farmers had sufficiently increased atmos-
pheric CO2 and CH4 concentrations that the resulting climate forcing artificially 
prolonged the Holocene that presumably would otherwise have already reverted 
to a glacial state. The main criticism of this theory is that the forcings were much 
too small. Today, natural processes are invoked more commonly to explain the 
weakly anomalous CO2 and CH4 levels. Section 5.6 addresses the issue of Holocene 
stability about which astronomical forcing plays little role.rr

Notes

1.  Stability is usually defined with respect to a specific theory or model. An example 
is convective stability. This is a property of a smooth atmospheric layer when it is heated 
from below. When the temperature gradient exceeds a critical threshold, tiny perturbations 
are amplified, rapidly destroying the initial smooth state. The scaling H-​based definition 
of stability is instead a statistical, phenomenological definition that characterizes the real, 
observed propensity of fluctuations to amplify or diminish as functions of scale.

2. Figure 1.6 was normalized by the standard deviation, rather than the absolute differ-
ence, but this is a minor distinction.

3. This definition of climate state (as a “climate normal”) is directly accessible by em-
pirical measurement. It is somewhat different from the climate notion used in GCMs (as 
discussed later), which can be determined only from models, by running them for a very 
long time with completely fixed external conditions (in “control runs”).

4. Beyond simply defining the macroweather anomaly as the difference of the current 
macroweather state and the climate state, there is a slight additional complication. For 

qq Earth’s precession affects the amount of energy that it absorbs because sea ice can grow more 
readily in the southern hemisphere, and this reflects more energy away from Earth. However, preces-
sion matters only when eccentricity is large (the orbit is more elongated), hence the potential influence 
of the 400,000-​year cycle. These effects, however, are quite small so that the astronomical theory does 
not (yet) explain our long interglacial.

rr The anomalously high CO2 and CH4 concentrations invoked by the EAH are on the order of 7% 
and 15%, respectively, over 5,000 years compared to a 50% increase of these concentrations since the 
industrial revolution. For natural explanations of these slow increases, see Studer, A. S., Sigman, D. M., 
Martínez-​García, A., Thöle, L. M., Michel, E., Jaccard, S. L., Lippold, J. A., Mazaud, A., Wang, X. T., 
Robinson, L. F., Adkins, J. F., & Haug, G. H. Increased nutrient supply to the Southern Ocean during 
the Holocene and its implications for the pre-​industrial atmospheric CO2 rise. Nat. Geo. Sci. 11 (10), 
756–​760 (2018).
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monthly resolution anomalies, one must remove the annual cycle. For example, the of-
ficially ordained procedure for calculating the January anomalies used in Plate 5.1 (right 
column) includes the differences between the January monthly averaged temperature and 
the average of all the Januaries over the previous thirty-​year reference period.

5. As far as I know, such weather anomalies are not used, probably because the evolu-
tion of the atmosphere depends on the actual state of the atmosphere and not on its differ-
ence with respect to the current monthly (macroweather) average. Although these weather 
anomalies are useful for highlighting the day-​to-​day evolution of the atmospheric state, 
they do not help to predict it.

6. This statement is true of regions several hundred kilometers across, not of individual 
station anomalies, which can vary much more strongly.

7. Since H < 0, the thirty-​year (360-​month) average fluctuations are much smaller than 
the monthly ones. Using the typical value H =  –​0.2, we find that averaging reduces the 
amplitudes of the fluctuations by a factor of 360H ≈ 0.30 (see Plate 5.3). (Although, in the 
recent period, as a result of global warming, this variability corresponds to fluctuations 
around a slightly higher average value.) Because of this amplitude reduction, most of the 
anomaly variability is a result of the variations at monthly scales.

8. Lovejoy, S. What is climate? EOS 94 (1), 1–​2 (2013).
9. Estimated directly from the 1871 to 2010 20CR data at 2° resolution.
10. Adapted from Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws 

and Multifractal Cascades. (Cambridge University Press, 2013).
11. From 1750 to 1930, the total warming was only about 0.3°C. Today, it is about 1°C 

(Fig 6.4A).
12. Although the global-​scale year-​to-​year natural variability is close to 0.1°C, over long-​

enough timescales it is double that value. So anthropogenic warming must exceed about 0.2°C 
to be detected. This was the total anthropogenic warming over 1880 to 1940 (i.e., sixty years).

13. The upper right of Figure 5.2 uses paleodata.
14. To within statistical error. This range of H values and the macroweather predicta-

bility properties discussed here and later are thus only strictly valid for low-​intermittency 
processes. They are thus approximately valid in macroweather.

15. Because of the “central limit theorem” in statistics, it doesn’t make too much differ-
ence how one determines the distribution of the random numbers. The key point is that the 
way in which successive numbers are chosen should be identical and they should each be 
chosen independently.

16. It turns out that spatial averages over large regions leads to the subregions, with H 
closest to zero dominating the others, so that global averages—​dominated by oceans—​have 
H ≈–​0.1 (see Fig. 5.10 and Box 5.1).

17.  This is not surprising because we saw (Fig.  4.12) that the ocean weather–​ocean 
macroweather transition occurs at about one year, which is the lifetime of planetary 
scale “gyres,” so that the SST is within the usual deterministic predictability limit. The air 
macroweather temperatures over the ocean are thus much more predictable than the corre-
sponding temperatures over land.

18.  Reproduced with permission from Del Rio Amador, The Stochastic Seasonal to 
Interannual Prediction System, PhD dissertation, McGill University (2018).

19. This statement is exactly true for the simulation. For the data, it is only approximately 
true, because it is based on an estimate of H. The bottom series, right column, has H closer 
to –​0.45; it is not completely uncorrelated.

AQ: Please 
verify year 
and title.
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20. Corresponding to 140 years, from 1871 to 2010.
21. For the series at the bottom, with H = –​1/​2, the amplitude is reduced by the factor  

121/​2 = 3.46. The factors (12–​H) are 1.28, 1.64, 2.11, 2.70, and 3.46, from top to bottom.
22. The model and data resolutions may have a mismatch in both space and in time. 

The effective spatial resolution of GCMs is not so obvious because of the use of artificial 
“hyperviscous” dampening/​smoothing needed to keep the model stable numerically. It is 
typically a factor of 2 to 3 less than the nominal resolution (raw grid scale), and the raw 
GCM outputs are corrected by these ad hoc factors.

23. This now goes under the sophisticated term “quantile matching.” Quantile matching 
is a general method of forcing the probability distribution of the data and simulations to 
match. For Gaussian processes (a good approximation here), it simply consists of the mul-
tiplication of the anomalies by the numerical factor needed to match the amplitudes of 
the simulations and data. See, for example, Zhao, T., Bennett, J. C., Wang, Q. J., Schepen, 
A., Wood, A.  W., Robertson, D.  E., & Ramos, M.  How suitable is quantile mapping for 
postprocessing GCM precipitation forecasts? J. Clim. 30, 3185–​3196 (2017).

24. Lovejoy, S. How accurately do we know the temperature of the surface of the earth? 
Climate Dynam. doi:doi:10.1007/​s00382-​017-​3561-​9 (2017).

25. Lovejoy, S. How accurately do we know.
26. Lovejoy, S. How accurately do we know.
27.  Each of the six data sets has its particular strengths and weaknesses. Those from 

NOAA and NASA used essentially the same land and marine data, but use different 
methods to fill (some) of the data holes. In contrast, the Hadley model, version 4 (HAD4), 
series (from the Climate Research Unit) made no attempt in this direction, thus making 
fewer assumptions about the spatial statistical properties (especially smoothness, regularity 
properties). Another series (by Kevin Cowtan and Robert Way) takes the contrary view. It 
uses the HAD4 data but makes strong spatial statistical assumptions (Kriging) to fill in data 
holes. This is especially significant in the data-​poor high-​latitude regions. The 20CR series 
is of particular interest because it uses no temperature station data whatsoever. Instead, it 
uses surface pressure station data and monthly SST data (the same as HAD4) combined 
with a numerical model (a reanalysis). It is the only series that gives actual temperatures 
rather than changes with respect to a reference period (the “anomalies”). The fact that the 
20CR agrees well with the other (station-​based temperature) estimates is strong support 
for all the series [Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., 
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, 
M., Crouthamel, R.  I., Grant, A.  N., Groisman, P.  Y., Jones, P.  D., Kruger, A.  C., Kruk, 
M., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, 
X. L., Woodruff, S. D., & Worley, S.J. Independent confirmation of global land warming 
without the use of station temperatures. Geophys. Res. Lett. 40, 3170–​3174 (2013)]. A final 
series [Berkley—​shorthand for the series produced by this group: Rohde, R., Muller, R. A., 
Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., Wurtele, J., Groom, D., & Wickham, 
C.  A  new estimate of the average Earth surface land tesperature Spanning 1753 to 2011. 
Geoinfo. Geostat.: An Overview 1 (1), 1–​7 (2013).] uses the same SST data as both HAD4 
and Cowtan and Way, but it uses data from many more stations (≈37,000 compared to only 
4,500 for HAD4 and 7,300 for the NOAA series, for example), and it uses a number of sta-
tistical improvements in the handling of data homogenization and coverage. This diversity 
is significant so that the degree of agreement or disagreement between the various series is 
itself important.
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28. This was their common period.
29.  The analysis in Figure 5.14 was performed a little earlier and involved only three 

series.
30. Adapted from Figure 2 in Lovejoy, S. How accurately do we know the temperature of 

the surface of the earth? Climate Dynam. doi:doi:10.1007/​s00382-​017-​3561-​9 (2017).
31. Lovejoy, S. & de Lima, M. I. P. The joint space–​time statistics of macroweather pre-

cipitation, space–​time statistical factorization and macroweather models. Chaos 25, 075410, 
doi:10.1063/​1.4927223 (2015).

32. Technically, Figure 5.5B shows a “complex cascade”—​one involving the multiplica-
tion of complex numbers. Complex cascades are similar to the usual (real-​value) cascades 
discussed in Box 2.2, except that they are based on numbers with both real and imagi-
nary parts. The model in the figure is an extension of models presented in Schertzer, D. & 
Lovejoy, S. From scalar cascades to Lie cascades: Joint multifractal analysis of rain and cloud 
processes In Space/​Time Variability and Interdependence for Various Hydrological Processes 
(ed. R. A. Feddes), pp. 153–​173. (Cambridge University Press, 1995).

33.  For example, data from individual climate stations are made commensurate 
(“homogenized”) by using the station standard deviations or probability distributions to 
adjust them.

34. These statements are true of the precipitation anomalies (i.e., after the annual cycle 
and long-​term average have been removed).

35. https://​en.wikipedia.org/​wiki/​Weather
36. Unfortunately, as we saw in Chapter 4, the fact that it was graphically represented as a 

maximum in the spectrum and not simply a transition of spectral type was purely an artifact 
of the way the graphs were plotted. This allowed scientists to think in scalebound terms. It 
was relegated to the status of a disturbance over a narrow range of timescales rather than 
representing a fundamental change in character.

37. In the case of the Fractionally Integrated Flux (stochastic cascade) model, various 
extensions have been made, such as to couple them with an ocean model as well as to in-
clude climate zones, but these models have not yet been much developed: Lovejoy, S. & de 
Lima, M.  I. P.  The joint space–​time statistics of macroweather precipitation, space–​time 
statistical factorization and macroweather models. Chaos 25, 075410, doi:10.1063/​1.4927223 
(2015). And Appendix 10D in Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent 
Laws and Multifractal Cascades. (Cambridge University Press, 2013).

38. Lorenz, E. N. The predictability of a flow which possesses many scales of motion. 
Tellus 21, 289–​307 (1969).

39. In Lorenz’s error doubling model, structures were predictable over their lifetimes. 
It is ironic that the connection was not made that the ten-​day predictability limit implied 
a ten-​day lifetime of planetary structures. The failure to make the connection may be a 
consequence of the academic two-​dimensional/​three-​dimensional paradigm discussed in 
Chapter 4. This is because a unique feature of two-​dimensional turbulence is its predicta-
bility limit, which is much longer than the lifetime of the large structures.

40. Figure 5.8 uses Haar fluctuations, and because H < 0, these fluctuations are es-
sentially averages of the temperature anomalies with respect to the model’s long-​term 
climate.

41.  This means that rerunning the same GCM for 300 simulated years with only 
tiny differences in the starting conditions would lead to a 300-​year average of about  
2 × 0.06 = 0.12°C different from the first.
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42. This is the average over the eleven models used in Figure 5.7, but there is some vari-
ation from model to model. We return to this in Chapter 7, where we forecast these control 
runs using emergent scaling laws.

43.  Lovejoy, S., Schertzer, D., & Varon, D.  Do GCM’s predict the climate  .  .  .  or 
macroweather? Earth Syst. Dynam. 4, 1–​16 (2013).

44. The convergence can be sped up by combining statistical with temporal averaging 
on an ensemble of model runs, each starting with slightly different initial conditions. This is 
used to project the climate to the year 2100 (see Chapter 7).

45. These were selected for their long length and for the absence of overactive El Niño 
dynamics (three-​ to five-​year variability).

46.  More sophisticated models can reproduce different H values. See appendix 10D 
in Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws and Multifractal 
Cascades. (Cambridge University Press, 2013).

47.  Berner, K.  S., Koc, N., Divine, D., Godtliebsen, F., & Moros, M.  A  decadal-​scale 
Holocene sea surface temperature record from the subpolar North Atlantic constructed 
using diatoms and statistics and its relation to other climate parameters. Paleoceanography 
23, doi:Doi:10.1029/​2006pa001339 (2008).

48. Adapted from Lovejoy, S. & Schertzer, D. Low frequency weather and the emergence 
of the climate. In: Extreme Events and Natural Hazards: The Complexity Perspective (eds. 
A. S. Sharma, A. Bunde, D. N. Baker, & V. P. Dimri), pp. 231–​254. (2012).

49. Bryson, R. A. The paradigm of climatology: An essay. Bull. Amer. Meteorol. Soc. 78, 
450–​456 (1997); quote, p. 451.

50.  Pielke has criticized this on the grounds that many of the boundaries, such as 
atmosphere–​land, are not just passive, but involve exchanges of energy and other fluxes. 
Pielke, R.  Climate prediction as an initial value problem. Bull. Amer. Meteorol. Soc. 79, 
2743–​2746 (1998).

51.  In dynamical systems theory, GCM control runs are mathematically autonomous 
systems and the control-​run climate is a state-​averaged over the system’s “strange attractor.” 
The analogous mathematical concept for (nonautonomous) systems that have time-​varying 
forcing is the “pullback attractor.” Both concepts are defined in abstract high-​dimensional 
phase space and are not empirically accessible. For a review, see, for example, Dijkstra, 
H. Nonlinear Climate Dynamics. (Cambridge University Press, 2013).

52. Volcanic and solar variability are themselves highly variable over decadal, centennial, 
and millennial scales. They are also scaling (see Box 5.2)! In any case, it is the way that their 
variability increases or decreases as a function of timescale that is important (depending on 
the signs of their own H values). As a result of these continual perturbations, the control 
run-​defined climate may never even be approached, so that its relevance to the real world 
is questionable. For example, Box 5.2 shows that at least volcanic forcings decrease in am-
plitude at longer and longer times, so although they might not prevent convergence to a 
climate (i.e., the H value of the volcanically forced system might still be less than zero), they 
would likely yield a model climate different from the real one.

53. For this reason, it is often replaced by the slightly more realistic characterization, the 
transient climate response (TCR), which replaces the ECS “step function” (instantaneous) 
increase in the forcing by a seventy-​year linear “ramp” doubling of the forcing. Because the 
TCR is defined by the change of the global temperature only over the ramp period, it does 
not take into account the longer term changes. It specifically avoids trying to define the new 
climate.
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54. The GISS simulations are all from version E2-​R of the model.
55. By astronomical standards, 1,000 years is a short time, so that the orbital parameters 

of Earth have changed little. They are taken as fixed.
56. Both views adapted from Lovejoy, S., Schertzer, D., & Varon, D. Do GCM’s predict 

the climate . . . or macroweather? Earth Syst. Dynam. 4, 1–​16 (2013).
57. Orbital forcings (Box 5.3) were ignored because they are only important at scales on 

the order of 10,000 years and longer.
58. Since 2004, new detectors on the Total Irradiance Monitor Satellite have solved the 

problem, even finding a large (5 W/​m2) absolute calibration error in the previous estimates. 
Fortunately, the solar anomalies (defined as long-​term changes with respect to a reference 
value) were not affected.

59. Reproduced from Lovejoy, S. & Varotsos, C. Scaling regimes and linear/​nonlinear 
responses of Last Millennium climate to volcanic and solar forcings. Earth Syst. Dynam. 7, 
1–​18 (2016). The data were from Wang, Y.-​ M., Lean, J. L., & Sheeley, N. R. J. Modeling the 
Sun’s magnetic field and irradiance since 1713. Astrophys J. 625, 522–​538 (2005).

60.  The figure was reproduced from Lovejoy, S.  & Varotsos, C.  Scaling regimes and 
linear/​nonlinear responses of Last Millennium climate to volcanic and solar forcings. 
Earth Syst. Dynam. 7, 1–​18 (2016). As deduced from a record of 10Be plotted from data in 
Steinhilber, F., Beer, J., & Frohlich, C. Total solar irradiance during the Holocene. Geophys. 
Res. Lett. 36, L19704 (2009).

61. The figure was reproduced from Lovejoy, S. & Varotsos, C. Scaling regimes and linear/​
nonlinear responses of Last Millennium climate to volcanic and solar forcings. Earth Syst. 
Dynam. 7, 1–​18 (2016). The data were from Gao, C.G., Robock, A., & Ammann, C. Volcanic 
forcing of climate over the past 1500 years: And improved ice core-​based index for climate 
models. J. Geophys. Res. 113, D23111 (2008).

62.  The figure was reproduced from Lovejoy, S.  & Varotsos, C.  Scaling regimes and 
linear/​nonlinear responses of last millennium climate to volcanic and solar forcings. Earth 
Syst. Dynam. 7, 1–​18 (2016).

63. Note that the anthropogenic forcing is fairly smooth and is constantly increasing, 
whereas the sunspot-​based solar variability is a random, wandering-​type forcing because it 
has H > 0. The 10,000-​year timescale at which the extrapolation of the hybrid solar forcing 
crosses the dashed anthropogenic forcing line is the scale at which the typical change in the 
wandering solar signal would typically start to dominate the anthropogenic forcing that has 
occurred to date.

64. Figure 5.12 plots the root mean square (RMS) fluctuations that have an exponent 
slightly less than H (which is instead defined with respect to the mean absolute fluctuations); 
the difference between the two (–​0.3 instead of –​0.4) is the result of the fairly large volcanic 
intermittency.

65.  Lovejoy, S., Schertzer, D., & Varon, D.  Do GCM’s predict the climate  .  .  .  or 
macroweather? Earth Syst. Dynam. 4, 1–​16 (2013).

66. Actually, for each of the three shown, there were subvariants with different land-​use 
scenarios, but these made very little difference.

67. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N.  I., Barnola, J. M., Basile, I., Bender, 
M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., 
Lipenkov, V., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., & Stievenard, M. Climate and at-
mospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 
399, 429–​436 (1999); quote, p. 436.
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68.  Other shorter Greenland cores confirm that the GRIP results are typical of the 
Greenland Holocene, and scaling spectral analyses agree with the Haar analysis presented 
here. See, for example, Blender, R., Fraedrich, K., & Hunt, B.  Millennial climate varia-
bility: GCM simulation and Greenland ice cores. Geophys. Res. Lett. 33, L04710, doi:10.1029/​
2005GL024919 (2006).

69.  Berner, K.  S., Koc, N., Divine, D., Godtliebsen, F., & Moros, M.  A  decadal-​scale 
Holocene sea surface temperature record from the subpolar North Atlantic constructed 
using diatoms and statistics and its relation to other climate parameters. Paleoceanography 
23, doi:Doi:10.1029/​2006pa001339 (2008).

70. Adapted from Lovejoy, S. & Schertzer, D. In: Extreme Events and Natural Hazards: The 
Complexity Perspective (eds. A. S. Sharma, A. Bunde, D. N. Baker, & V. P. Dimri), pp. 231–​
254. (2012).

71. McIntyre, S. & McKitrick, R. Corrections to the Mann et al. (1998) proxy data base 
and northern hemispheric average temperature series. Energy Environ. 14, 751–​771 (2003). 
McIntyre, S. & McKitrick, R. Hockey sticks: Principal components and spurious signifi-
cance. Geophys. Res. Lett. 32, L03710–​L03714 (2005).

72. Mann, M. E., Bradley, R. S., & Hughes, M. K. Global-​scale temperature patterns and 
climate forcing over the past six centuries. Nature 392, 779–​787 (1998).

73.  Mann, M.  E., Bradley, R.  S., & Hughes, M.  Northern hemisphere temperatures 
during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 
26, 759–​762 (1999).

74. Mann, M. E., Bradley, R. S., & Hughes, M. K. Global-​scale temperature patterns and 
climate forcing over the past six centuries. Nature 392, 779–​787 (1998).

75. Huang, S. Merging information from different resources for new insights into cli-
mate change in the past and future. Geophys. Res. Lett. 31, L13205, doi:doi:  10.1029/​2004 
GL019781 (2004).

76. Huang’s series only went back to 1500 AD. To obtain annual resolution, he also used 
dendrochronology, but the critical decadal and longer scales were from the boreholes.

77. Moberg, A., Sonnechkin, D. M., Holmgren, K., Datsenko, N. M., & Karlén, W. Highly 
variable northern hemisphere temperatures reconstructed from low-​ and high-​resolution 
proxy data. Nature 433, 613–​617 (2005).

78.  Ljundqvist, F.  C. A  new reconstruction of temperature variability in the extra-​
tropical northern hemisphere during the last two millennia. Geograf. Annal. Physical Geogr. 
92A, 339–​351 (2010).

79.  Marcott, S.  A., Shakun, J.  D., Clark, P.  U., & Mix, A.  C. A  Reconstruction of re-
gional and global temperature for the past 11,300 years. Science 339 (1198), doi: 10.1126/​sci-
ence.1228026 (2013).

80. This has various problems. See Lovejoy, S., Varotsos, C., & Lambert, F.Atmospheric 
scaling and climate variability across scales. Earth Space Sci. (submitted, September 2018).

81. Adapted from Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws 
and Multifractal Cascades. (Cambridge University Press, 2013).

82.  Mann, M.  E., Bradley, R.  S., & Hughes, M.  K. Global-​scale temperature patterns 
and climate forcing over the past six centuries. Nature 392, 779–​787 (1998). Mann, M. E., 
Bradley, R. S., & Hughes, M. Northern hemisphere temperatures during the past millen-
nium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 26, 759–​762 (1999).
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83. Mann, M. E., Bradley, R. S., & Hughes, M. K. Global-​scale temperature patterns and 
climate forcing over the past six centuries. Nature 392, 779–​787 (1998).

84.  Mann, M.  E., Bradley, R.  S., & Hughes, M.  Northern hemisphere temperatures 
during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 
26, 759–​762 (1999).

85. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P.  J., Dai, X., 
Maskell, K., & Johnson, C.A. (eds.). (Cambridge University Press, 2001).

86. In the current epoch, the difference between the maximum and minimum distance 
is about 1.4%.

87. The current tilt is 23.44°, roughly halfway between its extreme values. The tilt last 
reached its maximum in 8700 BC. It is now in the decreasing phase of its cycle, and will 
reach its minimum around 11,800 years from now.

88. There is a final, roughly 100,000-​year forcing resulting from changes in the inclina-
tion of Earth’s orbit around the sun, but it is a very small effect.

89. These percentages are the extra—​above background—​signal in these peaks. Lovejoy, 
S. & Lambert, F., High resolution EPICA ice core dust fluxes: Intermittency, extremes and 
Holocene stability. Climate Past (submitted, August 2018).

90. For a technical overview, see, for example, Dijkstra, H. Nonlinear Climate Dynamics. 
(Cambridge University Press, 2013).

91. Hays, J. D., Imbrie, J., & Shackleton, N. J. Variations in the earth’s orbit: Pacemaker of 
the Ice Ages. Science 194, 1121–​1132 (1976).

92. Shackleton, N. J. & Imbrie, J. The δ18O spectrum of oceanic deep water over a five-​
decade band. Climatic Change 16, 217–​230 (1990).

93.  For example, it has been suggested by Veizer et  al. [Veizer, J., Godderis, Y., & 
Francois, L. M. Evidence for decoupling of atmospheric CO2 and global climate during the 
Phanerozoic eon. Nature 408, 698–​701 (2000).] that for the tropical oceans, as much as two 
thirds of the variation in δ18O is a result of the sequestering effect. For the early Oligocene 
(33,000,000 years to the present), this is close to the estimates of Zachos et al. [Zachos, J., 
Pagani, M., Sloan, L., Thomas, E., & Billups, K. Trends, rhythms, and aberrations in global 
climate 65 Ma to present. Science 292, 686–​693 (2001).].

94.  We use the “canonical” calibration coefficient  –​4.5K/​δ18O on the basis of labora-
tory experiments and near the earlier calibration of –​4K/​δ18O. See Shaviv, N. J. & Veizer, 
J. Celestial driver of Phanerozoic climate? GSA Today July, 4–​10 (2003). And recommended 
by Barras, C., Duplessy, J.-​ C., Geslin, E., Michel, E., & Jorissen, F. J. Calibration of δ18O of 
cultured benthic foraminiferal calcite as a function of temperature. Biogeosciences 7, 1349–​
1356 (2010). Shackleton, N. J. & Imbrie, J. The δ18O spectrum of oceanic deep water over a 
five-​decade band. Climatic Change 16, 217–​230 (1990).

95. In any event, because glaciation is ultimately temperature dependent, the δ18O var-
iations over the low frequencies are still, presumably, largely temperature driven—​even if 
modulated by geology.

96. Lovejoy, S. A voyage through scales, a missing quadrillion and why the climate is not 
what you expect. Climate Dynam. 44, 3187–​3210 (2015).

97. The figure is adapted with permission and the calibrations are discussed in Lovejoy, 
S. A voyage through scales, a missing quadrillion and why the climate is not what you ex-
pect. Climate Dynam. 44, 3187–​3210 (2015).
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98. Watson, A. J. & Lovelock, J. E. Biological homeostasis of the global environment: The 
parable of Daisyworld. Tellus 35B, 284–​289 (1983).

99.  Charlson, R.  J., Lovelock, J.  E., Andreae, M.  O., & Warren, S.  G. Oceanic phyto-
plankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–​661 (1987).
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{ 6 }

 What have we done?

6.1  Into the fray

It was April 11, 2014, and the McGill University press release went online at 1:30 
in the afternoon. Although I’d published many articles, they were on fundamental 
geoscience; the release summarized the first one that had significant social and 
political consequences. Its title, “Scaling Fluctuation Analysis and Statistical 
Hypothesis Testing of Anthropogenic Warming,”1,a was arcane, but the release was 
clear enough: “Statistical analysis rules out natural-​warming hypothesis with more 
than 99% certainty” (the article, published in Climate Dynamics, is hereafter re-
ferred to as CD).

It had been fifteen months since the original submission went to peer re-
view, but now the pace picked up dramatically. Within hours, the tone was set 
by the skeptic majordomo Viscount Christopher Monckton of Brenchely, who 
displayed his Oxbridge classics erudition by deliciously qualifying the paper as a 
“mephitically ectoplasmic emanation from the Forces of Darkness.” b Three days 
later, with the release getting 12,000 hits per day, the “Friends of Science” sent 
an aggressive missive to the McGill chancellor asking that it be removed from 
McGill’s site.c The Calgary-​based group with its Orwellian name was set up in 
2002 to promote the theory that “The sun is the driver of climate change. Not you. 
Not CO2.” (Fig. 6.1). One could understand their thunder. Rather than trying to 
prove that the warming was anthropogenic—​something that is impossible to do 
“beyond reasonable doubt”—​the new paper closed the debate2 by doing some-
thing far simpler: by disproving the “Friends GNF hypothesis. If we exclude ei-
ther divine or extraterrestrial intervention, then the warming is natural or it is 

a For the press release, see http://​www.physics.mcgill.ca/​~gang/​Society/​McGill.Press.release.27.4.14.
pdf. By the end of the year, in terms of media attention, it had attained the status of the most “mentioned” 
of more than 750 articles in 2014 in the journal Climate Dynamics.

b  On the “The Watts Up with That” (or, WUWT) website run by Anthony Watts:  https://​
wattsupwiththat.wordpress.com/​2014/​04/​11/​lovejoys-​99-​confidence-​vs-​measurement-​uncertainty/​ . 
The site touts itself as “the world’s most viewed site on global warming and climate change.”

c McGill ignored the request, but this was only the beginning of hostilities with this group.
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234	 Weather, Macroweather, and the Climate

human; there is no third alternative. The skeptics were stuck. To add insult to in-
jury, their prepackaged sermons on the inadequacies of computer models or their 
speculations about solar variability were irrelevant.

“Friends of Science” Science

Figure 6.1  The billboard war on science waged by the “Friends of Science” (upper and bottom 
left), and defended (upper right) by Quebec’s association of scientific communicators Association 
des Communicateurs Scientifiques, November 2014. (Top) Montreal billboards. (Bottom left) 
Toronto billboard. (Bottom right) Ottawa billboard. The English version of the top left is: “The 
sun is the main driver of climate change. Not you. Not CO2.” The translation of the upper right 
billboard is “What Science really says: The climate is changing. Because of us.” In March 2015, 
as a result of many complaints—​including one that I made—​Advertising Standards Canada 
determined that the Friends of Science billboards contravened articles 1(e) and 8 of their code. 
(Article 1e states: “Both in principle and practice, all advertising claims and representations must be 
supportable . . . .” Article 8 states: “Advertising claims must not imply that they have a scientific basis 
that they do not truly possess . . . .”) To protest the “Friends” billboard campaign, I posted a rebuttal 
on my McGill website. In February 2015, in a long missive addressed to the McGill Chancellor, the 
“Friends” used scarcely veiled threats of legal action to try to force McGill to take the posting down, 
something McGill refused to do. Unfortunately, in Canada, there are no legal consequences for 
tenacious advertising.

Provoked by the media attention and several Op-​Edsd in the hours, days, and 
weeks that followed, in email, blogs, and Twitter, I  was treated to a deluge of 

d  Live Science, “Is Global Warming a Giant Natural Fluctuation?” April 18, 2014, http://​www.
livescience.com/​44950-​global-​warming-​natural-​fluctuation.html. And in The Gazette, “Research 
Shows That Global Warming Isn’t Natural,” June 10, p. A17, http://​www.physics.mcgill.ca/​~gang/​pop-
ular.articles/​Gazette.7.14/​Gazette.2.op.ed.orignial.10.6.14.jpg.
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abuse: “atheist,” “Marxist,” “hippy name,” and so on—​everything, it seemed, short 
of death threats. Reminiscing later with my colleague Gavin Schmidt—​who had 
been on the firing line for years—​I realized that I had only received the standard 
treatment from the well-​funded,e well-​organized climate skepticf community. 
Schmidt summed up his own experience: “You’re roadkill. It’s like having a spot-
light trained on you until they move on to their next victim.”

But Monckton was mistaken not only about the science substance, but also 
about the science process. In the very first sentence of his blog, he railed: “It is 
time to be angry at the gruesome failure of peer review that allows publication of 
papers, such as the recent effusion of Professor Lovejoy of McGill University . . . .”3

The comment was ironic, not least because the manuscript had been rejected 
successively from three different journals—​each time on spurious grounds—​and 
that very morning, a follow-​up manuscriptg had been dismissed by Nature Climate 
Change without even being sent to review.h One might have thought that the cli-
mate skeptics would be pleased with this 75% rejection rate. No system is perfect 
and this one was apparently doing its best to keep out the new approach!

To understand this unnatural convergence of skeptic and mainstream views, 
recall that, for decades, the primary approach to climate science had been so 
dominated by GCMs that scientists and skeptics alike found it difficult to imagine 
solving fundamental climate problems without them. Caricaturing this blinkered 
mindset, one irate reviewer had even claimed that the statistical testing of nat-
ural warming could only be achieved with GCMs and told me to “go get your 
own GCM!”i The reception by both scientists and skeptics thus revealed as much 
about the sociology of science as its content—​in particular, the disjunction that 
had grown between climate science and nonlinear geophysics.

e According to one study, in the United States alone there are currently ninety-​one think tanks, ad-
vocacy groups, and trade associations, with a combined funding of more $900,000,000 that promote 
climate change denial. Brulle, R.  J. Institutionalizing delay: Foundation funding and the creation of 
U.S. climate change counter-​movement organizations. Climatic Change 122, 681–​694 (2014).

f I use the term “climate skeptic” to denote those who dispute the theory of anthropogenic global 
warming. But today, the term “climate denier” is more accurate. Yet the term “denier” has an unnec-
essary emotional charge, so that, for example, “denialist” has been proposed instead. I find this new 
proposal awkward and will stick with “climate skeptic.” See, however, Gillis, J. Verbal warming: Labels 
in the climate debate, New York Times, p. D1, February 17, 2015.

g  When it was published a few months later in a more specialist journal, it was front-​page 
news: Believe it: Global warming is real, Global warming slowdown just a “pause.” Montreal Gazette, 
July 24, 2014 (see Section 6.6). Lovejoy, S. Return periods of global climate fluctuations and the pause. 
Geophys. Res. Lett. 41, 4704–​4710 (2014).

h  Rejection without review is a common practice for high-​end publications such as Science or 
Nature, affecting as much as 90% of the submissions. It sent a clear signal that their scientifically con-
servative editors found my approach to climate variability to be of limited interest.

i Unfortunately for the reviewer, currently, the natural warming hypothesis can only be disproved by 
using empirical data with the help of some nonlinear science. As discussed in Chapter 5, GCMs cannot 
do this because their relevant preindustrial centennial-​scale natural variability isn’t sufficiently realistic. 
See also Lovejoy, S., Schertzer, D., & Varon, D. Do GCM’s predict the climate . .  . or macroweather? 
Earth Syst. Dynam. 4, 1–​16 (2013).
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I was not much surprised by these initial rejections. When it comes to genuinely 
new ideas, science is no different than other areas of life: Acceptance requires pro-
tracted struggle. In the real world, one expects that the unfamiliar will be rejected. 
This is nothing like the skeptics’ fantasy world, in which climate scientists conspire 
to foist their pet theories on an unsuspecting public. To make this fairy tale plau-
sible, scientists are portrayed as money-​grubbing businesspeople seeking fat re-
search grants. When the skeptics accused me of “wasting tax payer money,” it was 
no more than a ritualistic incantation. The disclaimerj at the bottom of the article 
(“this work was unfunded; there were no conflicts of interest”)k was irrelevant.

The accusation of being financially motivated with insinuations of misconduct 
was particularly rich. Back in 1998, to demonstrate their commitment publicly 
to the newly ratified Kyoto Accords, the Canadian government re-​earmarked 
$150,000,000 of environment and other funds to create the three-​year Canadian 
Climate Action Fund (CCAF).l In March 2000, taking advantage of this opportu-
nity, I submitted a proposal to perform a hypothesis testing study virtually iden-
tical to the one finally published fourteen years later.m Curiously, the proposal was 
not rejected on scientific grounds (it was admitted that the proposal would indeed 
fill “a knowledge gap”); rather, it was rejected because the agency doubted that “the 
deliverables” (techno-​speak for “the results”) would be ready on time (one year 
later). This reasoning was bizarre because, depending on the result of the research, 
filling the “knowledge gap” could potentially save the government $150,000,000, 
yet it was not ready to spend the requested $28,000 for an assistant to help me find 
out if the warming was no more than a GNF.

At the time, I only had a few climate publications—​the rest concerned at-
mospheric variability at shorter weather timescales—​and this bureaucratically 
motivated rejection only confirmed my suspicions that climate research was 
too political to be worth pursuing. A few years later, following the 2006 elec-
tion of the climate-​skeptical Conservative party in the federal elections, the 

j See Oreskes, N., Carlat, D., Mann, M. E., Thacker, P. D., & vom Saal, F. S. Viewpoint: Why disclo-
sure matters. Environ. Sci. Technol. 49, 7527–​7528 (2015).

k At the time, I had a small National Sciences and Engineering Research Council grant, but it was 
earmarked for a different project (“Multifractal Geophysics”) and, in any case, it barely covered my 
publication costs.

l  The fund was set up to “to help develop a national implementation strategy and support early 
actions to respond to climate change . . . to make possible Canada’s ratification of the Kyoto Protocol on 
December 17, 2002.” Building on Success Climate Change Action Fund (CCAF), 2002–​2003 Annual Report. 
http://​publications.gc.ca/​collections/​Collection/​M171-​2-​2003E.pdf; quote, p. 2. Ninety-​three percent of 
the fund was in the form of tax breaks to corporations which claimed to be mitigating and adapting to 
climate change; only 7% was for research. But even this meager offering could only be used as matching 
funds: A minimum of 50% of the research had to be funded from other sources. In my case, I could only 
offer an “in kind” contribution, a donation of a percentage of my time (and hence salary).

m The proposal, submitted in March 2000 to the CCAF, had two deliverables: (1) a new analysis of 
climate extremes [“especially with regard to the possible existence of long-​range statistical correlations, 
which give rise to spurious trends, and to fat-​tailed probability distributions which, give rise to spu-
rious transitions” (i.e., to “black swans,” although the term had yet to be coined)] and (2) the develop-
ment of “appropriate statistical tests capable of rejecting the (nonclassical) null hypothesis at various 
confidence levels.” The CD paper addressed both issues.
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Canadian Fund for Climate and Atmospheric Science (CFCAS; the successor 
organization to the CCAF) was shut down.n Because this was the only public 
body that specifically funded academic research into the environment and cli-
mate, when the CD research was finally performed in 2013, there were no longer 
any funding possibilities in Canada. I had no choice but to do the research in 
my spare time.

6.2  The damage so far

We have seen that the atmosphere is a turbulent fluid with temperature, humidity, 
wind, and other fields that vary from tiny millimeter-​sized eddies to huge plan-
etary weather systems, from milliseconds to the age of Earth. In Chapters 1 and 
2, we used proxy temperatures helped by fluctuation analysis to analyze the var-
iability quantitatively out to megaclimate scales. Although the interpretation of 
the proxies is not always straightforward, qualitatively different lines of evidence 
often confirm the conclusions. For example, 65,000,000 years ago, we know that 
dinosaurs roamed an ice-​free South Pole, and this is consistent with proxies that 
indicate global temperatures 5°C or even 10°C warmer than today. We also know 
that as little as 14,000 years ago, Earth was still in the throes of an Ice Age, with 
continent-​size ice sheets several kilometers thick, and the proxies show that the 
global temperatures were indeed 2° to 4° cooler than today (the larger value being 
relevant at higher latitudes).

We can therefore be quite confident that, over geological epochs, the temper-
ature varies quite considerably. Although the quantitative amounts of warming 
and cooling may be debated, there is no doubt that over sufficiently long periods, 
the temperature of Earth can change readily by several degrees. But what about 
this: Since the end of the nineteenth century, instrument records show that Earth 
has warmed by about 1°C. The evidence of a warming is all around us—​from the 
melting of polar sea ice (including the summer opening of the Northwest Passage) 
to rising sea levels to deadly heat waves. But what is the cause? Is it simply a routine 
natural fluctuation or is it something different, something artificial, something 
only we could have done? More precisely, is a 1° warming of the whole planet4 in 
only a single century an ordinary—​even common—​event in the history of Earth? 
Or is it so exceptional, so unlikely, as to demand a non-​natural explanation?

n  The CFCAS was replaced by the Climate Change and Atmospheric Research Programme 
(CCAR), but this only funded a handful of megaprojects aimed at specific applications, not funda-
mental research or small-​scale projects. In January 2018, under the new Liberal party government, 
the CCAR was, in its turn, terminated, implying—​among other consequences—​the shutdown of the 
unique polar observatory The Polar Environment Atmospheric Research Laboratory. Ironically, it was 
Kirsty Duncan in her new role as Liberal Party Minister of Science who announced the shutdown. As 
an opposition MP, Duncan had been a vocal opponent of an earlier Conservative party government 
attempt to do exactly the same thing. This new attempted shutdown provoked international outcry—​a 
letter signed by 250 climate scientists worldwide. This resulted in the station being again saved—​this 
time until 2019.
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The modern answer to this question emerged well before human emissions had 
changed the composition of the atmosphere significantly and before the warming 
itself was noticed. In 1896, in an attempt to understand the causes of the Ice Ages, 
Swedish chemist Svante Arrhenius (1859–​1927) estimated that if the concentration 
of atmospheric CO2 was doubled, global temperatures would rise by 5 to 6°C, a 
result revised later by Guy Stewart Callander5 (1897–​1964) to 2°C.6 From a scien-
tific point of view, the basic action of CO2 is straightforward. CO2 is a “greenhouse 
gas.” It lets visible light from the sun through to the surface while absorbing part 
of Earth’s outgoing heat radiation (Fig. 6.2).o Box 6.1  discusses the atmospheric 
greenhouse effect, the operation of which differs in important respects from that 
of the glass-​enclosed structure in your backyard.

visible
Today’s greenhouse gases
Weak Infrared

E�ective greenhouse roofcold

warm

E�ective greenhouse roof

Preindustrial
greenhouse gases
Strong Infrared

Figure 6.2  The atmospheric greenhouse effect for wavelength bands that absorb greenhouse 
gases, showing how increasing greenhouse gases effectively increase the altitude of the 
greenhouse “roof.” (The other way that increasing carbon dioxide increases warming is via an 
easier to understand mechanism that applies to infrared wavelengths that start off essentially 
transparent to carbon dioxide but start to become opaque to them at greater concentrations.) 
Because the atmosphere is colder at higher altitudes, a higher roof emits less infrared (heat) 
radiation, but this does not alter the incoming visible radiation that warms the surface. 
Therefore, the atmosphere must warm up to regain thermodynamic equilibrium. The dashed 
circle shows the lower preindustrial “roof”; the other circle shows today’s higher, colder roof.

o Although this explanation is more or less correct for Earth in thermodynamic equilibrium, the 
consequences of increasing CO2 are not so obvious (see Box 6.1).
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Box 6.1  The atmospheric greenhouse effect

The overall temperature of Earth is determined by the balance of solar energy it 
absorbs at visible wavelengths and then re-​emits into outer space at infrared 
wavelengths (see also Box 7.1). This basic physics was discovered by Joseph Fourier 
(1768–​1830); a bit later, the role of CO2 was discovered by John Tyndall (1820–​1893). 
Tyndall added the idea that visible radiation from the sun can come in, but heat 
radiation is trapped by the CO2 and can’t escape. This trapping is the mechanism 
behind what was laterp called the “greenhouse effect.” To avoid confusion later, let’s 
call this the radiative greenhouse effect.

Although the radiative greenhouse effect works both in real greenhouses and in 
the atmosphere, in neither case does it give good explanations of the phenomena. First 
consider standard, infrared-​absorbing glass enclosures, which are transparent only 
to visible light. It turns out that when this glass is replaced by a material transparent 
at both visible and infrared wavelengths, the resulting greenhouse works almost as 
well!q Modern research shows that there is, indeed, a radiative greenhouse effect, but 
it is much, much smaller than the dominant “convective” greenhouse effect. Both 
effects work by trapping, but the latter traps air rather than radiation. Both inside 
and outside the greenhouse, the surface absorbs sunlight, which warms a layer of 
near-​surface air. This warmed air then rises (convection). The key inside–​outside 
difference is that, inside, the walls and roof prevent air from rising farther than the 
roof whereas, outside, the air continues to rise, expand, cool, and transfer its energy 
to the higher reaches of the atmosphere. In greenhouses, the warm air trapped by the 
roof is only very slightly augmented by trapped radiation.

In the atmosphere, many gases contribute to the radiative greenhouse effect 
and, overall, it explains why Earth is about 33°C warmer than it would have been 
in the absence of an atmosphere. However, without going further, this only explains 
a fixed amount of warming. Pioneers Arrhenius and Callender faced a different 
problem:  What is the change in the equilibrium temperature of the atmosphere 
when the concentration of greenhouse gases is increased from its current value? Even 
when restricted to the radiative effect, the greenhouse analogy explains only part of 
the story. There are two basic cases to consider: (1) infrared wavelengths for which 
there is currently only a small amount of absorption and (2) those for which there 
is already substantial absorption. The former case is indeed like a greenhouse, but 
with a roof that is so thin, that increasing its thickness traps more radiation. At these 
wavelengths, the atmosphere is currently ineffective at trapping, but at greater CO2 
concentrations it may become absorbing. At these weakly absorbing wavelengths, 
increasing CO2 concentrations directly increases the basic radiative greenhouse 

p  It’s not clear who first used the term “greenhouse effect” for atmospheric warming, but it was 
around 1909. See a historical discussion in Steve Easterbrook’s Serendipity blog. Who First Coined the 
Term “Greenhouse Effect?” August 18, 2015. http://​www.easterbrook.ca/​steve/​2015/​08/​who-​first-​coined-​
the-​term-​greenhouse-​effect/​.

q This was demonstrated by Robert W. Wood in 1909. He built two identical greenhouses but cov-
ered one of them with transparent rock salt rather than with ordinary glass, and he found similar 
amounts of warming: Wood, R. W. Note on the theory of the greenhouse. Philosophical Magazine, 6th 
series, 17, 319–​320 (1909).
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effect. However, understanding what happens at wavelengths where CO2 is already 
strongly absorbed is trickier. This case is more like a greenhouse with glass thick 
enough to trap virtually all of the heat radiation. For these wavelengths, doubling CO2 
concentrations—​doubling the roof ’s thickness—​would hardly make any difference.

To understand how increased CO2 concentrations lead to warmer temperatures 
in this case, recall that matter of any kind, including Earth’s surface, emits “black-​
body” radiation, which carries away energy:  The higher the temperature, the 
higher the overall rate of energy emission. Also, most of the energy of a black body 
is concentrated in a particular range of wavelengths. For the sun at 5,250°C, this 
is in the visible range (wavelengths of around 0.5 μm) whereas for Earth, with an 
average at around 16°C, most of the emission is in the “thermal infrared,” at around 
10 to 12 μm.

If there was no atmosphere—​or for the wavelengths at which there is virtually 
no absorption—​surface photons would travel unhindered to outer space, and the 
rate at which they removed energy would be relatively high—​characteristic of the 
high surface temperature. However, for CO2-​sensitive bands, surface photons will 
typically be absorbed by CO2 higher up in the atmosphere, where temperatures 
are cooler. These photons are subsequently re-​emitted and either escape directly 
to outer space or are reabsorbed, then re-​emitted, reabsorbed, re-​emitted, and so 
on. Eventually, they reach such high altitudes that they have very little CO2 above 
them, so they can finally escape to space without being reabsorbed. This final escape 
altitude is the “effective” height of the greenhouse roof. Because this high-​altitude 
roof is colder than the surface, it emits energy at a lesser rate. Although the altitude 
of the roof is different for different wavelengths (depending on how strongly the 
radiation at that wavelength interacts with CO2), the roof at any given wavelength is 
still colder than the surface and still emits less.

Now imagine Earth without an atmosphere. The temperature would be determined 
by the condition that the overall incoming visible radiation absorbed at the surface 
would equal the outgoing infrared radiation from the same surface. In the case of Earth, 
this would be about –​17°C. Now, add an infrared-​absorbing and -​emitting atmosphere. 
The surface heating by incoming visible light is the same, but now the outgoing infrared 
radiation is from the high-​altitude cold roof. In order for Earth to be in thermodynamic 
equilibrium with its atmosphere, it must increase its outgoing radiation by warming up. 
The cold roof thus explains the basic atmospheric greenhouse effect.

Using the roof idea, we can also understand what happens when we increase 
CO2 concentrations. First, consider wavelengths that are initially nonabsorbing. At 
these wavelengths, there is effectively no roof, so they emit at surface temperatures. 
However, at greater CO2 concentrations, they might start absorbing, effectively 
adding a cool roof where before there was none. In the other case, in which the 
atmosphere already absorbs CO2 so that there is initially a cool roof, increasing CO2 
concentrations raises the altitude at which photons escape to outer space, effectively 
raising the roof to a higher altitude where it is coolerr (Fig. 6.2). At these lower roof 

r This modern explanation was first clearly explained by Ekholm: Ekholm, N. On the variations of 
the climate of the geological and historical past and their causes. Q. J. Roy. Meteorol. Soc. 27 (117), 1–​62 
(1901).
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temperatures,s Earth’s outgoing infrared radiation is diminished in intensity whereas 
the incoming solar radiation is unaffected.t In all cases—​either bands that have been 
recently promoted to absorbing status acquiring a cool roof for the first time, or 
bands with a roof that moves to higher altitudes where it is cooler—​Earth will heat 
up to return to thermodynamic equilibrium. It heats up because the hotter it gets, 
the more it emits, until eventually (over time), an overall energy balance is restored.7 
Although we have couched this discussion in terms of CO2, it is valid for the other 
infrared-​absorbing and -​emitting gases.8

Let’s follow convention and continue to use the term “greenhouse effect,” yet when 
applied to the atmosphere, it further stretches the greenhouse analogy. Skeptics like 
to point out—​as though scientists had missed it—​that water vapor is a much more 
potent greenhouse gas than CO2 and that, in addition, water in the form of clouds 
also has a big effect on Earth’s radiative equilibrium, so why worry about a much 
smaller CO2 contribution?

To understand this, we must make a distinction between the long-​lived greenhouse 
gases that stay in the atmosphere for decades (CH4) or millennia (CO2), and water 
vapor and clouds that are highly variable in space and in time, with a typical water 
molecule staying in the atmosphere only over weather scales, not climate scales. 
Although the turbulent distribution of water (vapor and clouds) must be modeled 
explicitly in GCMs (and is one of their most uncertain components), in contrast, 
greenhouse gases are mixed fairly uniformly by the weather and are quite rapidly 
(over a year or two) spread around the whole atmosphere. When greenhouse gas 
concentrations are increased, the result is a kind of uniform “background” increase 
in surface heating. But, in other respects, greenhouse gases don’t affect atmospheric 
dynamics. This is why they can all be lumped together into a “CO2 equivalent”: the 
concentration of CO2 that gives the same overall radiative effects. Although the extra 
energy flux is distributed fairly uniformly over Earth, the complication—​important 
at climate scales (and discussed in Chapter 7)—​is that different parts of Earth react 
more or less strongly to an increase in the heating: Their “climate sensitivities” are 
different so that some regions warm more than others (discussed later).

  

Arrhenius’s theory signaled the beginning of modern attempts to prove the an-
thropogenic provenance of a warming that only became strongly apparent during 
the 1980s. From a purely scientific point of view, the main difficulty is that there 
are complicated feedbacks between CO2, water vapor, and clouds: Increasing CO2 
increases the temperature, and this increases evaporation. The extra water vapor 
increases the greenhouse effect and warming, but it also increases cloud cover, and 
this could have either warming or cooling effects depending on the altitude and 
other complex-​to-​analyze effects. Indeed, it is the difficulty in modeling this water 

s  In the atmosphere, up until the tropopause, the average temperature falls off with increasing 
altitude.

t For a more detailed but still accessible review, see Pierrehumbert, R. T. Infrared radiation and 
planetary temperature. Phys. Today, <SL: Please provide month.> 33–​38 (2011). See also the (modern) 
introduction to the reprint of Arhennius’s manuscript in Archer, D. & Pierrehumbert, R. <SL: Please 
provide title of book.> (Wiley-​Blackwell, 2011).
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feedback cycle that is largely responsible for the uncertainty in estimates of the 
warming produced by increases in CO2 concentrations. Arrhenius spent the best 
part of a year with pencil and paper grappling with these complications; today, 
they are handled by supercomputers.u

Is the warming mostly human-​made, through changes in land use, the emis-
sion of greenhouse gases, and aerosols (pollution)? Or is it just normal, natural 
variability? Today, the theory of anthropogenic warming is entering a mature 
phase in which continued efforts to prove it more convincingly are suffering from 
diminishing returns. Take, for example, the IPCC’s Fifth Assessment Report (AR5; 
2013).9 Not withstanding massive improvements in computers and algorithms, 
and resulting largely from real scientific difficulties, it cited exactly the same range 
of temperature increase for a doubling of CO2 as did the US National Academy of 
Science report in 1979: 1.5 to 4.5°C. Whereas the fourth report (AR4, 2007) stated 
that it is “likely that human influence has been the dominant cause of the observed 
warming since the mid-​20th century,” six years later, the AR5 only upgraded this 
to “extremely likely.”v

Despite the strong evidence in favor of the anthropogenic theory, it still faces 
a chorus of denial backed by entire organizations—​think tanks, advocacy groups, 
and trade associations—​that collectively comprise a “climate change counter-
movement.”10 Significantly, these groups spend no money on scientific research 
that might prove their theories are correct; instead, they only invoke solar, vol-
canic, and internal climate system variability as plausible alternatives to the an-
thropogenic theory. How can we break through the impasse to “close” the debate?

At this point, it is helpful to recall that science progresses not only by 
attempting to prove certain theories to be true, but also by rejecting theories that 
are false. In this, it benefits from a fundamental asymmetry in scientific method-
ology: Although no theory can ever be proved true “beyond reasonable doubt,” 
even a single decisive experiment can disprove one that is otherwise highly se-
ductive. In their day-​to-​day work, scientists constantly reject ideas and theories 
that are incompatible either with observations or with more powerful theories in 
whose truth they have greater confidence.

To appreciate fully the ability of the scientific method to reject false theories, 
consider a common medical situation. The human body is a highly complex 
system, and to come up with a new drug or treatment, pharmacologists focus on 
only one or two fundamental components (“pathways”). They develop a theory 

u The difficulty of modeling clouds—​especially those associated with atmospheric convection—​is a 
major argument used by meteorological services for justifying the acquisition of bigger computers. It is 
claimed that if GCM resolutions could be decreased to kilometric scales, the resulting high-​resolution 
GCMs would be “cloud resolving,” yielding large improvements. By now, however, it should be clear 
that it is sufficient that the small-​scale statistics be realistic, and this requires judicious use of the turbu-
lent laws, something that could be done with current—​or even lower—​GCM resolutions. What is the 
point of resolving features in the model as small as 1 km that will live for fifteen minutes and will then 
simply be “averaged out” in a forecast?

v In IPCC parlance, “extremely likely” refers to a 95% to 100% probability level.
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explaining how a particular drug might be effective. But no matter how beautiful 
or promising the idea, no one will take the drug without clinical trials. One then 
performs experiments capable of rejecting the drug if it fails. It is important to 
appreciate that ineffective treatments can be rejected even when there is no under-
standing of the underlying biology. The converse is also true: Treatments may turn 
out to be effective even in the absence of a theory. Until recent decades, almost all 
new drugs were, in fact, discovered by accident, and many of the mechanisms of 
established drugs are still not understood.

Sometimes theories such as “young Earth”w can be rejected confidently be-
cause they would contradict of a huge body of evidence. In other cases, the degree 
of confidence of the rejection must itself be quantified using statistics. Medicine 
again provides a typical example. Properly designed experiments test both new 
treatments and placebos on an ensemble (collection, population) of patients with 
similar afflictions. To avoid bias, both the patients and the scientists are unaware 
of who gets what; the experiment is “double blind.” As a result of various difficult-​
to-​control or simply unknown factors (notably including the placebo effect!), even 
with an effective drug, some of the patients getting the placebo typically show a 
positive response whereas some of the medicated patients show none. The out-
come of drug trials therefore requires statistical comparisons of the results be-
tween two populations. A possible experimental outcome might be a statement 
such as, “The hypothesis that the medication is clinically effective can be rejected 
at the 99% level.” In this case, we are effectively admitting that there is a small re-
sidual chance (1%) that the medication is, in fact, effective; but, common sense 
and tradition have it that when the probability that the medication is effective is 
very low, the medication should not by approved for use in the general population.

This example illustrates yet another feature of hypothesis testing:  Subjective 
elements can never be totally eliminated. Few people would take a medication 
if it only had a 1% chance of working.x But what if the experiment found that 
the medication worked in 30% rather than 1% of the patients? In this case, the 
conventional conclusion is that the confidence is not high enough and the issue 
would be have to be resolved by changing the experimental protocols and/​or by 
increasing the size of the population being tested. The traditional threshold for 
rejecting a hypothesis is 95% confidence, but there are situations—​such as global 
warming—​in which the implications of rejecting a hypothesis are so important 
that the bar would be set much higher.11 If scientists could only reject the hypo-
thesis that an asteroid was on a collision course with earth at the 95% level, one 
would not feel serene about the future and one would strive for higher levels of 
certitude. Obviously, when the stakes are high enough—​and with global warming 
it is potentially the fate of ecosystems and civilizations—​then exceptionally high 
levels of confidence are required.

w Bishop Usher’s interpretation of the Bible that Earth was created in 4004 BC is currently embraced 
by many religious fundamentalists, including a large fraction of US congressmen.

x One could easily imagine exceptions!
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The human body and the climate are both complex systems with many strongly 
interacting components. Why not apply standard scientific methodology to at-
tempt to reject false theories of warming? Although in most cases of statistical 
testing, the rejection of one theory still leaves several possibilities open, in the case 
of global warming, the elimination of one virtually forces us to accept the other. In 
the next section, we describe how this was done.

6.3  Testing the GNF hypothesis

6.3.1  Untangling forced and unforced variability

During the preindustrial epoch, at least up to scales of centuries, Earth’s tempera-
ture was stable (H < 0) and we can conclude that the rate at which solar energy was 
absorbed and the rate at which it was re-​emitted were roughly (albeit not exactly) 
equal. The planet never strayed far from thermodynamic equilibrium (Section 5.6, 
Box 7.1). However, during the industrial epoch, anthropogenic climate forcings have 
increased the rate that energy has been absorbed. To reestablish equilibrium, more 
infrared energy must be radiated to outer space, and this implies an increase in the 
average surface temperature.12 But the temperature has lagged; it hasn’t increased 
fast enough. This means that if tomorrow, CO2, CH4, and other human emissions 
stopped, so that climate forcings were fixed at their current levels,13 the temperature 
would continue to rise (see Box 7.1 for energy storage and relaxation to equilibrium).

Physically, the origin of this “heating in the pipe” memory is easy to under-
stand. Oceans cover 70% of Earth’s surface and they are also dark. The overall 
effect is that more than 90% of the extra heating goes into the oceans, where it 
is stored and gradually redistributed by a (scaling) hierarchy of currents, some 
of which are very deep and very slow (Box 7.1). It takes decades, centuries, even 
millennia, for this increased heat to warm the atmosphere and Earth’s surface, 
which will only then emit enough extra radiation into outer space for the system 
to reattain equilibrium at a higher temperature.

This memory means that Earth’s temperature is still responding to very old cli-
mate forcings and will continue to increase even when the forcings are stabilized, 
and even for a while after they are reduced (Section 7.3). However, even at decadal 
scales, the delayed responses to old and current forcings are only part of the story. 
We saw that in control runs (no forcings) there was, nevertheless, a whole hierarchy 
of macroweather fluctuations, including decadal, centennial, and longer ones. How, 
then, do we disentangle the forced responses from them? We need to know this not 
only to determine how much warming we have caused, but also how much we may 
expect in the future when emissions are reduced, stopped, and possibly reversed.y

y Such “negative emissions” are possible, but it is not at all obvious that they can be deployed at 
a large-​enough scale to remove much CO2. The most plausible negative emission technology is Bio-​
Energy Carbon Capture and Storage (BECCS). Typical scenarios involve planting trees or other bi-
omass over an area one or two times the size of India, regularly harvesting and burning it in special 
stations where the CO2 is removed and then buried for millennia. See, for example, Anderson, K. & 
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The reason we can separate the forced and natural sources of variability is that 
they don’t interact very much with each other. They seem to superpose nearly line-
arly. This means that if we double the forcings, the consequences for the forced re-
sponse are also doubled (and the doubled responses are delayed in the same way as 
the undoubled responses). The superposed macroweather natural fluctuations are, 
on average, unaffected. Because the weather is highly nonlinear, this may seem sur-
prising. The point is, we are only considering the effect of small changes to Earth’s 
boundary conditions on the long-​term climate state (i.e., after the weather varia-
bility has been averaged out). In the jargon introduced in Chapter 5, these changes 
are “climate forcings”z and they are relatively small. For example throughout the 
industrial epoch, the anthropogenic forcing is only (IPCC AR5, 2013) about 2 W/​
m2 (Fig. 6.5B)—​in other words, about 1% of the average 238 W/​m2 delivered by the 
sun (see Section 4.6). From this point of view, anthropogenic forcings are only a 
relatively small perturbation and, mathematically, the effect of small perturbations 
on the boundary conditions is expected to be linear.aa The response linearity means 
that a forcing of 2 W/​m2 will push us twice as far from our original climate state as 
a forcing of 1 W/​m2. Inasmuch as this approximation is valid, it is tantamount to 
assuming that nothing fundamentally new will happen, that there are no strongly 
nonlinear consequences of the increased forcing, and that there are no “tipping 
points”bb (Box 3.1). The possibility—​even likelihood—​that such highly nonlinear 
processes might push the system into a radically different climate state is indeed 
one of the dangers inherent in humanity’s ongoing global warming experiment. 
Unfortunately—​precisely because it is outside the realm of linear responses—​it is 
not something that can as yet be predicted with any confidence.cc

It should also be clear that if we consider the global temperature response 
to greenhouse gas forcings, any notion of a linear response can only be mean-
ingful at timescales long enough for the atmosphere and ocean to act as a single, 

Peters, G.  The trouble with negative emissions:  Reliance on negative-​emission concepts locks in 
humankind’s carbon addiction. Science 354 (6309), 182–​183 (2016).

z Remember that, in the wide sense used here, the atmospheric composition, including CO2 con-
centration, is considered to be part of the GCM boundary conditions.

aa This is confusing because the atmosphere is still sensitively dependent on initial conditions (the 
butterfly effect), but this only implies that the detailed weather will change when the initial conditions 
are slightly altered. The questions here are: How does the small change in forcing change the long-​term 
climate state? And, are macroweather variations about the new climate state of the same statistical type? 
Not surprisingly, there are theoretical, mathematical results that support the idea that the perturbations 
will indeed lead to linear changes in the climate state. See, for example, Ruelle, D. A review of linear 
response theory for general differentiable dynamical systems. Nonlinearity 22, 855–​870 (2009).

bb A frequently cited tipping point is the possibility that a small rise in Arctic temperatures would 
cause a massive release of CH4 trapped in permafrost. This could initiate a catastrophic feedback cycle 
in which increases in warming are followed by increases in temperatures that provoke further increases 
in CH4.

cc  Indeed, in Chapter  7, we will see that the GCMs are all very linear in their responses to the 
proposed future emission scenarios. None predict tipping points when run with “plausible” anthro-
pogenic forcings. However, as a result of GCM limitations—​especially the differences between the 
climates of the different GCMs and the real climate—​we should not be complacent!
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unified (coupled) system. Analysis shows14 that for timescales below the ocean 
weather–​ocean macroweather transition at one-​ to two-​year scales, the correla-
tion between atmospheric and oceanic temperature fluctuations is very small, 
whereas at scales larger than this, they become very large.15 The low amount of 
coupling at monthly scales means the atmosphere as whole may increase its tem-
perature while, during the same month, the average ocean (surface) temperature 
might easily decrease. However, for fluctuations over timescales longer than the 
coupling scale, the land–​ocean interaction is so strong, they both tend to increase 
or decrease together.

6.3.2  Simplistic or simple?

It is plausible that climate states exhibit linear responses to changing forcings. 
In Chapter 7, we will confirm that GCMs respond nearly linearly to industrial 
epoch forcings. But what about the real world? If we are to reject the GNF hy-
pothesis without using GCMs, we need to investigate the linearity from the 
empirical point of view using the temperature and forcing data for the indus-
trial epoch. Figure 6.3 compares the globally averaged temperatures at annual 
resolution, and the CO2 concentration16 measured in terms of the number of 
concentration doublings when compared to a conventional reference value 
of 277 ppm (the rough value that pertained at the beginning of the indus-
trial epoch).dd Recall that as a result of feedbacks with clouds and water vapor, 
although the exact efficacy of CO2 in increasing the heating is uncertain, it 
nevertheless will depend on the number of CO2 doublings17—​not on the CO2 
concentration directly. A cursory glance at Figure 6.3 shows that the shape of 
the number of CO2 doublings and of the temperature with time are very sim-
ilar in appearance, with both notably rising much faster during the second half 
of the twentieth century.

dd Extrapolating Figure 6.4A back to zero doublings, we can see that a concentration of 277 ppm im-
plicitly defines the beginning of the industrial epoch to be at about 1750, halfway between Newcomen’s 
“atmospheric engine” (1713) and Watt’s rotative steam engines (the 1780s). Although this date is some-
what sensitive to the reference value 277 ppm estimated for the preceding millennium, it can be used to 
give an objective definition to “Anthropocene.” This fact is the basis of the suggestion that the alterna-
tive “Capitalocene” would be more accurate: Moore, J. W. Anthropoce or Capitalocene? Nature, History 
and the Crisis of Capitalism. (PM Press, 2016).
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Figure 6.3  (Top) The fraction of a carbon dioxide doubling that has occurred between 
1880 and 2013, displayed using the preindustrial reference of 277 ppm. A value of 0.5 (half 
a doubling, a factor of 1.41) was exceeded in 2014 (the dot at the upper right). According to 
radiation physics (Box 6.2, Fig. 6.2), the extra energy reaching Earth’s surface (the “radiative 
forcing”) is proportional to the number of doublings. (Bottom) The globally averaged 
temperature (National Aeronautics and Space Administration-​GISS), over the same period. 
Notice that the two graphs have nearly the same shape.

This suggests that, rather than plotting temperature as a function of date, we 
should plot it directly as a function of the number of CO2 doublings. The result is 
the impressively linear graph shown in Figure 6.4A. Its slope18 (2.33 ± 0.36°C per 
CO2 doubling) is called the “effective climate sensitivity” (EffCS), and it is the ac-
tual sensitivity of the climate to the historical increase in CO2. We see that it is not 
far from the somewhat different ECS discussed earlier (1.5–​4.5°C per doubling). 
The interpretation that the straight regression represents the total anthropogenic 
forcing is reinforced in Figure 6.4B, C.  In Figure 6.4B, we simply overlaid the 
straight relationship of Figure 6.4A onto the curve that it implies for temperature 
as a function of calendar date since 1880. We see that it does an excellent job of 
reproducing the overall trend. Finally, the difference between the anthropogenic 
(climate) change and the observed temperature is the macroweather (internal) 
variability (Fig. 6.4C). This interpretation is supported by the fact that the ampli-
tude of the fluctuations is reasonably bounded to within about 0.2°C of the average 
and shows no obvious systematic difference between the beginning and end of the 
series.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   247 29-Dec-18   8:15:13 PM

shaun2008
Cross-Out

shaun2008
Replacement Text
Fraction of a doubling



248	 Weather, Macroweather, and the Climate

1900 1920 1940 1960 1980 2000

0.2

0.4

0.6

0.8

1.0
T(°C) 

T(°C) 
(A)

(B)

1880

hu
m

an
 (≈

1.
0 

°C
)

1.0

0.8

1944 
310 ppm

1976
331 ppm

1992
353 ppm

Pause

Pr
ep

au
se

1998 
363 ppm

2012
391 ppm

1880 
290 ppm

1750
277
ppm

0.6

0.4

0.2

0.1 0.2
Energy/Time (CO2 radiative forcing proxy)

0.3 0.4 0.5

Figure 6.4  (A) The globally averaged annual temperatures plotted as a function of 
the number of CO2 doublings instead of time (Fig. 6.3). The slope is the effective climate 
sensitivity—​2.33°C per CO2 doubling. (B) The temperature from Figure 6.3, but with the 
CO2–​temperature relationship determined by the straight line in (A) superposed (smooth 
line). The arrow shows a typical residual, which is the difference between the (anthropogenic) 
smooth curve and the actual temperature. The right-​hand side parentheses show the total 
anthropogenic contribution to the warming since 1880. The smooth line represents the 
climate; the residuals are the macroweather anomalies. (C) The macroweather (residuals) 
deduced from (B) by removing the anthropogenic climate signal. Also shown (by the dashed 
lines and arrows) are several macroweather events discussed in the text.19
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Yet, at first sight, the interpretation that the anthropogenic temperature 
change is simply 2.33 times the number of CO2 doublings is too good to be true. 
It would seem to imply that the warming depends only on CO2 concentrations, 
whereas there are other anthropogenic factors that are known to be important—​
with the main ones being changing land use, CH4 emissions, and aerosols (par-
ticulate pollution). Indeed, Figure 6.4A had not been published before 2014, 
presumably because it is simplistic to attribute all warming to CO2. For ex-
ample, Judith Lean20 had also empirically investigated the linearity of the 
temperature response to forcings, including CO2, but—​for greater realism—​
she simultaneously examined the temperature response to several additional 
forcings, including solar and volcanic eruptions.21 Another criticism of Figure 
6.4A is that it relates the temperature at a given year to the CO2 over the pre-
vious five years (a five-​year smoothing was used for CO2). Although this is (ap-
propriately) longer than the atmosphere–​ocean coupling time,22 we would still 
expect that there is a longer time lag/​memory in the system.23 A simple way to 
take into account the lag between the forcing and the response is to compare 
the temperature at a given time with the forcing at an earlier time. It turns 
out that between zero lag (as in Fig. 6.4A) and twenty years, the relationship 
remains linear,24 but the EffCS does change, leading to an overall estimate of 
3.08 ± 0.95°C for a CO2 doubling (90% confidence), which is close to—​but less 
uncertain—​than the IPCC ECS estimate of 3 ± 1.5°C. I won’t pursue this issue 
further here. A better, but more complicated, approach uses a scaling response 
function and is discussed in Box 7.8.

With this caveat about possible lags, what has happened to the other anthro-
pogenic forcings? Why is Figure 6.4A so straight when we know there are other 

Figure 6.4  Continued
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factors at work?ee Before answering this, consider the problem of reconstructing 
the historical record of changes in land use and of CO2, CH4, and aerosol emissions. 
Since 1880, the global mean CO2 concentrations have been fairly well estimated, 
first from the analysis of air bubbles trapped in ice and, since 1957, from the famous 
Keeling curve [named after Charles Keeling (1928–​2005)], which for the first time 
clearly showed the systematically increasing levels of atmospheric CO2 taken from 
the pristine Mauna Loa and Antarctic observatories.ff However, the other main 
forcings—​CH4 and aerosols (particulate atmospheric pollution)—​are much more 
poorly estimated.

Even with today’s technology and understanding, the overall radiative effect of 
aerosols is particularly problematic. To start with, unless launched high into the 
stratosphere by volcanic eruptions or by high-​flying military aircraft, their residence 
time—​the typical time they stay in the atmosphere before falling to Earth or being 
washed out by rain—​is on the order of weather scales, not even macroweather scales. 
They therefore tend to stay near their points of emission, so that their impacts are 
only regional. Some are famous for being responsible for the brownish atmospheric 
tint over India and China that is visible from outer space. However, even if the 
emissions are well estimated, they have nontrivial impacts on the radiative balance. 
For example, in the “direct” effect, black carbon aerosols absorb sunlight and cause 
heating, whereas the more prevalent (brownish) sulfate particles reflect light back 
into space and have a cooling influence (a negative forcing). However, aerosols also 
have an indirect effect: By seeding clouds, they increase cloudiness and this, in turn, 
reflects more solar radiation—​and traps heat radiation—​introducing difficult-​to-​
quantify and conflicting cooling and heating effects. Even today, quantifying all of 
this is hard enough,25 but trying to “reconstruct” its effects since 1880—​even as only 
a global average—​is very difficult (Box 5.2).

What saves Figure 6.4A is the crucial role of CO2 in our society, in the economy. 
Its increase is hardly fortuitous. It is the result of the burning of fossil fuels that, 
today, accounts for 80% of all energy used. Human emissions of CO2 are thus excel-
lent surrogates for energy consumption and hence for economic activity. To a good 
approximation, double the economic activity, double the CO2 forcing, double the 
CH4 forcing, double the aerosol forcing, double the land-​use forcing.26 Figure 6.5A 
shows that this is indeed compatible with our knowledge of the global economy 
and with historical sulfate production, itself a surrogate for sulfate aerosols. Figure 
6.5B shows that all greenhouse gases (especially CH4), and even all anthropogenic 
forcings (including admittedly uncertain estimates of aerosol forcings), are fairly 
linear in CO2 doublings.

ee Here we follow the standard procedure of reducing all the forcings to radiative equivalents. This 
is not always straightforward, especially for aerosols and volcanoes (see the discussion in Chapter 7).

ff It is often thought that, before 1957, there had been few direct atmospheric CO2 measurements, 
but this is not true; more then 100,000 exist since the early nineteenth century. The major difficulty was 
that, before Keeling’s spectroscopic method, measuring CO2 concentrations required time-​consuming 
chemical-​based laboratory procedures. These measurements were typically near the ground and near 
urban areas, so they were badly corrupted by local CO2 sources and by highly variable turbulence.
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Figure 6.5  (A) A comparison of the global gross domestic product (GDP), the total 
greenhouse gas (GHG) radiative forcings [the sum of carbon dioxide (CO2) and other GHG 
forcings, mostly methane], and the global production of sulfates (a surrogate for sulfate 
aerosols). These were all normalized by dividing by their maximum values (the starting 
dates were all 1880, but the end dates were somewhat variable depending on the availability 
of data at the time the analysis was performed). Note that they were all plotted as functions 
of the number of CO2 doublings. Although the lines are not perfectly straight, they do 
show the strong relationships between CO2 doublings, the world economy, the total sulfate 
production, and cumulative GHG emission.27 (B) The total GHG radiative forcing (RF,GHG, 
top) and total anthropogenic radiative forcings (RF,CO2eq; i.e., including estimates of the 
aerosol cooling effect) estimated as functions of the CO2 radiative forcings (RF,CO2), showing 
reasonable linearity.28 The dashed lines are regressions, showing that all the GHGs effectively 
augment the CO2 radiative forcings by 79%, whereas the lower line for the total CO2 
equivalent forcing, notably, includes estimates of aerosol cooling—​effectively augmenting the 
CO2 forcing by 12%.
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Figure 6.4A can therefore be interpreted in a quite different way, one that largely 
transforms a vice into a virtue and the simplistic into the simple: The CO2 forcing 
is a surrogate for all the anthropogenic effects. In particular, it even takes into ac-
count indirectly the difficult-​to-​determine effects of aerosols. As long as the radia-
tive effects of the aerosols—​whatever they may be—​remain a fixed fraction of the 
total forcing, then they are taken into account implicitly in Figure 6.4A. As we will 
see in Chapter 7, knowledge of the CO2 concentration and past temperature data is 
enough to make accurate predictions and projections of future temperatures (see 
Plates 7.5 and 7.6).

6.4  Why the warming can’t be natural

Figure 6.4B shows that, since 1880, we’ve had about 1°C of warming. This is close to 
the IPCC AR5 estimate of 0.85 ± 0.20°C.29 What is the probability that a warming 
of this amount will occur in roughly 125 years?30 Thinking in terms of a medical 
analogy, we can formulate this question in precise terms to apply statistical hypo-
thesis testing techniques. In these terms, the null hypothesis is that this 125-​year, 
1°C temperature rise occurred purely naturally—​that it is a GNF. If the probability 
(the “p value”) of the GNF hypothesis is sufficiently low, then it can be rejected as 
being too unlikely.

Because we suspect that the recent period is not at all representative of the nat-
ural (preindustrial) variability, the only way to answer this question is to deduce 
the probability distribution of centennial-​length temperature changes using pre-
industrial data: the multiproxies discussed in Box 5.3. We could note that for the 
preindustrial multiproxies, 125 years is apparently still within the macroweather 
regime (Fig. 5.10A), so that fluctuations are still tending to cancel, and a key char-
acteristic is their fluctuation exponent H.

Figure 6.6 shows the result when multiproxies were used to estimate the 
northern hemisphere temperatures from 1500 to 1875. The series was broken 
into three typical preindustrial 125-​year periods, each displaced for clarity. The 
mean of each was removed so that the periods vary about the indicated hori-
zontal lines, with the typical changes over 125-​year periods (0.2°C) indicated for 
reference. Above the three, at the top, is the industrial epoch global temperature 
since 1880, with the original 125-​year length slightly extended to bring it more 
up to date (the same series was used as in Fig. 6.4A). We can see that this indus-
trial epoch series is totally different from the preindustrial segments, showing an 
overall change of about 1°C over the same period of time. Also shown below it are 
the residuals obtained by removing the CO2 contribution (reproduced from Fig 
6.4C). As expected, the residuals appear (visually) to be very similar to the prein-
dustrial multiproxies. What is the probability that the top series is just a random 
variation? A GNF?
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Figure 6.6  The bottom three series (each displaced by 0.3°C for clarity) are the average 
of three post-​2003 multiproxies (see Box 5.3, Fig. 5.15). They show preindustrial northern 
hemisphere temperatures; each segment has its mean removed so that they vary about the 
flat reference lines. The double-​headed arrows show typical temperature changes (0.2°C) 
over 125 years. The top (dashed) curve is the globally averaged industrial epoch instrument 
temperature series; the top double-​headed arrow shows the estimated anthropogenic warming 
from 1880 to 2013. The line below (fourth from the bottom) shows the industrial epoch 
macroweather (residuals) as in Figure 6.5C. They are quite similar to the preindustrial series.

From Figure 6.6, we see that the conventional estimate of 1°C change during this 
period is quite plausible. If this change was simply a GNF with a bell curve proba-
bility distribution, then estimating its probability of occurrence would be easy. We 
would simply measure the standard deviation of preindustrial 125-​year tempera-
ture differences—​about 0.2°C (see the double-​headed arrows in the figure31) and 
would find that the increase of 1°C is a five-​standard deviations event (1/​0.2 = 5). 
The probability of this is about 1 in 3,000,000. If this was particle physics, we 
would have just discovered the Higgs!gg To put this probability in human terms, it 
is nearly the probability of a person being struck and killed by lightning in a given 
year. For most of us, this is an eventuality so remote that we don’t lose sleep over it.

The assumption that temperature fluctuations follow the bell curve is con-
ventional, but is it warranted? According to our previous discussion, a generic 

gg The convention in particle physics is that an experiment purporting to discover a new particle is 
not considered to be statistically significant unless it occurs at this ridiculously high level of confidence. 
Usually the level is set at two standard deviations (i.e., 95% confidence). The IPCC sets it at 90% confi-
dence (corresponding to 1.6 standard deviations).
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consequence of scaling is the existence of power law probability distributions, as-
sociated with black swan extreme events (Box 3.1). What about the distribution 
of 125-​year temperature fluctuations? Using three post-​2003 multiproxies,hh we 
found that the extreme 3% of the temperature differences diverged from the bell 
curve (Fig. 3.1C). Indeed, as shown in Figure 6.7, we were able to bound the extreme 
multiproxy temperature changes between two power laws: one more extreme and 
one less extreme.
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Figure 6.7  A comparison of the bell curve distribution (solid black line, qD = infinity) of 
125-​year temperature changes with those with extreme power law tails (black swans; bottom, 
qD = 6; top, qD = 4ii). The actual multiproxy data are closer to the dashed black line (qD = 5, 
between the two; see Fig. 3.1C). The dashed vertical lines bracket the temperature change over 
the industrial epoch. Because the distributions are only significantly different for extremes 
with very small probabilities (less than about 3%), the usual presentation (left) doesn’t 
distinguish them clearly. This is remedied on the right by the use of a logarithmic probability 
scale. The graphs show the probability densities; for statistical testing, it is the cumulative 
probability needed, and these are even more distinct (roughly 1 in 3,000,000 vs. 1 in 3,000).

The basic power law states that the probabilities32 of exceeding a given temper-
ature threshold s decrease as s−qD ,  where the exponent qD (see Box 3.1) quantifies 
the probabilities of extreme events.33 The temperature probabilities were close to 
qD = 5, but in all cases they were found to be bounded between qD = 4 and qD = 6 
(respectively, more and less extreme; see Fig. 3.1C). Although the probabilities of 

hh It turns out that, as indicated in Box 5.3, Figure 5.14, all the multiproxies agree pretty well about 
the fluctuations up to 150 years, or the choice of multiproxies is thus not very important.

ii 1 + qD is the absolute slope of the tail on the extreme right-​hand tail in Figure 6.7 (see Box 3.1).

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   254 29-Dec-18   8:15:15 PM

shaun2008
Inserted Text
 of the probability density

shaun2008
Inserted Text
; qD refers to the tail of the probability distribution



What have we done?	 255

the most common (nonextreme) 97% of the fluctuations are nearly identical to 
those of the bell curve, Figure 6.7 shows that the existence of black swan extremes 
(with qD = 5) increases the probability of a 1°C GNF by a factor of 1,000, yet it is still 
less than 1 in 1,000. It is thus much more probable than being killed by lightening 
(1 in 3 million), but it is nevertheless not much more likely than being killed (in a 
given year) by poisoning.34 This means the hypothesis that 1°C of warming could 
occur as a giant centennial-​scale natural fluctuation can be rejected with more 
than 99.9% confidence35: It can be dismissed easily.

The fact that the difference between a standard bell curve and a black swan dis-
tribution might only affect the extreme 3% but still yield a 1,000-​fold amplification 
in the probability of 1°C GNFs shows that adequately accounting for extremes can 
be a rather subtle affair. The situation is illustrated in Figure 6.8, in which two se-
ries of 5,000 points are compared, with each point representing the temperature 
change over 125-​year periods. The bottom of the two uses conventional bell curve 
variables (corresponding to qD  =  infinity), whereas the top curve corresponds 
to qD = 5. To bring out the point about the subtle difference associated with the 
extremes, the random temperature changes are chosen independent from each 
other.36 The two standard deviation limits are indicated; this is roughly the limit 
where the two different probability distributions start to diverge. Because there are 
5,000 points, we can easily estimate the values of the most extreme temperature 
changes that we expect to find. They should have probabilities of about37 one in 
5,000. For the top series with qD = 5, this is about 1°C; for the bottom, it is about 
0.71°C. Although these values seem close, the conventional bell curve probabilities 
fall off so quickly that it would (typically!) take a bell curve series nearly 1,000 
times longer to show a 1°C GNF.38

Black swan probability: 1 in 5,000
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Figure 6.8  (Bottom) A comparison of 5,000 randomly, independently chosen 125-​year 
temperature changes. The bottom uses Gaussian (bell curve) variables, with 95% of the 
values within 0.4°C of 0 (qD = infinity). (Top) A more realistic situation in which the 5,000 
independent values have the same fraction within 0.4°C, but with much more pronounced 
extremes (qD = 5), including a 1°C giant natural fluctuation (with a 1 in 5,000 probability).
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6.5  What was shown

The original 2014 CD article went on to be the most highly “mentioned” Climate 
Dynamics article of the year.jj There was a deluge of email, some from colleagues, 
but mostly from the lay public, and this included legitimate requests for clarifica-
tion as well as attacks by the organized deniers.

Because I couldn’t answer all the queries, I put a Frequently Asked Questions tab 
on my website. I’ll now summarize the more interesting points and misconceptions. 
The first part of the article was devoted to estimating the industrial epoch change 
(roughly the 1°C number mentioned earlier), but this was not necessary for the 
main part, which was on statistical hypothesis testing. The testing methodology 
was valid for any hypothesized century-​scale temperature change, no matter how 
it was estimated. For this part, by far the most common misunderstandings were 
of the role of scale both in space and in time. As an example of the timescale error, 
I received numerous reminders that the temperature had been much higher in the 
past, and this purportedly showed that the industrial epoch warming could easily 
be a GNF; the medieval warming event was a commonly cited example. However, 
even if, 1,000 years ago, Europe’s population enjoyed the same high temperatures 
as we do today, the implied high probability of 1°C millennial-​scale temperature 
changes is irrelevant to the corresponding probability of the same warming in only 
125 years: The rapidity of the warming—​its timescale—​is fundamental. This ex-
ample also illustrates the other scale error: in space. It seems more and more likely 
that the medieval warming event was confined to Europe—​that it was only re-
gional in scope—​that it was not a global warming event.

To make the point about spatial scale sharper, consider a criticism that the 
“Friends” used in their own press release in April 2014.kk

They noticed that between 1663 and 1762, the temperature in central England39 
increased by nearly 1°C (i.e., about the same as the global temperature during the 
past century) and concluded that such temperature changes were commonplace—​
that they are not at all rare. Unfortunately for them, central England (Greater 
London) is only about 0.01% of Earth’s surface area, so it is not surprising that, 
during the same period, the northern hemisphere temperature only increased by 
0.2°C, equal to its typical centennial change!

jj Out of 750. This is a category that weights an article’s exposure in traditional news media as well 
as in blog postings, tweets, and other social media.

kk Lovejoy Global Warming Paper 100% Wrong to Omit Previous Natural Warm Periods Say Friends 
of Science, Proving Natural Factors Affect Climate More than Humans, http://​www.prweb.com/​releases/​
2014/​04/​prweb11767118.htm.
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6.6  The pause

Basing itself on the hockey stick, the IPCC’s AR3 (2001) declared that 1998 was the 
“warmest year of the millennium.” At this point, the scientific case for the anthro-
pogenic provenance of warming was already quite firm. Although estimates of the 
sensitivity of the climate to doubling CO2 were still in the same wide range as in 
1979 (1.5–​4.5°C), this uncertainty was considered to be a purely technical issue to 
be solved with improved GCM resolutions expected with future supercomputers. 
The only significant exception was a problem that had first been raised in 1996ll: the 
apparent failure of satellite infrared atmospheric (not surface) temperatures to 
show the expected warming. But by 2006, the last of four flaws in this work had 
finally been laid bare. With the correct treatment of errors and biases (several were 
subtle), the satellite data ended up fully supporting the warming evident in the 
surface measurements. It was at this time that Michael Shermer, the influential 
editor of the Sceptical Inquirer, changed his position, saying that as a result of the 
advances in climate science, continuing to oppose anthropogenic warming on the 
grounds of skepticism would be unscientific.

By 2007, with the publication of the IPCC’s AR4, the scientific case for anthro-
pogenic warming had never been stronger, and the report was able to conclude 
that “it is very likely that human influence has been the dominant cause of the 
observed warming since the mid-​20th century” (p. 4). Ironically, it was precisely 
at this time that—​in apparent contradiction—​the global temperature appeared 
to be leveling off (Fig. 6.4A),mm so that a clear understanding of space–​time 
macroweather–​climate variability was urgently needed.nn

By the end of the 2000s, it started to be clear that decadal GCMs temperature 
projections had been a little too high—​by about 0.1 to 0.2°C (Fig. 6.9, although note 
the large model-​to-​model spread). The skeptics seized on the poor forecast and this 

ll  The chief protagonists in this affair were John Christy and Roy Spencer, who collaborated in 
the analysis. Both were upfront about their religion, with the latter signing the Cornwall Alliance’s 
“Evangelical Declaration on Global Warming.” This statement of scripture-​based climate skepticism 
notably affi :

“Earth and its ecosystems—​created by God’s intelligent design and infinite power and sustained by 
His faithful providence—​are robust, resilient, self-​regulating, and self-​correcting.

 . . . We deny that Earth and its ecosystems are the fragile and unstable products of chance, and par-
ticularly that Earth’s climate system is vulnerable to dangerous alteration because of minuscule changes 
in atmospheric chemistry. Recent warming was neither abnormally large nor abnormally rapid. There 
is no convincing scientific evidence that human contribution to greenhouse gases is causing dan-
gerous global warming.” See https://​cornwallalliance.org/​2009/​05/​evangelical-​declaration-​on-​global-​
warming/​.

mm  In around 2007, the mainstream press started to pick this up. See, for example, Has global 
warming stopped? Whitehouse, D. New Statesman, December 19, 2007. http://​68.171.46.155/​WVFossils/​
Reference_​Docs/​has_​GW_​stopped.pdf.

nn  Various articles soon appeared demonstrating that similar “pauses” were expected to occur 
simply as a result of natural cooling fluctuations temporarily counteracting long-​term warming. But, 
these were based only on perusing GCM outputs, not on a systematic theory or understanding of the 
variability. See, for example, Hawkins, E. Our evolving climate: Communicating the effects of climate 
variability. Weather 66, 175–​179 (2011).
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258	 Weather, Macroweather, and the Climate

apparent “slow down,”40 “hiatus,”41 “pause”42,oo to proclaim joyfully that the models 
were useless and that the warming had ended. By 2013, articles started to appear 
that explained the GCM overforecast,43 but by then—​at least for the public—​the 
damage had been done. The skeptics milked this issue for all it was worth and, 
as late as 2014—​before the spectacular 2016 record-​high global temperature that 
ended any pretense of a pause—​the skeptics were still loudly proclaiming: “Global 
warming stopped naturally? 16+ years ago” (Fig. 6.1, lower right). In the absence 
of a clear understanding of the space–​time statistics, the IPCC could only resort 
to the vague explanation: “In addition to robust multi-​decadal warming, global 
mean surface temperature exhibits substantial decadal and interannual variability. 
Due to natural variability, trends based on short records are very sensitive to the 
beginning and end dates and do not in general reflect long-​term climate trends.”44 
Ironically, Box 7.7 shows that, with only knowledge of the CO2 concentration and 
past temperatures, the temperatures could be forecast (starting in 1909!) through 
the 2000s with high accuracy (to within 0.2°C).
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Figure 6.9  A comparison of individual Global Climate Model (GCM) runs (from the 
Climate Model Intercomparison Project 3 models: the cloud of background lines). These 
runs were “harmonized” to start from the same value in 1990.45 The GCM average (the 
“multimodel mean”) is shown in thick red. The yellow line is the National Aeronautics and 
Space Administration GISS series used in Figure 6.4A. This is compared to the scaling-​based 
hindcast from 1992 using the Scaling Macroweather Model (SLIMM, Chapter 7).46 The black 
line is the hindcast/​forecast mean (50% probability of exceedance), the blue, purple, and red 
lines are for 20%, 40%, and 49% above and below the mean (see the details in Chapter 7). The 
1998 El Niño year marking the beginning of the pause corresponds to the high yellow peak. 
The GCMs tend to be 0.1 to 0.2°C too high (thick red) and are near the 90% mark for the 
SLIMM hindcast (thick black), which is quite accurate. The dashed vertical lines indicate the 
times of two major volcanic eruptions.
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oo There is even a debate about the most appropriate term to use.
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With the aid of the previous sections—​and especially Figure 6.4A, C—​the basic 
reason for the pause is pretty obvious. Whether we follow the actual tempera-
ture (Fig. 6.4A) or the residuals representing the macroweather (natural) vari-
ability (Fig. 6.4C), we can see that the temperature was set for a return to the 
long-​term anthropogenically induced climate trend (Fig. 6.4A). Alternatively—​
from the point of view of macroweather—​we expect a canceling downward swing 
that would partially cancel the ongoing upward anthropogenic (climate) trend. 
Either way, it didn’t take sophisticated analysis to see that we could expect a rela-
tively long period of fairly stable temperatures while the downward macroweather 
fluctuations were canceling the continued anthropogenic increase. More quanti-
tatively, Figure 6.4A, C shows that, between 1992 and 1998 (the “prepause”), the 
global mean temperature rocketed up by about 0.42°C, well above the long-​term 
anthropogenic trend. Indeed, 1998 marked a particularly strong El Niño event, 
which are generally associated with large macroweather temperature upswings. 
Removing the superposed anthropogenic warming trend (Fig. 6.4C), we see that 
the macroweather (natural) warming was about 0.33°C superposed on an anthro-
pogenic warming climate trend of 0.09°C. In comparison, during the 1998 to 2013 
pause period, the overall temperature decreased by 0.01°C, a consequence of a 
macroweather cooling fluctuation of –​0.28°C, which more than offset an anthro-
pogenic climate warming of 0.27°C.47 See Box 6.2 for more details.

Box 6.2  Return periods and the pause

Several mechanistic explanations have been proposed for the overly warm post-​
1998 decadal GCM forecasts48 (Fig. 6.9); but, regardless of the reason for this GCM 
problem, we can revisit the past two decades with our understanding of macroweather 
statistics. We can now improve on qualitative interpretations of Figure 6.4A, C. If the 
pause was really just a decadal-​scale macroweather cooling fluctuation that largely 
offset the post-​1998 anthropogenic warming, then to be convincing, we should 
be able to quantify it. What was the probability of this rough cancelation? If the 
probability was too low, this explanation must be rejected.

This was the motivation for the CD follow-​up article: “Return Periods of Global 
Climate Fluctuations and the Pause”49,pp (denoted GRL1qq). Only a few months 
after the CD article was published, this new publication shed a different light on 
the prevailing sociology and politics of science. The new article used the same 
basic approach as the CD article and provided the first estimates of how long one 
would expect to wait to observe natural global temperature fluctuations of various 
amplitudes over various time periods. It concluded that a cooling of the amplitude 
necessary to explain the pause occurs naturally every twenty to fifty years so that, 

pp  The McGill press release was titled:  “Global Warming ‘Pause’ Reflects Natural Fluctuation.”, 
July 21, 2014. https://​www.mcgill.ca/​newsroom/​channels/​news/​global-​warming-​pause-​reflects-  
​natural-​fluctuation-​237538.

qq This was the article that had been rejected without review by Nature Climate Change.
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although the cooling was indeed strong, it was not highly unusual, especially because 
we saw that it immediately followed an even larger natural “prepause” warming event.

Figure 6.10 shows a simplified graph of the return periods for natural fluctuations 
of different amplitudes adapted from GRL1. The return period of an event is the 
typical time one must wait before the event repeats itself (here, between consecutive, 
large global annual temperature changes, with amplitudes given on the horizontal 
axis). For extreme events, it is usually assumed that successive extremes are 
uncorrelated, so the event return time can be estimated as the inverse probability 
of its occurrence. Figure 6.10 was therefore readily determined from the same 
preindustrial multiproxy probabilities that were used to test the GNF hypothesis in 
the CD article.50
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Figure 6.10  The return periods for fluctuations of the amplitude are indicated 
on the horizontal axis. The curves are the empirical curves deduced from the 
preindustrial multiproxies. The plot shows the results for the bell curve (Gaussian, 
qD = infinity) and the bounding power law extremes curves (black swan, qD = 4, 
6). The dashed vertical lines correspond to various events, from right to left: global 
warming since 1880 (range, 0.76–​0.98°C), the largest event expected in the 134 years 
since 1880 (0.47°C), the postwar cooling (0.42–​0.47oC, the prepause of 1992 to 1998 
(0.30–​0.33°C), and the pause of 1998 to 2013 (0.28–​0.37°C). The horizontal lines 
indicate the corresponding return periods.

According to Figure 6.10, anthropogenic warming (1880–​2004, estimated as 
0.76–​0.98°C, shown by the dashed lines to the right) has a return period of 1,000 to 
20,000 years (using the bounding distributions with exponents qD = 4, 6). Although 
this is a sufficiently long period that natural variability can confidently be rejected as 
an explanation for the warming, it is nevertheless much shorter than the ≈3,000,000-​
year return period obtained using the classic (Gaussian) assumption (the top line). 
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What is the largest fluctuation that we should expect over the period 1880 to 2013? 
Such an event would have a return period of 134 years; hence, according to Figure 
6.10, an amplitude of ≈0.47°C. Comparing this estimate with Figure 6.5A, C, we 
see that—​as expected—​it is comparable to the postwar (1944–​1976) cooling event 
of 0.42 to 0.47°C. Turning to the pause (0.28–​0.37°C), from Figure 6.10 we see that 
the return period for such an event is twenty to fifty years. Although in themselves 
such cooling events are not unusual, they become altogether probable when they 
immediately follow comparable warming events. Because in this macroweather 
regime successive fluctuations tend to cancel, this is already a statistical explanation 
for the pause.51

GRL1 showed that the probability of a 0.28°C macroweather cooling over sixteen 
years is about 2% to 5% (corresponding to fifty-​ to twenty-​year return periods), 
which was enough to explain the pause as a relatively common occurrence. But 
this probability was “unconditional.” It did not take explicitly into account the 
preceding “prepause” temperature data. It applied to a macroweather cooling of 
0.28°C from a date chosen at random, regardless of the temperature in the preceding 
years. Yet inspection of Figure 6.4A shows that it followed an even larger prepause 
macroweather warming. To quantify the probability of the pause properly, we should 
take into account this prior information. We should use conditional probabilities 
[i.e., conditioned on the actual (historical) record]. This is equivalent to making 
a stochastic (statistical) forecast; it was the subject of another article, GRL2,52 that 
appeared a year later (and is discussed in Chapter 7). In GRL2, the pause was forecast 
(“hindcast”) retroactively over the decade following 1998 to within better than 
±0.05°C. This vindicated both the macroweather forecast procedure53 and also the 
interpretation of the “slowdown” as “just a pause.”
  

6.7  The $100,000 GNF

By showing quantitatively that the pause was natural, the article “Return Periods 
of Global Climate Fluctuations and the Pause” (as mentioned earlier, referred 
to as GRL154), demolished the remaining skeptic argument that warming had 
stopped in 1998. The article achieved media prominence and was notably featured 
on the front page of Montreal’s daily English language newspaper with the head-
line: “Global Warming slowdown just a ‘pause.’ ”rr

At this point (July 2014), I was trying to promote some of the simpler graphs 
(e.g., Fig. 6.4A) as educational tools to help convince open-​minded skeptics of 

rr Seidman, K. Believe it: Global warming is real, global warming slowdown is just a “pause.” The 
Montreal Gazette, p. 1, July 24, 2014, http://​www.physics.mcgill.ca/​~gang/​popular.articles/​Gazette.7.14/​
Gazette.pause.all.final.jpg. This was followed by an Op-​Ed in the Gazette in August by “The Friends,” 
exposing their speculation about solar causation, accompanied with an ad hominem attack:  The 
Montreal Gazette, August 28, 2014, http://​montrealgazette.com/​opinion/​editorials/​opinion-​global-​
warming-​pause-​is-​more-​than-​temporary-​scientific-​evidence-​shows). It was signed: “Len Maier is an 
engineer and president of the Friends of Science Society in Calgary.”
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the reality of anthropogenic warming. In many countries—​notably, Canada, 
the United States, Britain, and Australia—​the skeptics still included substantial 
proportions of the general public, and I  considered that battling the organized 
skeptics was important. I contacted colleagues particularly familiar with this kind 
of hand-​to-​hand combat, especially Michael Mann of hockey stick fame (Box 5.3). 
Mann himself was not shy of a fight and, ever since the publication of the hockey 
stick, he had been the main skeptic whipping boy.ss

 Mann was both helpful and encouraging, and put me in contact with a US-​
based nongovernmental organization (NGO) that was committed to bringing 
media attention to science that was deemed important in the fight against an-
thropogenic warming. Here I was in for a disappointment. Following Mann’s ad-
vice, I forwarded the article, press release, and supporting material, hoping to get 
help in spreading the word. At first, I received a polite response saying they would 
consider it. After a few weeks, when I hadn’t heard any answer, I prodded them 
with another email. This time, I received a laconic reply that, in their view, it was 
best to ignore the pause: Any mention of it—​even to show that it was no more 
than a natural fluctuation—​would give it undue publicity and make it appear that 
there was a debate where (according to them) there wasn’t any. By this time, the 
environmentalists had become supremely confident and believed the skeptics 
were better ignored than confronted.

Over the next year, I began using macroweather laws for monthly, seasonal, and 
annual forecasts (Chapter 7) and, in July 2015, in a new article, “Using Scaling for 
Macroweather Forecasting Including the Pause”55 (hereafter GRL2), I showed how 
they could be used to make a decadal forecast of the pause with unprecedented ac-
curacy. With this addition, a certain closure had been reached. The high-​level laws 
had made the macroweather–​climate distinction transparent, and had quantified 
the anthropogenic climate regime drivers. The understanding of the macroweather 
scaling laws—​including their extremes—​had allowed the industrial epoch GNF 
warming hypothesis to be rejected statistically while simultaneously failing to re-
ject the natural cooling hypothesis for the (much smaller) post-​1998 macroweather 
fluctuation responsible for the pause. Finally, GRL2 showed that macroweather 
laws combined with historical temperature data could be used to forecast the pause 
accurately (even from 1909; see Box 7.7). Together, these articles had eliminated 
nonanthropogenic explanations systematically, leaving the anthropogenic theory 
as the only viable explanation. The climate debate had reached scientific closure.

On the media side, GRL2 confirmed there was a frustratingly low level of in-
terest in the scientific aspects of the debate. Meanwhile, the deniers continued 
to spread their disinformation. Yet the closure synthesis was surely a milestone 
in the fight against the skeptics; it reduced them to mere “denialists.”tt To bring 

ss See his own compelling account: Mann, M. E. The Hockey Stick and the Climate Wars: Dispatches 
from the Front Lines. (Columbia University Press, 2012).

tt The term “skeptic” was too inaccurate—​and too generous—​to apply to a group that was by now 
simply following an obstructionist agenda that had nothing to do with genuine skepticism. The term 
“denier”—​although used in other branches of science—​evoked “holocaust denier,” which had obvious 
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this closure to the attention of the wider community, in October 2015 I published 
“Climate Closure” in the AGU’s (wide-​distribution) membership journal EOS.56 
Although there was little media pickup, the piece generated more than 1,000 
comments in various blogs. To kill the generally positive exchanges on the EOS 
site, Monkton himself was forced to intervene via an extensive trolling operation.uu

The confidence of the environmental NGOs grew even stronger when, in 
December 2015, 196 countries signed an agreement at the Conference of the 
Parties (COP)vv 21 meeting in Paris. Although the final document had numerous 
weaknesses—​including its strictly nonbinding natureww—​after the previous 
failures, the mere fact of any agreement was an achievement. The feeling was that 
a historic turning point had finally been reached and, in Paris, there was palpable 
euphoria. The upbeat ambiance was relayed by the media, who almost totally 
ignored the deniers’ well-​funded presence.

For the scientific community, the agreement was bittersweet. For years, 
governments had refused to move, effectively gaining time by proclaiming the 
need for more climate research. In an attempt to convince governments to ignore 
the skeptics and, finally, to act, the scientific community had reacted by claiming 
loudly that the science was “settled”—​that a scientific consensus existed on an-
thropogenic warming. Now that the world’s governments had finally agreed col-
lectively to phase out emissions, the scientists had suddenly become superfluous.xx 
Shortly after COP 21 (February 2016), this was more or the less the position of 
Australian government when they axed the Commonwealth Scientific and 
Industrial Research Organisation’s (CSIRO’s) climate division.yy In a gleeful blog, 
Australian climate denier Jo Nova captured the moment:

CSIRO has announced it will axe 300 to 350 climate jobs, which will “wipe 
out” the climate division. The head of the CSIRO wants to focus on climate 
adaption and mitigation instead. Suddenly a lot of Profs who told us the 
debate was over are squealing that it needs more research. Climate science 
was “beyond debate” and in need of action, but now we “need to know more 
about the basic operation of the climate.”57

negative connotations. The term “denialist” was an unsuccessful attempt at a neutral compromise. See 
Gillis, J. Verbal warming: Labels in the climate debate, New York Times, p. D1, February 17, 2015.

uu This involved several multipage interventions focused on my use of the term “denialist” to qualify 
his group. Although elsewhere Monkton refers routinely to scientists as the “climate communist fac-
tion,” in his trolling he moaned (on and on and on) about how unfair and how unjust it was to be 
termed a “denialist” when in actual fact he was really just a sincere skeptic.

vv Part of the IPCC process, under the aegis of the United Nations.
ww  Even if its nonbinding promises are respected—​and notwithstanding the proclaimed aim at 

holding the industrial epoch temperature increase to 1.5°C (only 0.5°C more than what we already 
have)—​the actual temperature of Earth would greatly surpass the previously proclaimed (COP 16, 
2010) threshold of 2°C. It would likely exceed 3.5°C by the year 2100.

xx Adding to this was the fact both the 2010 COP 16 decision on the 2°C target and the (virtually 
unattainable) 1.5°C COP 21 target were determined by economic and political grounds—​not by scien-
tific considerations.

yy CSIRO is the federal government agency for scientific research in Australia.
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The Australian reaction was admittedly extreme, but everywherezz the ruling 
austerity policies had already led to frozen or receding research budgets, and even 
in Obama’s United States, climate scientists were more exposed than most.

This was the situation when, on May 7, 2016, I received a personal invitation by 
British climate skeptic and professional statistician Douglas Keenan to make a sub-
mission to his “climate contest” with a $100,000 prize. Keenan kindly waived the 
$10 entry fee. Although I had been unaware of it, the contest had been launched 
in November 2015 and was to remain open until November 30, 2016.aaa Keenan’s 
up-​front motivation for sponsoring the contest was to bring public attention to his 
criticism of the IPCC and to his claim that the industrial epoch warming might 
have been no more than a GNF. The contest was widely promoted by the climate 
skeptic community and was used to publicize the more sophisticated skeptics’ sta-
tistical arguments against anthropogenic global warming.

I was interested in the contest not only as an intellectual brainteaser, but for 
other reasons—​the foremost of which was that it was the first time climate skeptics 
had made an explicit GNF model. For decades, skeptics had claimed that global 
warming was no more than a GNF, yet they were impossible to nail down. They 
never gave a precise model that might make their claim more than empty-​phrase 
mongering. The contest offered a golden opportunity to invalidate their GNF 
claim. Another reason for my interest was that I  was convinced that Keenan’s 
model involved processes with long-​range memories—​scaling and the high-​level 
laws—​and this was an opportunity to highlight their impact on the statistical anal-
ysis of climate series and to improve IPCC uncertainty estimates.

Shortly after the invitation, I discovered a long-​forgotten missive from Keenan 
dated April 12, 2014, less than twelve hours after Monkton’s “emanation of the 
forces of darkness” assessment of the CD article. At the time, Keenan had just 
submitted a critique of the IPCC’s trend analysis to the United Kingdom’s House 
of Lords and—​like Monckton—​was also interested in combatting the dark forces. 
In his email to me, he stated:

My critique and your paper “Stochastic and Scaling Climate Sensitivities” 
[Climate Dynamics,  2014] are obviously in conflict. I  have looked at 
your paper, though not studied it closely. I  do not understand some 
of the calculations. Of particular interest are calculations of the confi-
dence intervals for correlations. Each climatic time series exhibits many 
autocorrelations: how are the autocorrelations handled, in the calculations?

Because (as explained later), the CD article did not use trend or autocorrelation 
analysis to estimate the uncertainties of any temperature time series trends58—​and 

zz This excludes several Asian countries that were able to ignore the International Monetary Fund’s 
austerity strictures, including South Korea, Singapore, India, and, especially, China, with science 
budgets that continued their exponential growth.

aaa  Except in the unlikely—​in retrospect, impossible—​event that the contest was won at an 
earlier date!
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because at that moment I was being bombarded by hate mail—​I did not pay close 
attention, giving the laconic reply: “I see no grounds for conflict with my paper.”bbb

The contest involved 1,000 realizationsccc of a “stochastic model fit to the annually 
and globally averaged temperature series from 1880–​2014.”ddd The contest aim was to 
bring into question the IPCC statistical uncertainty assumptions and hence to under-
mine the empirical basis of the anthropogenic warming theory.eee In an accompanying 
explanatory blog, his basic logic seemed to be this: (a) trends were needed to estab-
lish anthropogenic changes, (b) a trend without an uncertainty is meaningless, (c) a 
model of the residuals is needed to estimate the uncertainty, and (d) the IPCC did not 
justify its choice of an uncertainty model. Keenan therefore concluded ipso facto that 
all the IPCC uncertainty estimates were meaningless, hence its trends were mean-
ingless, and finally that its conclusions about anthropogenic effects were groundless.

Along with colleagues, we soonfff published “Giant Natural Fluctuation Models 
and Anthropogenic Warming”59 (GRL3), the key conclusions of which were as 
follows:

	 1.	 Contrary to point (a), trends are not needed to test the GNF hypothesis 
statistically; this can be done directly with probabilities. Although points 
(b) and (c) may be valid, the contest therefore proves nothing about 
anthropogenic warming.

	 2.	 The IPCC assumed that, after removing trends, the residuals had only 
short-​range correlations.ggg In contrast, as we had predicted, Keenan’s 
model had long-​range (power law, scaling) residuals. Taking these strong 
correlations into account allowed for tighter (less dispersed, less uncertain) 
trend estimates. Ironically, Keenan’s model illustrated that, by adopting 

bbb There is irony here. In the original explanation of the contest, Keenan stated: “I am sponsoring 
a contest: the prize is $100,000. In essence the prize will be awarded to anyone who can demonstrate, 
via statistical analysis, that the increase in global temperatures is probably not due to random nat-
ural variation” (italics added). However, several weeks after the start of the contest, he surreptitiously 
changed the terms to: “I am sponsoring a contest: the prize is $100,000. Anyone who can demonstrate, 
via statistical analysis, that the increase in global temperatures is probably not due to random variation 
should be able to win the contest” (italics added). According to the original (“will be”)—​but now mod-
ified (“should be”) terms—​the CD article would have won the contest.

ccc Keenan actually had two models: the basic (on average) trendless model [Tinit(t)], and another 
one [T(t)] that consisted of randomly adding to Tinit(t) a trend of ±1°C/​century. The aim of the contest 
was to identify which of the models had trends added: Nine hundred correct out of 1,000 were needed 
to win. It turned out that the basic model itself was a random mixture of four different submodels.

ddd In a later threatening email, he tried to distance himself from the idea that his model was in-
tended to be realistic. Yet, as he clearly indicated, the model was “fit”—​with considerable care and 
accuracy—​to the data. It was indeed statistically realistic. The problem was that it was scientifically 
unrealistic, but Keenan is a statistician not a scientist.

eee Although Keenan was never completely explicit about this, the IPCC assumed that, after trend 
removal, the residuals had only short-​range (exponential) correlations whereas in reality—​and in 
Keenan’s contest—​the residuals had, on the contrary, long-​range (power law, scaling) correlations.

fff We attempted a rapid publication in attempt to derail the contest by sharing our analyses publicly 
before the November 30, 2016, deadline.

ggg In AR5, there was a discussion of short-​range versus long-​range correlations and, indeed without 
much justification, the IPCC authors came down on the side of conventional (short-​range) wisdom.
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the short-​range dependency assumption, the IPCC had overestimated the 
uncertainties in its trends!hhh

	 3.	 Over the period 1880 to 2014, the variability of Keenan’s model was quite 
realistic. Indeed, if the only information that existed about temperature 
variations were these 135 numbers (the globally, annually averaged 
temperatures), then his model could not be rejected. However, when his 
model was compared to preindustrial temperature data, its variability was 
far too large, predicting Ice Ages every 1,000 years or so rather than every 
100,000 years (Fig. 6.11). His model could be easily rejected scientifically.
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Figure 6.11  The Haar fluctuation analysis of the Keenan’s two models with and without 
the added random 1°C/​century temperature trend [T(t), pink; Tinit(t), brown]. The original 
GRL3 extrapolations were based on the assumption of a unique model (with no submodels), 
which is shown by a dashed black line. The red lines are the updates based on the final 
unveiled model. We can see that the T(t) model (i.e., with the randomly added trends) was 
well reproduced (dashed red and black lines on the upper left), but that the Tinit(t) model 
was a little off (dashed black and solid red lines, right). In all cases, the glacial–​interglacial 
window is shown (rectangles), indicating that the models have Ice Age variability far too 
often (the realistic window is shown in green, upper right). For comparison, the preindustrial 
multiproxies (from Fig. 5.14) are included as well as the fluctuation analysis of the residuals 
from Figure 6.4C, showing that even at much shorter timescales, the natural preindustrial 
macroweather variability is much lower than Keenan’s model implies.
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hhh It’s a bit puzzling that Keenan hadn’t noticed this himself, because he must have known that the 
only way to win the contest was to use an alternative uncertainty model that specifically reduced the 
conventional IPCC uncertainties. It was only by reducing the random spread (uncertainty) in the trend 
estimates that the artificial addition (or subtraction) of 1°C/​century trends could be detected.
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Four months later, on November 30, 2016, Keenan announced that none of 
the thirty-​three contest submissions were winners and he unveiled the computer 
code that generated the 1,000 series. His model turned out be actually quite bi-
zarre: It consisted of a random shuffling of each of four rather different submodels, 
one of which was actually an IPCC numerical model output!60 Two of the other 
submodels were basically standard scaling models61 whereas the third was a 
complicated homemade concoction that nevertheless was also scaling at long 
timescales. As predicted in GRL3, all the submodels (and hence the overall model) 
had strong (scaling, power law) statistical dependencies.62

After Keenan unveiled his model, we ran the published code but for 10,000 sim-
ulated years rather than the original 135, confirming with only minor differences 
the GRL3 conclusions (Fig. 6.11). For example, the temperature fluctuations of 
the model with added trends [T(t)] was predicted accurately (top, dashed line). 
Indeed, extending this model to Ice Age periods, it predicts a whopping ±200°C 
variation (a difference of 400°C between glacial and interglacial conditions, which 
is off-​graph). In contrast, the basic model without the added trends [Tinit(t), solid 
red line] was a little less extreme than that predicted by GRL3. Figure 6.11 shows 
that it nevertheless predicts Ice Ages with half-​period 5,000 to 10,000 years (i.e., 
about five times too frequently). The glacial–​interglacial temperature variations 
(at 30,000–​50,000 years for a half period) were typically about 14 ±7°C, which is 
about three times too high.

After GRL3 was published, in the classic style of British aristocracy, Keenan 
threatened libel action against the Geophysical Research Letters editors and 
Geophysical Research Letters’ parent organization (the AGU). Despite the fact 
that British libel law does not apply in the United States, the threat apparently 
succeeded in quashing a nonspecialist story planned for AGU’s EOS magazine. 
Partly as a consequence, both the scientific community and the media were ob-
livious to the entire episode. This was a shame because, if analyzed properly, the 
patent failure of GNF models drives a final nail in the coffin of skeptics’ attempts 
to find scientific alternatives to the theory of anthropogenic warming.

Notes

1. Lovejoy, S. Scaling fluctuation analysis and statistical hypothesis testing of anthropo-
genic warming. Climate Dynam. 42, 2339–​2351 (2014).

2. Lovejoy, S. Climate closure. EOS 96, doi:10.1029/​2015EO037499 (2015).
3.  https://​wattsupwiththat.com/​2014/​04/​11/​lovejoys-​99-​confidence-​vs-​measurement-​

uncertainty/​.
4. This is the average over Earth’s surface. Many regions—​especially the Arctic—​have 

warmed significantly more.
5. Callendar, G. The artificial production of carbon dioxide and its influence on temper-

ature. Q. J. Roy. Meteorol. Soc. 64 (275), 223–​240 (1938).
6. These numbers are estimates of the ECS—​the temperature rise that would occur if 

we waited long enough for equilibrium to be reached (Chapter 5). These early values are 
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close to the modern IPCC range of 1.5 to 4.5°C. Interestingly, Arrhenius himself later re-
vised his own estimate downward by about 1°C:  Arrhenius, S.  Die vermutliche Ursache 
der Klimaschwanungen [The probable cause of climate fluctuations]. Meddelanden fran 
K. Vetenskapsakademiens Nobelinstitut Band 1 (2), 1–​10 (1906).

7. Probably the very first climate skeptic argument—​going back to the beginning of the 
twentieth century but still regularly repeated—​claims that the CO2 bands are “saturated.” 
At saturated wavelengths, between the ground and outer space, the atmosphere is totally 
opaque: None of these surface photons can directly escape from Earth. This is, for example, 
generally the case for Venus, which has a huge radiative greenhouse effect (several hundred 
degrees). The skeptics then argue that because the atmosphere is opaque, further increases 
of CO2 will change nothing. But both the premise and the conclusion of the argument are 
wrong. To start with, it turns out that, unlike Venus, most of the bands on Earth are not sat-
urated. Yet even if they were, the consequences of an increase in CO2 would be very much 
the same: The roof would still be raised, its temperature would still decrease, less heat would 
still be emitted, and Earth would still warm up.

8. Both atmospheric pressure and CO2 concentrations fall off exponentially with altitude 
whereas temperature drops off linearly. This implies that raising the roof leads to a loga-
rithmic dependence of the CO2 forcing on the CO2 concentration. But adding CO2 not only 
raises the roof, it also promotes marginally sensitive CO2 bands into bands that interact 
more and more strongly with CO2. Both effects depend on the logarithm of the CO2 con-
centration: Every CO2 doubling increases the forcing by the same amount.

9. The IPCC was first established in 1988 by two United Nations organizations, the World 
Meteorological Organization (WMO) and the United Nations Environment Programme 
(UNEP), and later endorsed by the United Nations General Assembly. It has several working 
groups/​ I frequently cite the regular ARS of the Physical Sciences working group (Working 
Group 1). The first five reports were published in 1990, 1996, 2001, 2007, and 2013; the sixth 
report is expected in 2022. The reports can be downloaded from www.ipcc.ch/​.

10. Brulle, R. J. Institutionalizing delay: Foundation funding and the creation of U.S. cli-
mate change counter-​movement organizations. Climatic Change 122, 681–​694 (2014).

11. For a discussion, see Oreskes, N. Playing dumb on climate change. New York Times, 
January 4, 2015, p. SR2.

12. At long-​enough timescales, the albedo of Earth could change and this would com-
plicate things. For example, the ice caps are melting, and this slowly darkens the planet 
as white snow and ice are replaced by dark ocean or land. This is a positive feedback that 
accelerates warming. The Daisyworld model discussed in Section 5.9 is an example of an 
analogous negative feedback mechanism.

13. About 2 W/​m2 greater than during the preindustrial epoch (i.e., an increase of about 
1%; see Section 4.6).

14. Hebert, R. A Scaling Model for the Forced Climate Variability in the Anthropocene. MS 
thesis, McGill University (2017).

15. Hebert, “A Scaling Model.”
16. The CO2 concentrations were smoothed somewhat because only scales longer than 

the two-​year atmosphere–​ocean coupling scale are pertinent.
17. The relationship with the concentration is logarithmic (see Box 6.1).
18. The range indicated means that, with 90% certainty, the temperature increase with 

a CO2 doubling is between 1.97°C and 2.69°C. It was deduced by considering the spread in 
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the value obtained by three different temperature series. For details, see Lovejoy, S. Scaling 
fluctuation analysis and statistical hypothesis testing of anthropogenic warming. Climate 
Dynam. 42, 2339–​2351 (2014).

19. All views adapted from Lovejoy, S. Return periods of global climate fluctuations and 
the pause. Geophys. Res. Lett. 41, 4704–​4710 (2014).

20.  Lean, J.  L. & Rind, D.  H. How natural and anthropogenic influences alter global 
and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, L18701, doi:10.1029/​
2008GL034864 (2008).

21. She used a multiple-​regression technique.
22. The coupling time is the typical time that it takes for the ocean and atmosphere to 

act as a single system. For example, month-​to-​month fluctuations in global temperatures 
are virtually unrelated to the corresponding month-​to-​month fluctuations in global ocean 
temperatures. However, at periods of two years and longer, the fluctuations are strongly 
correlated so that the overall atmosphere–​ocean system is increasingly coupled. See Figure 7 
in Lovejoy, S., Del Rio Amador, L., & Hébert, R. Harnessing butterflies: Theory and prac-
tice of the Stochastic Seasonal to Interannual Prediction System (StocSIPS), In: Nonlinear 
Advances in Geosciences (ed. A. A. Tsonis), pp. 305–​355. (Springer Nature, 2017).

23. The one-​ to two-​year coupling timescale is the minimum time for which the response 
can be considered linear. In Chapter 7, we will see that a scaling relation is more realistic, 
and this is implies that, as a result of the long memory, even quite ancient forcings may still 
be felt.

24.  This range of time lags was taken into account in Lovejoy, S.  Scaling fluctuation 
analysis and statistical hypothesis testing of anthropogenic warming. Climate Dynam. 42, 
2339–​2351 (2014).

25. The usual way to describe forcings other than CO2 itself is by their “CO2 equivalent” 
(CO2eq) forcings. For a given greenhouse gas or aerosol, the CO2eq is the equivalent amount 
of CO2 needed to give the same radiative effects. CO2eq was not used here because the main 
difficulty remains: aerosols. For reasons explained in Chapter 7, CO2eq is used there instead. 
In any case, it was found (Fig. 6.5B), not surprisingly, that since 1880, CO2 and CO2eq are 
indeed very highly correlated, so that, on average, CO2eq is about 12% more than CO2.

26. Actually, the connection between the economy and CO2 is between the annual eco-
nomic activity and the annual rate of emissions, not the total atmospheric concentration. 
However, during the industrial epoch, economic activity has grown roughly exponentially, 
and high school math shows that the rate of change of an exponential is also an exponential. 
Hence, the logarithm of either the emissions or the cumulative emissions is proportional 
to the forcing.

27. The figure was reproduced with permission from Lovejoy, S. Scaling fluctuation anal-
ysis and statistical hypothesis testing of anthropogenic warming. Climate Dynam. 42, 2339–​
2351 (2014). It includes more details.

28. This was the best data available at the time of the analysis, which slightly predated 
IPCC AR5 (2013) with its improved historical reconstructions (see Chapter 7).] The figure 
is an updated version of one in Lovejoy, S. Scaling fluctuation analysis and statistical hypo-
thesis testing of anthropogenic warming. Climate Dynam. 42, 2339–​2351 (2014). The green-
house gas relation was deduced from data in Myhre, G., Myhre, A., & Stordal, F. Historical 
evolution of radiative forcing of climate. Atmos. Environ. 35, 2361–​2373 (2001). The CO2eq 
data are from IPCC AR5.
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29. From 1880 to 2012, with 90% confidence.
30. One hundred twenty-​five years was used because of the availability of the data used 

in the original study. An update will not alter the conclusions very much.
31. One standard deviation corresponds to 68% of the fluctuations being less extreme. 

Also, the estimate 0.2 is for differences in temperatures over 125-​year periods, such as those 
shown in Figure 6.6. Over shorter lags, a little lower.

32. For probabilities, the power law is only expected to apply to the extremes. Here, the 
extreme is 3%.

33. As qD increases, the shape of the distribution changes and the transition point to 
extreme power law behavior moves to lower and lower probability levels. We could thus 
think of the bell curve as effectively having qD = infinity, meaning a transition never occurs.

34. Statistics from the United States.
35. p < 0.001. In the CD article, the p values for several slightly different hypotheses were 

estimated. They took into account the uncertainty in the amount of warming (it isn’t ex-
actly 1°C) and also the uncertainty in the nature of the extreme probability “tails.” Lovejoy, 
S. Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic warming. 
Climate Dynam. 42, 2339–​2351 (2014).

36.  These series are displayed to make the point about the nature of the probability 
extremes. They are not intended to be taken as models of time series of temperature changes, 
because successive real-​world temperature changes over 125-​year periods are correlated. 
These correlations were taken into account in the CD paper. Lovejoy, S. Scaling fluctuation 
analysis and statistical hypothesis testing of anthropogenic warming. Climate Dynam. 42, 
2339–​2351 (2014).

37. We say “about” because this is the probability, averaged over an infinite number of 
statistically identical series, each with 5,000 points. Of course, each of the individual series 
would have different maxima.

38. If we made 1,000 such series each with 5,000 points, the one with the most extreme 
maxima would show a 1°C GNF.

39. This result can be deduced from the famous Manley monthly climate series and is 
based on early instrument temperatures: Manley, G. Central England temperatures: Monthly 
means 1659–​1973. Q. J. Roy. Metereol. Soc. 100, 389–​495 (1974).

40. Guemas, V., Doblas-​Reyes, F. J., Andreu-​Burillo, I., & Asif, M. Retrospective predic-
tion of the global warming slowdown in the past decade. Nat. Climate Change 3, 649–​653 
(2013).

41. Fyfe, J. C., Gillett, N. P., & Zwiers, F. W. Overestimated global warming over the past 
20 years. Nat. Climate Change 3, 767–​769 (2013).

42. Slingo, J., et al. The Recent Pause in Global Warming Parts 1–​3. (The Met Office, 2013).
43. Guemas, V., Doblas-​Reyes, F. J., Andreu-​Burillo, I., & Asif, M. Retrospective predic-

tion of the global warming slowdown in the past decade. Nat. Climate Change 3, 649–​653 
(2013). Schmidt, G. A., Shindell, D. T., & Tsigaridis, K. Reconciling warming trends. Nat. 
Geosci. 7, 158–​160 (2014). Mann, M. E., Steinman, B. A., & Miller, S. K. On forced temper-
ature changes, internal variability, and the AMO. Geophys. Res. Lett. 41, 3211–​3219 (2014).

44. Quote from page 2 of AR5 summary for policymakers. This AR5 distinction between 
what was, in actual fact, macroweather and climate variability was not much better than 
earlier pronouncements on the subject. The following are extracts from the “Summaries for 
Policy Makers” from the earlier IPCC assessments:
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AR1 (1990): “[T]‌he Earth’s climate would still vary without being perturbed by any ex-
ternal influences. This natural variability could add to, or subtract from, any human-​made 
warming; on a century timescale this would be less than changes expected from greenhouse 
gas increases.”

AR2 (1995): “Any human-​induced effect on climate will be superimposed on the back-
ground ‘noise’ of natural climate variability.”

AR3 (2001): “Changes in climate occur as a result of both internal variability within the 
climate system and external factors.”

AR4 (2007): “On [regional] scales, natural climate variability is relatively larger, making 
it harder to distinguish changes expected due to external forcings.” Cited in Hawkins, E., 
Edwards, T., & McNeall, D. Pause for thought. Nat. Climate Change 4, 154–​156 (2014).

45. Adapted from the International Panel on Climate Change Fifth Assessment Report 
(2013), Figure 1.4.

46. Adapted from Lovejoy, S. Using scaling for macroweather forecasting including the 
pause. Geophys. Res. Lett. 42, 7148–​7155, (2015).

47.  These are the numbers estimated using the NASA GISS temperature series (Fig. 
6.5A) and using the zero-​lag climate sensitivities. For more details and slightly different 
twenty-​year-​lag results, see Lovejoy, S. Return periods of global climate fluctuations and the 
pause. Geophys. Res. Lett. 41, 4704–​4710 (2014).

48. Guemas, V., Doblas-​Reyes, F. J., Andreu-​Burillo, I., & Asif, M. Retrospective predic-
tion of the global warming slowdown in the past decade. Nat. Climate Change 3, 649–​653 
(2013). Schmidt, G. A., Shindell, D. T., & Tsigaridis, K. Reconciling warming trends. Nat. 
Geosci. 7, 158–​160 (2014). Mann, M. E., Steinman, B. A., & Miller, S. K. On forced temper-
ature changes, internal variability, and the AMO. Geophys. Res. Lett. 41, 3211–​3219 (2014).

49. Lovejoy, S. Return periods of global climate fluctuations and the pause. Geophys. Res. 
Lett. 41, 4704–​4710 (2014).

50.  After sixteen years or so, the probability distributions of changes are nearly in-
dependent of the lag, so only the long-​time (sixty-​four-​year) probabilities were used. 
Figure 6.10 is thus slightly simplified in comparison with the original.

51. A little after GRL1 appeared, Karl et al. [Karl, T. R., Arguez, A., Huang, B., Lawrimore, 
J. H., McMahon, J. R., Menne, M. J., Peterson, T. C., Vose, R. S., & Zhang, H.-​ M. Possible 
artifacts of data biases in the recent global surface warming hiatus. Science Express 1–​4, 
doi:  10.1126/​science.aaa5632 (2015).] produced a temperature series with new ocean and 
other bias corrections. In this warmer series, the amplitude of the corresponding natural 
cooling is 0.09°C less than that shown in Figure 6.5A (i.e., about 0.2°C instead of 0.3°C). As 
the return period for this smaller natural cooling is only about ten years (Fig. 6.10), decadal 
trends cannot (and did not) detect any statistically significant pause. Because Karl et  al. 
defined a pause in terms of decadal scale trends, they made headlines by pronouncing the 
pause to be nonexistent!

52. Lovejoy, S. Using scaling for macroweather forecasting including the pause. Geophys. 
Res. Lett. 42, 7148–​7155 (2015).

53.  This explanation of the pause in terms of (high-​level) macroweather statistics is 
likely to be consistent with the (lower level, mechanistic) explanation by Steinman et al., 
who explained the pause by specific narrow-​scale-​range processes involved in the Atlantic 
multidecadal oscillation (AMO):  Steinman, B.  A., Mann, M.  E., & Miller, S.  K. Atlantic 
and Pacific multidecadal oscillations and northern hemisphere temperatures. Science 347, 
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988–​991 (2015). It is likely that these authors have simply identified the largest and strongest 
in a scaling hierarchy of fluctuating processes. This conclusion was supported by Held, 
I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., & Vallis, G.K. Probing the fast and 
slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 
23, 2418–​2427 (2010). Our macroweather hindcasts account statistically for the whole scale 
range and show they are all important (although the largest and the slowest in the hierarchy 
are the most important).

54. Lovejoy, S. Return periods of global climate fluctuations and the pause. Geophys. Res. 
Lett. 41, 4704–​4710 (2014).

55. Lovejoy, S. Using scaling for macroweather forecasting including the pause. Geophys. 
Res. Lett. 42, 7148–​7155 (2015).

56. Lovejoy, S. Climate closure. EOS 96, doi:10.1029/​2015EO037499 (2015).
57.  http://​joannenova.com.au/​2016/​02/​csiro-​wipes-​out-​climate-​division-​350-​scientists-​

to-​go-​since-​its-​beyond-​debate-​who-​needs-​em/​.
58. The closest to a time series trend in the CD article is seen in Figure 6.4A (a var-

iant of which had appeared in CD). However, it was not an analysis in time, but rather an 
analysis in the number of CO2 doublings. Even there, the uncertainty of the trend (slope) 
was estimated by comparing three different temperature data sets (not by the statistical 
assumptions about each series to which Keenan was referring). In any case, no trends were 
used to reject the GNF hypothesis. This was done using the probabilities of temperature 
differences.

59.  Lovejoy, S., del Rio Amador, L., Hebert, R., & de Lima, I.  Giant natural fluctua-
tion models and anthropogenic warming. Geophys Res Lett. 43, doi:10.1002/​2016GL070428 
(2016).

60. This was only one of the 1,000. Each of the other three had 333 realizations.
61.  One was a fractional Brownian motion (fBm) model (closely related to the fGn 

model, discussed in Chapters  5 and 7)  and at long-​enough timescales. Another was a 
standard random walk.

62. Things were actually even more complicated than this because Keenan spiced things 
up in a manner that is very difficult to analyze theoretically. In actual fact, he made 365 
realizations of each submodel and, for each (using a nontrivial “excision” procedure), 
the thirty-​two realizations with the largest variability were thrown away. The resulting  
3 × 333 “clipped” series were then added to the fourth submodel (the unique GCM output) 
to take the total up to 1,000. The trends of the clipped submodels had a nonstandard—​and 
nontrivial to analyze—​ probability distribution. In the GRL3 supplement, the trends were 
(appropriately) estimated by assuming that the residuals had long-​range dependencies. But, 
when the series was classified into trended or nontrended, their statistical distribution was 
assumed to be Gaussian. This led to the prediction that 893 ± 9 could be classified correctly. 
It seems that the clipping invalidated the Gaussian assumption and reduced this to only 
860 correct.
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 Macroweather predictions and climate projections

7.1  Predictability limits, forecast skill, and system memory

7.1.1  Deterministic predictability

“Does the Flapping of a Butterfly’s Wings in Brazil Set off a Tornado in Texas?” 
This was the provocative title of an addressa given by Edward Lorenz, the origin for 
the (nearly) household expression “butterfly effect.”b It was December 1972 and it 
had been nearly ten years since he had discovered it,1 yet its significance was only 
then being recognized. Lorenz explained: “In more technical language, is the be-
havior of the atmosphere unstable to small perturbations?” His answer: “Although 
we cannot claim to have proven that the atmosphere is unstable, the evidence that 
it is so is overwhelming.” c

Imagine two planets identical in every way except that on one there is a but-
terfly that flaps its wings. The butterfly effect means that their future evolutions 

a Lorenz, E. U. “Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in 
Texas?” presented at the 139th meeting of the American Association for the Advancement of Science, 
Washington, DC, 1972.

b Ironically, despite this title, Lorenz can take credit only for the science, but not for the famous 
expression itself. Lorenz had apparently failed to provide a title for his invited talk by the conference 
deadline. Organizer Philip Merilees then chose it for him.

c Lorenz’s argument is remarkably similar to the one Poincaré had given sixty years earlier:
Why have meteorologists such difficulty in predicting the weather with any certainty? Why is 
it that showers and even storms seem to come by chance . . . ? We see that great disturbances 
are generally produced in regions where the atmosphere is in unstable equilibrium. The 
meteorologists see very well that the equilibrium is unstable, but exactly where, they are not is 
a position to say; a tenth of a degree more or less at any given point and the cyclone will burst 
here and not there . . . . If they had been aware of this tenth of a degree, they could have known 
it beforehand, but the observations were neither sufficiently comprehensive nor sufficiently 
precise, and that is the reason why it all seems due to the intervention of chance. Here . . . we 
find . . . a very trifling cause that is inappreciable to the observer, [and leads to] considerable 
effects . . . [italics added]. (p. 66)

Poincaré, H. Science and Method. (Thomas Nelson and Sons, 1912). Poincaré was a self-​avowed deter-
minist, but—​appreciating statistical mechanics—​recognized that chance might nevertheless be needed 
to deal with complex multiple causes (see Box 1.1).
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are “sensitively dependent” on the initial conditions, so that a mere flap of a wing 
could perturb the atmosphere sufficiently so that, eventually, the weather patterns 
on the two planets would evolve quite differently. On the planet with the Brazilian 
butterfly, the number of tornadoes would likely be the same. But on a given day, 
one might occur in Texas rather than Oklahoma. This sensitive dependence on 
small perturbations thus limits our ability to predict the weather. For Earth, 
Lorenz estimated this predictability limit to be about two weeks. From Chapters 4 
and 5 and the discussion that follows, we now understand it as the slightly shorter 
weather–​macroweather transition scale.2

In Chapter 1, we learned that the ratio of the nonlinear to linear terms in the 
(deterministic) equations governing the atmosphere is typically about a thou-
sand billion. The nonlinear terms are the mathematical expressions of phys-
ical mechanisms that can blow up microscopic perturbations into large effects. 
Therefore, we expect instability. In Chapter 4, we examined instability from the 
point of view of the higher level statistical laws—​the fact that, at weather scales, 
the fluctuation exponents H for all atmospheric fields are positive (in space, up to 
the size of the planet; in time, up to the weather–​macroweather transition scale at 
five to ten days). We saw that positive H values imply unstable “wandering” beha-
vior. In the weather regime, none of the atmospheric variables show any signs of 
convergence to stable, fixed values.

Lorenz was speaking at the dawn of the deterministic chaos revolution to an 
audience familiar with linear systems with a behavior that is exemplified by the 
clockwork motions of the planets in their orbits.d Although Lorenz’s atmospheric 
model was highly nonlinear, it was nevertheless deterministic. If the starting 
conditions were perfectly known, the model could, in principle, be predicted per-
fectly for any time, no matter how far into the future. Lorenz invoked the question 
of stability to argue that, for the atmosphere, perfect Newtonian predictabilitye 
would hold in principle, but that in practice it would be academic. Even micro-
scopic errors in the data (initial model conditions) would grow catastrophically 
and, after a time, they would spoil the forecast. Lorenz argued that there are objec-
tive limits to deterministic prediction (Box 1.1).

To understand these limits, let’s consider a very simple chaotic system called 
the “logistic map”—​a model that Lorenz himself studied3 and one that is closely 
related4 to the Mandelbrot set (Chapter 2). First, let’s pick a starting number be-
tween zero and one. We’ll call it x0. Then, multiply it by its difference from one and 
then by a constant r to obtain the next number, x1, in the sequence:

d Even here, the reality is nonlinear. The equations of orbital motion are only exactly linear for two 
bodies, such as a single planet orbiting the sun. As soon as a third is added, the system is nonlinear. 
The real planetary system turns out to be chaotic, although this is only noticeable for periods of tens of 
millions of years. See Laskar, J. Large-​scale chaos in the solar system. A&A 287, L9–​L12 (1994).

e  Sometimes called “Laplacian” determinism, after Pierre-​Simon Laplace (1749–​1827), who fa-
mously postulated that (using Newton’s laws), given the position and velocities of all the particles in 
the universe, a “divine calculator” could calculate the future and the past.
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	 x rx  x .n+ n n1 ( )1= − 	

As long as r is in the range 0 to 4 and the starting value x0 is between 0 and 1, 
the sequence remains within the interval [0,1].

In the example in Plate 7.1A, I tookf r = 3.72. Now repeat the process, starting 
with x1 to generate x2, and repeat. Each repetition advances the clock. The number 
of repetitions n is the time taken for the system to evolve from x0 to xn. Plate 7.1A 
shows the result of eighty iterations when three different starting values of x0 are 
chosen. The values differ only by one part in one hundred million, so that the ini-
tial values shown in the figure are x0 = 0.4, x0 = 0.40000001, and x0 = 0.40000002. 
At first, as expected, the value of x evolves (almost) exactly the same way for each 
starting value. Yet, after thirty or so iterations, the values start to be visibly dif-
ferent from each other. After thirty-​five iterations, they seem to be pretty much 
unrelated to each other.g This can be see more clearly in Plate 7.1B, which shows 
the result of 1,000 such series, each starting with nearly the same value of x0 and 
each differing from each other by only one part in 10 billion. Rather than showing 
the 1,000 series, I  calculated their average (the central curve) and their typical 
spread.5 Analysis shows that, at least initially, for every successive iteration (as n 
increases by one), the spread of the initial values increases by a factor of 1.7. If the 
initial value was known only to one part in 10 billion, this would correspond to 
the growth of the forecast error and it would double every time n increased by 1.3, 
until eventually it becomes large and it “saturates.”

The logistic map can be interpreted as a simple model of the atmosphere 
that includes a weather regime, a weather–​macroweather transition, and a 
macroweather regime. In this case, the values of x might represent the tempera-
ture. Plate 7.1B shows that in this model, with appropriate units, the temperature 
varies over the range of about 2 to 9°C. Imagine starting a weather forecast at time 
t = 0 (the leftmost dashed vertical line in Plate 7.1B). At this point, the spread in xn 
is about 0.01, corresponding to initial temperature measurements that are in error 
by 0.1°C. If n represents the time in forty-​hour units, then the forecast error dou-
bles every 1.3 × 40 = 52 hours. After ten days (the second vertical line in Plate 7.1B), 
the spread of the temperature forecasts has increased by a factor of 25, to 2.5°C. The 
model has saturated (the errors no longer double) and beyond this “lead time,h” 

f The full behavior of the logistic map is very complex and was not well understood until, with 
its help, Mitchell Feigenbaum and others discovered “universality” during the 1970s. One of the 
complications is that there are only certain ranges of the parameter r that lead to chaotic behavior. For 
example, below a critical value, r = 3.56995... , the behavior is instead periodic.

g  In the logistic map, errors can grow exponentially fast so that, in principle—​if it was a model 
for Earth’s atmosphere—​then it would be so unstable that a butterfly flapping its wings on Alpha 
Centauri could, via a nearly (but not quite infinitesimal) gravitational tug, provoke growing terrestrial 
perturbations!

h Sometimes called the “forecast horizon.” This is usually defined as the time between the end of the 
data used in the forecast and the beginning of the period of the forecast. A “zero-​lead time” one-​month 
temperature forecast for the month of February would use data up until the end of January to make a 
forecast for the average temperature in February.
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the forecast becomes statistical in nature. It can be based purely on past knowledge 
of the mean climatological temperature (the horizontal dashed line in Plate 7.1B) 
to be about 6.5°C. The red lines in Plate 7.1A give us the uncertainty, the expected 
error in the forecast. They tell us that the temperature would be between 4°C and 
9°C, with 68% confidence. Beyond the weather–​macroweather transition, there is 
still a little residual skill (see the zigzagging part in Plate 7.1B just beyond the right-​
hand dashed line that continues to a bit beyond n = 40).

Although the system is perfectly deterministic in the sense that the rule tells us 
how to calculate xn+1, where xn is simple and unambiguous, beyond ten days, the 
result is purely statistical. Ten days is the deterministic predictability limit. If, at 
scales of one day, the observations were in error by a tenth of a degree, it would be 
the longest time that we could ever hope to predict the system. Notice that things 
are not improved much with better observations. If the daily observations had an 
error eight times smaller (i.e., if they were one eightieth of a degree), then the fore-
cast limit would be improved by three error doubling times: 3 × 52 hours = 6.5 days 
(i.e., from 10–​16.5 days). The fifty-​two-​hour error doubling time is a useful number 
because a real-​life forecast system could not make skillful predictions to lead times 
more than a few times this value.i It is a useful benchmark.

In this chapter, we are interested in macroweather forecasts, so the error 
doubling time isn’t the most useful way to characterize forecast skill. Let me intro-
duce a different metric that will allow us to compare both deterministic weather 
and stochastic macroweather forecasts. Although for a given lead time t there 
are many ways to quantify the skill, a simple, commonly used metric is the mean 
square skill score (MSSS) or “skill,” defined as

	 Skill t 1 verage verage A E t (A E( ) ,2 2( ( ) ]) [= − / ∞ 	

where the forecast is made at time t = 0, E( )t  is the error at time t after the fore-
cast, and E( )∞  is the error infinitely far in the future when the error is at its max-
imum. At the time of the forecast, there is no error [E(0) = 0, Skill(0) = 1)] and the 
formula shows that the skill always goes to zero at long times.6 Note that the typical 
error in the predictions is the same as the spread in the predictions. It is the dis-
tance between the middle (mean) and one-​standard deviation (top and bottom) 
curves in Plate 7.1B.

With this definition, the skill of the deterministic forecast is shown in Plate 7.2A 
(bottom curve). We see that, as expected (using the time units described earlier; 
n = 1 corresponding to forty hours), it goes from 1 (perfect skill) to 0 (no skill) at 
around ten days.

i We mentioned two predictability limits: the error doubling time (fifty-​two hours) and the “error 
saturation” time (ten days) beyond which there is little skill. They are not very different and either one 
could be used, depending on the application.
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7.1.2  Stochastic predictability

Because the high-​level turbulent laws are stochastic, let’s now consider the predicta-
bility of a simple stochastic macroweather model. In this case, the model starts with 
the value at two consecutive time steps xn and xn–​1 and uses a simple but stochastic 
rule to determine the next value, xn+1. The rule is simply that xn+1 is the weighted 
sum of the previous xn and xn–​1, with an extra random variation γn, called an “inno-
vation.”7 Technically, this type of model is called “autoregressive,” or ARj for short.

Box 7.1  describes how innovations arise from energy stored as heat in the 
oceans, cryosphere, and soil. Let’s say that the process was started a long time ago, 
and that we know the weights are 0.1 and 0.72, so the rule to determine the next 
value in the series is

	 x x xn n n n+ −= + +1 10 1 0 72. . .γ 	

From past measurements, we would like to predict the future. Clearly, if we measure 
the process at two consecutive times, then—​knowing the rule—​we could apply it to 
get a possible future by “flipping a coin” to generate possible future innovations. In 
contrast to the deterministic model, we see that even if the measurements are abso-
lutely error free—​so that, for example, x0 and x1 are known exactly—​the future given 
by our rule is only one of an infinite number of possible futures. This is because, 
although we know the rule that is used to choose the innovations (we know their 
probabilities), the future innovations themselves are unknown.

Plate 7.2B shows three simulations of a process that had the values x0 = 1 and 
x1 = 2 when measured at the two times n = 0 and n = 1 (upper left). Because each 
simulation is forced to be identical for the first two (measured) values, each series 
represents a possible future conditioned on these measurements. We can see there 
are significant undulations, which are the result of the strong correlations between 
the variables induced by the weights. In many ways, the result is similar to the de-
terministic model we just examined. However, here, what ruins this “conditional 
prediction”k is not imperfect initial information, but rather the (unknown) future 
innovations γn. It is an objective rather than a subjective limitation.

A simple way to predict the future of the model is to make a large number 
of conditional simulations and use the average as the forecast. The uncertainty 
can be determined by the spread around this average. Figure 7.1 shows the result 
using 1,000 different series just as in the deterministic case (Plate 7.1B). Notice 
that the mean (middle) decays quite quickly to its long-​term value (0). With these 
weights, on average, the distance from the long-​term average is halved every 
n =  3.46 steps.l If we took the time step n to be 2.9 days, then, on average, the 

j Not to be confused with assessment reports, which are all numbered.
k The prediction conditioned on knowledge of past values.
l AR models with a finite number of terms generally decay rapidly (exponentially) quickly. This rate 

of exponential decay is a fundamental timescale for the process. Because of this characteristic time, AR 
processes are scalebound. Slower (power law) decays are discussed later.
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model would return halfway to its long-​term value every ten days, corresponding 
to the weather–​macroweather transition scale (see Fig. 7.1). In this interpretation, 
the model represents a stochastic forecast of a macroweather series of consecutive, 
ten-​day averaged temperature anomalies.

xn
2.0

1.5

1.0

0.5

0.0

–0.5
n

20

10 days 40 days

40 60 80

Figure 7.1  The mean and spread of 1,000 stochastic simulations of the same macroweather 
anomaly model as in Plate 7.2A, with the middle curve showing the mean and the top and 
bottom curves, the spread (68% of the series between the two). The mean is an exponential 
return to the long-​term value (0); it corresponds to a decrease of a factor of 2 every n = 3.46 
time steps. The timescale shown in the model by the dashed vertical lines corresponds to n 
in units of 2.9 days, with the observations representing the average of the first ten days (the 
beginning of the macroweather regime).

To determine the skill of the model, notice that the spread (Fig. 7.1, top and bottom) 
of the conditional series starts off small, but grows at the longer times, decreasing the 
skill.m Notice that, although the deterministic logistic mapping skill is negligible after 
ten to twenty days, there is still stochastic skill up to forty days or more.

7.1.3  System memory

In both the deterministic and stochastic cases, the information contained in the 
initial conditions (the observations) is used to make a forecast, but the information 
decays and is eventually lost as the forecast moves further into the future (for the 
physics, see Box 7.1). The memory of the system is finite. To clarify this, let’s inves-
tigate the memory of a slightly different stochastic process, the MA model, where 
the value xn of the process after n iterations is a weighted sum of past innovations 
instead of the weighted sum of past values. For example,

	 xn n n n= + +− −γ γ γ0 5 0 11 2. . . 	

m Note that if the magnitude of the innovations was changed, or if the starting (conditioning) values 
determined by the observations were different, we would still obtain the same skill curve. The rate that 
it decays with the forecast horizon (lead time) depends on the model weights only (0.1 and 0.72).
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As before, physically, the innovations might be past temperature perturbations 
caused by storms, volcanic eruptions, ocean currents, and so on. According to this 
model, the value xn of the process at time n depends on the current innovation (γn) 
as well as on the previous two innovations (γn–​1 and γn–​2). In this example, we see 
that the next value (at time n + 1) is

	 xn n n n+ + −= + +1 1 10 5 0 1γ γ γ. . , 	

so that one time step later, the perturbation caused by the innovation γn has lost 
half of its importance. Two steps later (at time n + 2), it has only 10% of its original 
importance,

	 xn n n n+ + + += + +3 3 2 10 5 0 1γ γ γ. . , 	

and three steps later,

	 xn n n n+ + + += + +3 3 2 10 5 0 1γ γ γ. . . 	

γn plays no role whatsoever. In this model, the role of the innovations is clear: The 
innovations define the system memory. If we knew all the past innovations, we 
would know the past values of x. Conversely, knowing the past values of x allows 
us to determine the past innovations. We could then use these past innovations to 
make a forecast by the same method as in the previous AR case, by making a large 
number of simulations and conditioning them on the past innovations.

The original AR and MA processes were popularized by an influential book by 
Box and Jenkins,8 which introduced the topic to the engineering, hydrology, and 
other geoscience communities. Unfortunately, Box-​Jenkins models are scalebound, 
having only short-​term9 memory. This is an inevitable consequence of consid-
ering models with only a finite number of innovations. In typical applications, 
only a fairly small number of innovations are used. By adjusting the parameters, 
the critical scalebound scale over which the skill is reduced by a factor of 2 can be 
adjusted. But, whichever critical scale is used, when one goes much beyond it, the 
prediction skill is lost rapidly.10

Let’s now return to the fGn process, which is scaling and which is essentially an 
MA process but with an infinite number of innovations. If the weights are chosen 
to fall off in a power law manner, so will the skill [i.e., much more slowly than in 
the (scalebound) case of a finite number of innovations]. Plate 7.2A (top) shows 
this slow fall-​off, which allows much longer forecasts (Box 7.2).

Box 7.1  Earth’s (fractional) energy balance, storage, relaxation, memory, and innovations

The way and rate that Earth stores energy is the source of its memory. In this box 
we examine how storage can be used to understand the long-​range memory that is 
the basis for both macroweather prediction and climate projections (Sections 7.2 and 
7.3): the relation between the “internal” and “externally forced” variability.
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Earth receives energy from the sun and emits thermal radiation to outer 
space. If the two were exactly in balance for a long-​enough time, it would be in 
thermodynamic equilibrium, and this would determine its temperature. However, 
Earth’s axis of rotation precesses, its orbit wobbles, and the sun has spots and cycles, 
so that, even at the top of the atmosphere, incoming radiation is variable. To this 
we can add volcanic eruptions that shroud Earth by propulsing reflecting particles 
into the stratosphere. In addition, Earth’s constantly evolving clouds, oceans, ice 
sheets, and vegetation change the rate that energy is absorbed and re-​emitted. The 
forcing—​the difference between the rate at which energy is absorbed and emitted—​
is thus constantly changing. Each forcing corresponds to a different equilibrium 
temperature that would be attained if the forcing stopped varying and remained at 
a fixed value. A positive forcing means more energy arrives than leaves. It leads to 
a rising temperature that, in turn, leads to a rising emission that tends to close the 
absorption–​emission gap [i.e., to reduce the forcing (and conversely for a negative 
forcing)]. If left long enough, equilibrium will thus eventually be established. The 
temperature thus responds to positive or negative forcings by “relaxing” to a new 
equilibrium.11

Relaxation is not instantaneous. At any given moment, the rate that energy 
arrives differs from the rate at which it leaves: Energy is either stored or, conversely, 
previously stored heat energy is emitted to outer space. Most of the storage (about 
93%) is in the oceans. This is not only because the oceans cover 70% of Earth’s surface, 
but also because they are much darker than the average of the land surface. Like 
the atmosphere, the ocean is a turbulent fluid with eddies and gyres that span wide 
ranges of scales (and depths); there is a vast range of fast, medium, and slow storage 
processes. Over land, storage also occurs over a wide range of scales—​notably, in 
land ice, soil moisture, and other land processes.

When it is forced away from equilibrium, how does the climate system adjust 
(relax) its temperature to its new equilibrium value? In the conventional relaxation 
model—​the “energy balance equation” (EBE)—​Earth’s storage is treated simplistically 
as consisting of a thick slab of solid material, such as a bar of metal, that slowly warms 
or cools depending on the net energy balance. The memory of past forcings is in the 
slab that stores heat energy. The EBE implies that the process is exponential—​that 
it is fundamentally characterized by a “relaxation time” that characterizes the rate at 
which equilibrium is reestablished. A jump in the forcing to a new value defines a 
new equilibrium temperature and then, after one relaxation time, the temperature 
relaxes halfway to its new value. After two relaxation times, the difference is reduced 
to one fourth of the original difference, so that three fourths of the adjustment occurs 
during the first two relaxation times, seven eighths in three relaxation times, and 
so on.n

Now consider the more general situation in which, instead of suddenly increasing 
the forcing to a new, constant value, it varies continuously as a result of a combination 

n For example, if—​as a result of the forcing—​the new equilibrium temperature is 4°C greater than 
the old one and the relaxation time is one year. Then, after a year, the temperature will rise so it is only 
2°C below the new equilibrium value. One year later, it will only differ by 1°C and, after the third year, 
by 0.5°C.
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of an anthropogenic, volcanic, or solar forcing, with each new value of the forcing 
defining a new equilibrium temperature. At any instant, as the temperature starts 
to relax toward its new equilibrium value, the value itself must be updated to reflect 
even newer forcing.

By now, you might suspect that, once again—​as a result of scaling symmetries—​
the relaxation process is not exponential, but rather a qualitatively different long-​
memory power law process, with only a small fraction of the return to equilibrium 
occurring within the analogous (power law) relaxation time.12 However, in contrast 
to exponential relaxation, with each additional relaxation time taking us twice 
as close to the equilibrium temperature, power law relaxation requires us to wait 
multiplicatively longer. For example—​depending on the exponent—​it might take ten 
(power law) relaxation times to halve the difference between the actual temperature 
and its equilibrium value. In this case, it would take 10 × 10 = 100 relaxation times 
to halve it again to a quarter, and 10 × 10 × 10 = 1,000 times to relax it to within an 
eighth. Power law relaxation is thus a much slower process.

Although exponential relaxation implies a short memory (the effects of forcings 
further in the past than a couple of relaxation times are almost negligible), power law 
relaxation is associated with long memories. Rather than approximating Earth as a 
giant uniform slab of material that gradually warms or cools, one assumes that the 
oceans have turbulent currents organized into a hierarchy of gyres and eddies, each 
of which transfers its heat at a rate that depends on its size and depth. Heat transfer 
over land can also be considered to occur via a hierarchy of land ice, soil moisture, 
and other processes with rates that depend on size.

Surprisingly, although the new power law relaxation model is simple and 
physically more realistic, it has only recently been proposed.o I  suspect that the 
reason for its neglect is that physicists are trained only to consider mathematical 
models that involve differential equations, such as the EBE, that are of integer order. 
Although ubiquitous, it turns out they are the only equations that lead to exponential 
behavior. As soon as one uses relaxation equations of fractional order—​the fractional 
energy balance equation13 (FEBE)—​one obtains power laws.p

What is the evidence for the FEBE? We have indicated that the FEBE relaxation 
time has a rather different interpretation than in the standard (exponential) EBE. 
Although in the EBE it represents a transition from a strong memory (scales less 
than the relaxation time) to virtually no memory (longer timescales), for the FEBE, 
it represents a transition between two power laws, hence between two regimes, 
each with strong but somewhat different memories. In Section 7.2, I  show how 
macroweather forecasts (from weeks to years) can be made by exploiting the 

o At the time of writing, this was still work in progress in my McGill group.
p It may be surprising to learn that, going back to the nineteenth century, fractional (even complex 

ordered) integrals and derivatives existed. In the past decade or so, they have been used increasingly in 
physics, and some theory of fractional differential equations exists. See, notably, Podlubny, who treats 
the deterministic version of the fractional relaxation equation. [Podlubny, I.  Fractional Differential 
Equations. Vol. 198. (Academic Press, 1999).] As far as I  know, the stochastic version—​the “noise-​
driven fractional relaxation equation”—​needed to take random internal variability into account had 
not been considered previously.
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long memory. For the globally averaged temperature, this is characterized by the 
exponent H ≈ –​0.1, whereas in Section 7.3 I argue that the decadal, centennial global 
temperature response to anthropogenic and other external forcings (projections) 
can best be made with a different exponent, HR ≈ –​0.4. The plausibility of the FEBE 
is not only that it is compatible with these strong power law memories, but that it 
explains both because, theoretically, it implies that the two exponents are linked via 
the relation H = –​(1/​2 + HR).

The FEBE thus unites the variability that is a consequence of externally forcing 
(anthropogenic, solar, volcanic, or other external changes to the rate of energy 
coming into or going out of the system) with the random “internal variability,” the 
source (“innovations”) of which is otherwise mysterious. The innovations are thus 
simply internal sources and sinks of heat associated with heat transport toward 
or away from the surface (mostly, but not only, deep ocean currents). Just as the 
external forcing drives the system by providing an excess or deficit of heat energy, 
internal sources (or sinks) of heat—​such as currents delivering heat energy to the 
surface—​similarly drive the system.q
  

Box 7.2  Finite and infinite memories

To understand process memories more fully, Figure 7.2 gives an example showing 
how to construct MA models that are better and better approximations to fGn. 
Starting with the bottom curve, I show a series of independent random variables: the 
innovations. This is effectively an MA model with a single innovation. All the curves 
above this one are built by adding more and more of these innovations, with weights 
decreasing such that those further in the past become progressively less important. 
As we move from the bottom to the top series, the number of innovations used to 
determine a given value in the series increases from 1 to 256. In Figure 7.2, this is 
indicated by the solid horizontal bar.

With the increase in the number of innovations, the system memory increases, 
but the memory doesn’t only depend on the number of innovations that are used; it 
also depends on their weights. In this example, they were chosen to fall off slowly 
(in a power law way14) so that, in the limit of an infinite memory, the model respects 
a scaling symmetry (power law weights). Moving from bottom to top, we see that 
the series are correlated over longer and longer stretches—​indeed, up to, but not 
exceeding, the number of innovations. Sections farther apart than this are, on the 
contrary, statistically independent of each other. With a finite number of innovations, 
the series are all scalebound; however, they can approach the scaling fGn result in the 
limit of a large number of innovations.

The weights for the older and older innovations fall off with the lag so that the 
fraction of the total memory for each approximation compared to the full fGn model 
is 18%, 34%, 49%, 61%, and 71% for 1, 4, 16, 64, and 256 innovations, respectively 
(bottom to top in Fig. 7.2). Although we see little difference between the series with 
64 innovations and the series with 256 innovations (the top two series), we are still 

q The fundamental difference between the two is only that, on average, the internal forcing is zero 
whereas there is no such constraint on the external forcing.
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not so close to the infinite innovation fGn model. The memory of the top series is 
still missing 29%. This missing memory is associated with very old but numerous 
innovations. The reason we don’t see any obvious consequence is that they almost 
exclusively affect the very long time undulations (the very low frequencies). The 
missing 29% essentially moves the entire series up and down. Over the finite range of 
interest—​here, over a series 1,024 points long—​this could be (nearly) summarized in 
a single number: the overall vertical displacement of the series. Although these really 
ancient innovations may still be “felt,” their collective effects are easy to account for 
even with a relatively small set of past measurements. This is the idea behind the 
stochastic forecast explained later.

256

64

16

4

1

Figure 7.2  This figure shows the memory effect with power law weighting (H = –​0.1) 
using an identical set of 1,024 innovations for each series. As we move from bottom 
to top, the number of innovations used in the model for xn increases. This number 
is indicated by the number on the right-​hand side and by the length of the central 
black segments that are given for reference. As we move from bottom to top, we get 
an increasingly accurate approximation to the fractional Gaussian noise model that 
corresponds to an infinite number of innovations.

   7.2  Harnessing butterflies: Stochastic macroweather forecasting

7.2.1  The role of space

In the previous section, I simplified the prediction problem to compare and con-
trast deterministic and stochastic predictability limits, and to show they can both be 
quantified using the same measure of skill. In both cases, when forecasts are made 
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further and further into the future, there is a decay in the initial information—​a 
loss of memory. It seemed plausible that, although beyond the ten-​day weather–​
macroweather transition, the deterministic skill is low, but there may, neverthe-
less, be significant stochastic skill. Inasmuch as the randomness is a result of the 
small-​scale sensitivity—​the butterfly effect—​the stochastic forecast effectively 
harnesses the butterflies to predict the future skillfully.

Before discussing the real-​world implementation of this idea, there is a key aspect 
to address: the spatial part of the problem. Forecasting involves predicting the evo-
lution of spatial structures, not simply forecasting a single time series at a fixed loca-
tion. In weather forecasting, the size of structures (eddies) determines how far ahead 
they can be forecast. Lorenz15 used this to develop a model of inverse cascades of 
prediction errors.16 In this scenario, the flapping of a butterfly’s wings leads to a per-
turbation in a structure/​eddy a little larger than the butterfly. The effect of this per-
turbation roughly doubles over the (longer) lifetime of this larger eddy. As discussed 
in Chapter 4, this lifetime is determined by the energy rate density and by the size of 
the eddy.17 At first, this error corrupts the forecast of the small scales just beyond the 
short lifetimes of the butterfly-​scale structures. This in turn leads to the growth of 
errors in forecasting the corresponding slightly bigger eddies. Over the time it takes 
for these slightly larger structures to grow and decay (their lifetimes), the forecast 
will be ruined at this larger scale, so this error is propagated to still larger and larger 
scales until, eventually, planetary scales are reached. As the forecast progresses to 
longer and longer lead times, the small-​scale details become progressively corrupted. 
Finally, only the forecast of the planetary-​scale structures has any skill, and even this 
decays rapidly after the corresponding ten-​day lifetime.18

As explained in Chapter 5, for weather and macroweather forecasting, GCMs 
deal with the spatial aspect by specifying complete information about the state of the 
atmosphere at an initial instant. These models are then integrated forward in time. 
Mathematically, we are dealing with an “initial value problem.” However, using the 
emergent laws for macroweather forecasting, we need past data; initial data are not 
enough. If complete information of the atmospheric state was required not only at 
an initial instant, but also at all past times, the need for this extra (past) data would 
be a great disadvantage. However, thanks to a space–​time symmetry called “space–​
time statistical factorization,” there is a huge simplification of the spatial part of the 
problem.19 STSF implies that, although strong spatial relationships (correlations) 
may exist between the atmosphere at even distant locations—​“teleconnections”—​
whenever long-​enough past data exist at a given location, this information is al-
ready included in the series. Using series from other spatial locations explicitly as 
“copredictors” does not necessarily improve the forecast. For example, although 
a seasonal forecast of Montreal temperatures might be influenced by an El Niño 
event off the coast of Ecuador, a long-​enough series of Montreal temperatures al-
ready includes the information relevant for Montreal macroweather forecasts. The 
Montreal series may be forecast without this additional information.r

r The STSF applies only to the parameter being forecast—​in this case, the air temperature. It turns 
out that a little extra skill is indeed obtained by using climate indices such as the SST off the coast of 
Ecuador (an El Niño index). This is current work in progress!
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7.2.2  Stochastic macroweather forecasts:  
A killer app?

The possibility of using a stochastic approach for modeling and forecasting the 
atmosphere beyond the ten-​day deterministic predictability limit goes back to 
an influential article, published in 1976, by Klaus Hasselmann (b. 1931).20 Since 
then, his approach was developed significantly and applied to macroweather 
forecasts in the framework of “linear inverse modeling” (LIM), sometimes also 
called the “stochastic linear framework.”21 These models are essentially extensions 
of the AR process described earlier, but to continuous times and to a potentially 
large number of coupled variables, such as atmospheric temperatures at different 
locations, ocean temperatures at various grid points, El Niño, or other climate 
indices.

Typical implementations22 involve twenty components (implying hundreds of 
empirical parameters). From our point of view, the key point is that LIM assumes 
implicitly that the system is scalebound (decaying exponentially)—​in other words, 
there is no long-​term memory. Consequently, typical applications have little skill 
beyond a year or so.

Because its theoretical basis is weak and it involves a large number of em-
pirical parameters, LIM is an example of what is commonly termed an “empir-
ically based” approach. Other such approaches have been proposed,23 and they 
have had some success by using carefully chosen climate indices related linearly 
to macroweather variables of interest and by using empirically determined time 
delays. In contrast, our approach is based physically on the high-​level laws that 
emerge as a result of the space–​timescale symmetries respected by the dynamical 
equations and reproduced statistically in GCMs.

According to the scaling storage and relaxation model (Box 7.1), macroweather 
can be well approximated by fGn. fGn is also the simplest scaling macroweather 
model, and its application to macroweather forecasting, including the numer-
ical algorithm to make the optimal forecast, is SLIMM.24 To see how this works, 
let’s take the example of predicting the annually, globally averaged temperature 
in Figure 6.4A. As we saw in Chapter 6, most of the change in this temperature 
since 1880 is the result of low-​frequency anthropogenically forced climate—​not 
macroweather variability. Our first step, therefore, is to remove this and to forecast 
the residuals (the internal variability; Fig. 6.4C). Failure to remove the anthropo-
genic trend25 leads to poor results.26

In Box 7.2, we saw that fGn can be represented as a sum of an infinite number 
of past innovations that have weights that decrease in a power law way determined 
by the fluctuation exponent H. How can we use this knowledge to make forecasts? 
Let’s say we have monthly resolution temperature data and we want to make a fore-
cast three months ahead. First, from fluctuation analysis (as in Chapter 2), we can 
estimate H (= –​0.1 here), which determines the innovation weights. Next, we need 
the past innovations—​in principle, from the infinite past. Using this information, 
the temperature three months from now is given by the weighted sum of these past 
innovations plus a contribution from the (unknown, future) innovations over the 
next three months.
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These future innovations could be chosen randomly; they are possible 
innovations that determine possible temperatures three months into the future. 
They would yield one of an infinite number of possible futures. The actual future 
would not be exactly the same, but it might be close. Just as in Figure 7.1, we could 
then repeat the procedure 1,000 times, generating 1,000 possible temperature se-
ries, each of which would be identical over the entire past, but would differ over 
the future. However, just as in the examples in Plate 7.2B, they would start off near 
each other and generally become more and more different further into the future. 
Our final forecast would be the average; the skill of the forecast would be deter-
mined by the spread of their futures conditioned on the past data.27

When this approach is applied to global, annually averaged temperatures for 
the critical “pause” period following 1998, we can obtain the forecast shown in 
Figure 7.3. We see that the temperature over the next fifteen years (bottom right) is 
reproduced quite accurately.28 Indeed, although the GCM predictions were about 
0.2°C too high (Fig. 6.9), Figure 7.3 shows the detailed pause hindcast was accu-
rate to within about ±0.05°C.29 This shows that the overforecasting of the pause 
temperature was purely a GCM problem. The atmosphere itself behaved exactly 
as expected!
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Figure 7.3  (Top) The residuals temperature of Figure.6.4C after the low-​frequency 
anthropogenic rise has been removed (thin line) with the hindcast from 1998 (thick line; 
the dashed lines are ±34% confidence intervals of the forecast, which is the likely range of 
their error). (Bottom left) The anomaly defined as the natural temperature (i.e., residual, 
Fig. 6.4C) over the hindcast lead time (thin line). The thick line is the hindcast, the dashed 
lines are the ±34% confidence limits. (Bottom right) The temperature since 1998 (thin) with 
the hindcast (thick). It is a blowup of the hindcast part of the top right.30
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This successful forecast based on the fGn model works, but it can be improved 
in several ways. Box 7.3 examines the SLIMM approach, which has been opera-
tional since April 2016.s

The discussion in the box shows that it works extremely well on GCM con-
trol runs. Control runs provide a good testing ground because they have pure 
macroweather statistics. There are no low-​frequency, slow climate forcings to 
worry about.

Up until now, scaling approaches to the atmospheric sciences have prima-
rily provided a new way for understanding the weather and climate, for making 
models with realistic statistical properties. What has been lacking is a practical 
application of scaling that improves on conventional alternatives, an application 
that confers palpable advantages. Macroweather forecasts have applications to ag-
riculture, renewable energy, environmental risk management to name only a few. 
Any prediction technique representing even a modest improvement over tradi-
tional methods would provide a relative advantage and would be profitable. Will 
the economic advantages of SLIMM-​based stochastic macroweather forecasts turn 
out to be scaling’s “killer app?”

Box 7.3  SLIMM: The role of the distant past and forecasting GCM control runs

The forecast approach used in Figure 7.3 assumes that we had an infinitely long 
series of temperature data Tn for times n ≤ 0 and that each is a weighted sum of the 
preceding innovations γn. To make the forecast, it “inverts” the Tn series to determine 
the innovation series γn. From there, a possible future is generated by resumming the 
innovations with different weights and with randomly chosen future innovations. 
This process is then repeated many times, and the forecast is the average over many 
of these possible futures; each has the same (measured) series of past innovations, 
but a different, randomly chosen set of future ones. Although this forecast approach 
works, in the practical case in which the amount of past data is limited, there is a 
better way. We can avail ourselves of the mathematical solution of the finite fGn 
forecast problem.31 This solution has a remarkable feature that arises because of the 
huge fGn memory. Let’s say we have temperature data for twenty years at monthly 
resolution—​240 monthly values in all—​and we want to use them to make a forecast, 
knowing the process was an fGn with exponent H. We want to combine the past data 
in a way that makes the average prediction error as small as possible.32 It turns out 
this can be done by an appropriate weighted sum of the past values.

It seems obvious that if we want to forecast next month’s temperature, that the most 
recent temperature—​the average over the month that just ended—​should be accorded 

s SLIMM was developed a few years after the GCM community had made a concerted effort to 
apply GCMs to the problem of long-​range weather forecasting. By the time the potential of the new 
approach was first being discerned, monthly, seasonal, and interannual prediction was no longer fash-
ionable; attention had turned to the new area of “subseasonal” forecasting (weeks to about a month). As 
a consequence, SLIMM was developed without funding. Ironically, after it had proved its effectiveness, 
funding became available to help commercialize it.
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the most importance, given the highest weight. Indeed, this is a general feature of 
stochastic forecasts. Figure 7.4 shows the weights for the fGn with the familiar value 
H = –​0.1 (appropriate for globally averaged temperatures), confirming this feature 
(the spike at the right of the figure). Not surprisingly, the figure shows that older 
temperatures in this series generally receive much less weight. However, the figure 
also shows that, starting with the oldest 10% or so of the data (in this example, the first 
two years of the data at the left of Fig. 7.4)—​remarkably—​the weights rise sharply so 
that the oldest month (240 months in the past) gets a comparable amount of weight 
to the most recent month! In the words of the mathematicians who discovered this 
effect, this is because the most ancient data “is the closest witness to the distant past.”33
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Figure 7.4  This figure shows how the weights used to forecast the next time step 
decay, as we move from the present (at the far right) to the distant past (far left), rise 
sharply. The horizontal timescale is the fraction of the interval over which past data 
are available, with –​1 indicating the oldest. The plot is for H = –​0.1.34

The data from the distant past are largely used to determine the overall offset of 
the series from its long-​term value (0). Therefore, before applying SLIMM to make 
real-​world macroweather temperature forecasts, we must first remove extraneous 
nonmacroweather features—​in particular, low-​frequency anthropogenic climate 
variations. Before dealing with this real-​world complication, let’s see how SLIMM 
does on the pure macroweather problem of forecasting GCM control runs that, by 
definition, don’t have any climate forcing. If SLIMM is indeed a good high-​level 
stochastic model of low-​level GCM behavior, then it should be able to predict the 
control runs to their theoretical stochastic predictability limits.

My colleagues and I used thirty-​six globally and monthly averaged Coupled 
Model Intercomparison Project Phase 5 (CMIP5) control run outputs. For each, 
we estimated the relevant exponent H and found a mean H =  –​0.11 ± 0.0935; 
this value near zero implies a huge memory. Using this method at a one-​month 
resolution, we produced hindcasts with lead times from one to twelve months,36 
verifying them against the control run. Figure 7.5 compares both the expected 
(theoretical) skill and the actual hindcast skill. Although there is a fair bit of 
variation from GCM to GCM, the theoretical and actual skills are, on average, 
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very similar and they are very high, with more than 50% skill on average at twelve-​
month lead times.37 These results make it quite plausible that the theoretical 
stochastic predictability limit (Plate. 7.2A) really is an upper bound on the skill of 
macroweather forecasts.
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Figure 7.5  The mean square skill score (MSSS; skill) for hindcasting thirty-​six 
Coupled Model Intercomparison Project 5 Global Climate Model (GCM) control 
runs, each at least 2,400 months long. Each GCM had a slightly different H value 
and, hence, different theoretical predictabilities. The graph shows that both the means 
and the spreads (shaded areas) of theory and practice (Scaling Macroweather Model 
hindcasts) agree very well. A lead-​time zero forecast is for the month immediately 
following the latest available data.38

  

7.2.3  Regional forecasting

The ability to forecast GCM control runs to their stochastic predictability limits and 
the successful hindcast of the pause in the globally averaged temperatures show that 
fGn is a reasonable macroweather model and that SLIMM’s numerical algorithms 
are as good as could be hoped. What about applying this to regional macroweather 
forecasting, for example, on 5° × 5° grids at monthly scales? I mentioned that, as a 
result of the statistical space–​time factorization symmetry, if long-​enough series are 
available, they could be forecast directly—​that using information at other locations 
as “copredictors” would not increase the overall skill because the past data at the 
location already contain the information from the spatial correlations.

The various steps in the forecast are illustrated in Figure 7.6, using the pixel 
over Montreal as an example. The first step is to remove the low frequencies 
that are not a result of (scaling) macroweather variability to be able to apply the 
SLIMM forecasting algorithm. This is not totally trivial for two reasons. First, the 
low frequencies have both a mean component of anthropogenic origin, but also—​
because of its long memory—​one resulting from long-​term macroweather varia-
bility. Second, at 5° × 5°, there are strong annual cycles, and they are not perfectly 
fixed; they evolve slowly from one year to the next.39
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Figure 7.6  An example of forecasting the temperature at Montreal.40 The top left shows the 
raw monthly data, the bottom left shows the mean annual cycle as deduced using a thirty-​
year running estimate, the upper right shows the low-​frequency trend,41 and the bottom right 
shows the resulting anomalies forecast by SLIMM.42

The solution that we adopted was to use the fact that the anthropogenic effects 
are only strong at decadal scales, so that by filtering they can be largely separated 
from the macroweather variability.43 The annual cycle can be dealt with by using 
the past thirty years of data to make running estimates of the latest cycle and then 
use it for next year’s forecast. Finally, the anomalies that result from removing the 
anthropogenic warming and the annual cycle can be forecast using SLIMM (lower 
right, Fig. 7.6). These steps in the “preprocessing” stage needed to obtain a set of 
residuals (anomalies) with behavior as close as possible to a pure fGn process are 
shown in Figure 7.6 for the Montreal grid point.

To test the method, for each grid point, the fluctuation exponent H (Fig. 5.5) 
of the preprocessed anomalies (bottom right, Fig. 7.6) were then estimated and 
monthly resolution hindcasts with lead times up to one year were made, with 
one such hindcast for every month for thirty years. It turns out that the average 
hindcast skill is quite close to the theoretically maximum possible skill.44 Using 
this approach, since April 2016, we have regularly made regional macroweather 
temperature forecasts.t

t Forecasts are made for monthly, seasonal, and annual lead times, initially at 5° × 5° and, since 2017, 
at 2° × 2° resolutions (about 200 km). See http://​www.physics.mcgill.ca/​StocSIPS/​.
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7.2.4  Stochastic Seasonal to Interannual Prediction 
System and Canadian Seasonal to Interannual 

Prediction System

We saw that before applying the SLIMM algorithm to forecast the scaling fGn-​
like macroweather component, we must first estimate, remove, and forecast sepa-
rately the nonmacroweather low frequencies and annual cycles. The overall model, 
including this preprocessing, is called the “Stochastic Seasonal to Interannual 
Prediction System” (StocSIPS).u Although it is stochastic, it is comparable in scope 
to deterministic “long-​range” or “extended-​range” macroweather GCM forecast 
systems. In the following, I compare StocSIPS to a typical GCM,v the Canadian 
Seasonal to Interannual Prediction System (CanSIPS45 ).  For more information 
about how CanSIPS makes such forecasts, see Box 7.4; for a summary CanSIPS-​
to-​StocSIPS comparison, and the new CanSIPS–​StocSIPS hybrid model: CanStoc 
(see Table 7.1).

Box 7.4  GCMs and macroweather forecasts: CanSIPS and CanStoc

Since 2010, CanSIPS has been the official extended long-​range forecast product 
of Environment Canada, Canada’s national environmental and weather service. 
CanSIPS products are based on a “multimodel ensemble (MME)” consisting 
of realizations of two different GCMs:  ten from the Canadian Climate Model 3 
(CanCM3) and ten from CanCM4—​twenty members in all. The publicly available 
maps are only over Canada and are for monthly through annual temperature and 
precipitation. However, in the comparisons included here, I  accessed the global 
products and verified the global hindcasts since 1980.

Let’s look in detail at how CanSIPS forecasts are made. The first step is the 
initialization; CanSIPS starts with reanalysis data from the ECMWF. Reanalyses are 
effectively data–​model hybrids that we used frequently in earlier chapters. CanSIPS 
uses reanalyses obtained by assimilating meteorological observations into the 
ECMWF GCM.46 The problem is that the ECMWF and CanSIPS models each have 
their own climates, so the CanSIPS GCMs cannot ingest the ECMWF reanalyses 
directly. Instead, the ECMWF initial values must be converted into ECMWF 
anomalies.47 These anomalies are then added to the CanSIPS climate to obtain the 
CanSIPS initial values, the “actuals.”48

The CanSIPS forecasts are then made using the twenty-​member CanSIPS 
ensemble followed by complex (and computationally demanding) postprocessing 
that corrects primarily for the “model drift” and poor local estimates of climate 
sensitivity to anthropogenic warming. “Model drift” refers to the tendency of 

u Since April 2016, StocSIPS has provided monthly, seasonal, and annual temperature forecasts. See 
http://​www.physics.mcgill.ca/​StocSIPS/​.

v  CanSIPS is similar in its functioning and comparable in its skill to the European Seasonal to 
Interannual Prediction System (or EuroSIPS), although each is based on a different GCM. According 
to the WMO, there are twelve international “producing centers.”
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model temperatures (even in control runs; see Chapter 5) to display low frequency 
variations that are attributed to artifacts arising from slow (mostly ocean) 
processes that are not fully “balanced” when the model is initialized. An additional 
problem is that the model does not have perfect representation of the sensitivity 
to anthropogenic effects, leading to systematic errors that contribute further to a 
low-​frequency “drift.” Both are partially removed using hindcasts over the previous 
five-​year period in an attempt to estimate (and remove) spurious linear trends.49 
This is part of a complex GCM postprocessing procedure that attempts to remove 
known problems.

Despite these manipulations, the final forecast result—​an “actual”—​is seriously in 
error, typically by a factor several times larger than the amplitude of the anomalies 
(i.e., the climatological variability).w The fundamental reason for this is that the GCM 
climate is wrong, so the macroweather anomalies fluctuate around the wrong values. 
Because the model seasonality is also poor, this wrong climate value depends on the 
season. As a result of these flaws, seasonal variations and climate biases are removed 
from the forecast model to yield anomalies. The publicly available macroweather 
forecasts are of the anomalies, not the actuals (see Table 7.1).

Finally, these anomalies are usually given a final layer of processing—​
“downscaling”—​which is often needed because the GCM outputs are on grids 
hundreds of kilometers across, and often one is interested in forecasts for towns or 
cities that are at scales much smaller than this. The much larger grid-​scale forecast 
must be scaled down to the city or local scale. This downscaling is performed 
either by using empirical relationships established with the help of long series of 
local meteorological station data or—​a much more costly solution—​by “nesting” a 
regional-​scale GCM inside the global GCM (a kind of mini GCM within a GCM). 
The lateral boundaries of the regional model are constrained by the outputs of the 
full (global-​scale but lower resolution) GCM. In comparison, as Table 7.1 points out, 
a final advantage of StocSIPS is that it avoids downscaling; if available, it can forecast 
the local station data directly.

An advantage of CanSIPS is that it incorporates an ocean model, and the 
ocean weather–​ ocean macroweather transition (and hence the deterministic 
predictability limits) of the ocean component is longer than the roughly ten 
day (atmospheric) weather–​macroweather transition time.50 This explains why 
CanSIPS has somewhat higher skill than StocSIPS over some areas of the ocean 
(Fig. 7.7), at least for lead times of several months. This leads to the possibility of 
combining StocSIPS and CanSIPS into a single hybrid model that has better skill 
than either taken separately.

w When the errors are larger than the climatological spread of the anomalies, the MSSS becomes 
negative. MSSS values of –​200% or less are frequent for GCM forecasts of actuals.
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Table 7.1    Summary of deterministic (GCM) versus stochastic macroweather forecasts.

CanSIPS (GCM) StocSIPS

	1.	 CanSIPS data input: Reanalyses from 
the ECMWF. Reanalyses are complex 
model–​data hybrids using satellite, 
aircraft, station, and other data. It puts 
them onto a grid with a big model.

	2.	 CanSIPS input anomalies: Remove 
ECMWF climatology to find ECMWF 
anomalies, which are used as CanSIPS 
input anomalies.

	3.	 Data assimilation into CanSIPS: Add 
the ECMWF anomalies to the CanSIPS 
climatology to estimate the CanSIPS 
actuals. Between t = –​12 hours and 
t = 0, the actuals are assimilated into 
two different GCMs: CanCM3 and 
CanCM4.

	4.	 Model integration: Each GCM is 
coupled with an ocean model and 
integrated one year into the future for 
ten different realizations. These twenty 
members define the ensemble.

	5.	 Recovery of forecast anomalies: The 
CanSIPS climatology is removed from 
the forecast to recover the forecast 
anomalies.

	6.	 Removal of some artifacts: 
Postprocessing partially removes 
artifacts such as model drift. It also 
rescales the anomalies so the amplitude 
of their fluctuations is correct. It 
cannot correct for poor seasonality. 
The mean of the twenty outputs is the 
final forecast; their spread defines the 
forecast uncertainty.

	7.	 Downscaling: The forecast is for a grid 
point of roughly 100,000 km2. For 
most purposes, it must be downscaled. 
This is done either by ad hoc multiple-​
regression techniques using local 
station data or by using another nested 
regional model of similar complexity to 
the original GCM. This regional GCM 
takes its boundary data from the full 
global GCM.

	1.	 StocSIPS data input: Start with the 
monthly station series.

	2.	 Preprocessing: Separate the anthropogenic 
warming trend and annual cycle from 
the internal (macroweather) variability 
by using historical data at one-​month 
resolution (this could be reduced to two 
weeks).

	3.	 Internal variability forecast: Use 
the system memory to forecast the 
macroweather series from months to 
years as necessary. Both the mean and 
uncertainty are forecast together.

	4.	 Warming trend and annual cycle 
forecast: This forecasting can be done, 
for example, by simple persistence of the 
latter from the previous year.

	5.	 Final forecast at the station: Add the two 
forecasts.

CanStoc (hybrid)

CanStoc is a hybrid GCM–​stochastic model. 
The CanSIPS model is used as a copredictor 
and the CanStoc forecast is the weighted 
average of the StocSIPS and CanSIPS forecast.

CanCM, Canadian Climate Model; CanSIPS, Canadian Seasonal to Interannual Prediction System; CanStoc, 
CanSIPS-​StocSIPS hybrid; ECMWF, European Centre for Medium-​range Weather Forecasting; GCM, 
Global Climate Model; StocSIPS, Stochastic Seasonal to Interannual Prediction System.
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Figure 7.7  The relative skill of the Stochastic Seasonal to Interannual Prediction 
System (StocSIPS) and the Canadian Seasonal to Interannual Prediction System 
(CanSIPS) anomaly hindcasts (1980–​2010) over the globe and over land only, showing 
that the StocSIPS relative advantage increases systematically with lead time and is 
particularly strong over the oceans.51

  

Box 7.4 shows that the main problem with the GCMs is that their climates, 
including their annual cycles, are rather different from those of the real world. 
Because of this, the publicly available GCM macroweather forecasts are of the 
anomalies, not the real temperatures (the “actuals”). For these anomalies, the com-
parison with StocSIPS is much closer (see Plate 7.3). However, Plate 7.3 shows that 
even for anomalies, over most of the globe, for two months and longer, StocSIPS 
has higher skill. The relative skill of StocSIPS is particularly high over land, which 
is probably a result of the fact that the CanSIPS ocean model is still within its 
deterministic predictability limit of one to two years, making its ocean forecasts 
reasonably accurate. This impression in bolstered by Plate 7.4, which compares 
CanSIPS at six months and StocSIPS at two years (the skills are comparable), and 
also by Figure 7.7, which shows that relative advantage of StocSIPS grows with lead 
time and is particularly strong over land.52

The overall saving in computational speed is estimated to be on the order of a 
million. At the same time, StocSIPS directly forecasts the conditional ensemble 
average (i.e., effectively, the results of an infinite ensemble) whereas CanSIPS has 
only twenty members in its ensemble. StocSIPS can also be used to make forecasts 
directly at individual measuring stations, avoiding otherwise time-​consuming and 
error-​prone “downscaling” procedures.

StocSIPS can be extended directly to other fields such as wind or precipitation, 
which are known to have macroweather statistics roughly satisfying the SLIMM 
requirements.53 But, the main advantage of StocSIPS may be its ability to forecast 
other fields directly, such as insolation, wind power, or degree-​days, which are 
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currently only forecast indirectly by GCMs. Other future extensions of StocSIPS 
could include drought indices and the prediction of extremes.x

7.3  The world our children will inherit: Scaling  
and climate projections

7.3.1  Predictions and projections

Over the weather and macroweather range, the problem of predicting the atmos-
phere is one of understanding and exploiting its internal space–​time variability. 
But what about multidecadal climate predictions to 2050 or 2100? New, slow an-
thropogenic changes will be dominant, so external “climate forcings” are now 
crucial. As discussed in Box 6.2, some of these (such as solar variability and vol-
canism) are natural, but in the Anthropocene, the main forcing is a result of emis-
sions of greenhouse gases and aerosols.54 Making a statement about the state of 
the atmosphere in 2050 or 2100 therefore depends on economically and politically 
driven scenarios that specify the future anthropogenic impacts on the atmosphere 
(especially emissions). They are projections, not predictions.

The aim of the projections is to determine the consequences of our actions. We 
would like to separate anthropogenic effects from the unimportant and distracting 
effects of macroweather “internal” variability as well as from the responses to past 
natural forcings (solar and volcanic). To a first approximation, we can identify the 
higher frequencies with the weather and macroweather, and the lower frequencies 
with the projection (i.e., the climate). This was the motivation for using the empirical 
notion of “climate state,” defined by averaging over weather and macroweather scales 
(e.g., over the climate-​normal period; Plate 5.2). However, this definition of climate 
state doesn’t completely remove the effects of macroweather (internal) variability,y nor 
does it account for the consequences of our actions on the climate that are delayed, 
notably as a result of the oceans (see Box 7.1 for this question of storage and memory).

To separate the anthropogenic responses and macroweather variability cleanly 
requires a stochastic model.z Once the model is given, one can make an ensemble of 
many (stochastic) realizations, each differing only by the macroweather variability. 

x  Ironically, although there were no funds available for the scientific research for developing 
StocSIPS, when the basic research had been done, there were funds to help determine its commercial 
potential!

y Recall that macroweather fluctuations decrease with scale, so that at ten years globally, they are 
about 0.2°C (= ±0.1°C). In the Anthropocene, this is roughly equal to the decadal-​scale forced response 
(Fig. 5.6); it defines the beginning of the climate regime. Yet even at forty years, macroweather varia-
bility has only decreased to 0.15°C, whereas the corresponding (historical) anthropogenic fluctuations 
were about 0.4°C, so the two are still comparable (Fig. 5.6)

z When this is done using GCMs, averages are made over many runs and even over different GCMs. 
For projection purposes, the GCMs are thus treated implicitly as yielding stochastic responses to de-
terministic forcings.
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In principle, the realizations can be averaged over the ensemble to yield the projec-
tion that we seek. For GCMs, the different stochastic realizations are produced by 
running the model many times with identical forcings, but with slightly different 
initial conditions.aa Because each run is computationally expensive, to eliminate the 
weather and macroweather variability better, ensemble and temporal averaging are 
combined. The result is a statistical ensemble of possible climate states conditioned 
on the forcing. Finally, the usual procedure is to broaden the ensemble by extending 
it to include the outputs from different GCMs all over the world: a multimodel en-
semble, MME. The MME mean is then used for the projection, and the spread of 
the climate states about the mean quantifies the uncertainty (see Box 7.5).

Box 7.5  Climate projections with the MME

For GCMs, the main difficulty in projecting the future climate is the modeling of the 
complicated set of water vapor, cloud, and radiation feedbacks. Growing levels of 
greenhouse gases increase the temperature, which in turn increases the evaporation. 
Higher humidity leads to stronger greenhouse warming (the direct effect), but also 
to increased cloud cover, which can either warm or cool Earth (the indirect effect), 
depending on their type. The resulting wide dispersion of sensitivities is referred to as 
“structural uncertainty”—​the fact that each GCM has a different climate. The strengths 
of the various feedbacks are intrinsic parts of each model’s dynamics so that GCM 
climate sensitivity cannot be adjusted or “tuned”; it is an “emergent” model property.

GCMs divide Earth into grids hundreds of kilometers across, with kilometric-​scale 
vertical layers. Although the basic GCM is a model of atmospheric circulation, for 
climate modeling GCMs are coupled to ocean circulation models and, increasingly, 
to dynamical cryosphere and carbon cycle models. It is usual to make projections 
using dozens of different models grouped together into an MME. For example, the 
CMIP5—​the basis of the IPCC’s AR5—​considered more than forty different GCMs. 
The MME mean is used as a surrogate for the real climate, and its spread about the 
mean is taken to quantify the uncertainty in the projected mean.

To make projections, we need assumptions about future human economic 
activity and the implied anthropogenic forcings. The IPCC therefore created four 
“representative carbon pathways” (RCPs) that are, effectively, sophisticated sets of 
assumptions about how future emissions might evolve throughout the century (and 
up to the year 2300 in their extended versions),55 while attempting to take into account 
future economic development.bb The same scenarios are used in economic modeling 
in integrated assessment models that predict the coupled global atmospheric and 
economic evolution. Each RCP is labeled by the specified radiative forcing in the 
year 2100 (measured in watts per square meter). For example, the most benign is 

aa For the past part of the model run, this is based on estimates of the historical forcings; for the 
future part, it is prescribed by the scenarios.

bb For our purposes, an important aspect of this is the assumption that aerosol pollution will decline 
as a result of cleaner factories and automobiles. This means that it is assumed that past relationships 
between greenhouse gas emissions, the economy, and aerosol emissions will no longer hold. Hence, for 
regional projections, we need to account separately for greenhouse gas and aerosol forcings. For global 
projections, the aerosols are implicitly taken into account in the CO2eq forcing.
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RCP2.6, which assumes the total forcing in 2100 will only be 2.6 W/​m2 more than 
preindustrial levels, whereas the most dangerous (RCP8.5) assumes it will be more 
than three times higher (see Fig. 7.8). In the following, to simplify, I mainly discuss 
the two extreme RCPs (2.6 and 8.5) and the (more likely) intermediate one56: RCP4.5.

1900 1950 2000 2050 2100
Year

–4

–2

2

4

6

8

ΔF (Wm–2)

RCP 2.6

RCP 4.5

RCP 6.0

RCP 8.5

Solar

Volcanic

Figure 7.8  The International Panel on Climate Change forcing scenarios: the 
representative carbon pathways (RCPs). Also shown are the main natural 
forcings: volcanoes and solar. Notice that the solar forcing is small compared to the 
anthropogenic forcing.57

With the exception of RCP2.6, they are all monotonically increasing up until 2100. 
RCP2.6 assumes massive deployment of “negative emission” technologies to suck the CO2 
out of the atmosphere. The ability to do this at the required scale is highly speculative,cc 
so this scenario is probably not realistic.dd The solar activity is the only natural forcing, 
which is assumed to continue its current eleven-​year solar cycle indefinitely into the 
future. Finally, to make projections, one also needs estimates of “reconstructed” past 
forcings. The IPCC’s AR5 provides these from 1750, and they are also shown in Figure 
7.8. They include reconstructions of past solar and volcanic forcing.

Diminishing returns

The first modern estimates of climate sensitivity (i.e., the expected temperature 
change following a doubling of CO2 concentration), derived in the 1970s, yielded 
the classic consensus range of 1.5 to 4.5°C. Since then, there has been a million-​fold 
increase in computational speeds, and new evidence has supported the validity of 
this uncertainty range, but has failed to narrow it. Only for the IPCC’s AR4 was there 

cc The favored approach is BECCS. It would involve planting and regularly harvesting biomass over 
an area one to two times that of India, burning it to produce energy, capturing the CO2, and then bur-
ying it for millennia.

dd However, all the IPCC economic scenarios rely optimistically on this speculative technology. See 
Anderson, K. & Peters, G. The trouble with negative emissions: Reliance on negative-​emission concepts 
locks in humankind’s carbon addiction. Science 354 (6309), 182–​183 (2016).
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sufficient agreement among experts to reduce the consensus range to 2.0 to 4.5°C, 
based mostly on evidence from the Coupled Model Intercomparison Project Phase 
3 GCMs. However, AR5 backtracked, mostly because of more direct observations-​
based estimates of climate sensitivity, which showed that a lower 1.5°C value could 
not be rejected using historical observations. In fact, historical simulations from 
the MME of thirty-​two GCMs of the more recent CMIP5 yielded a mean transient 
climate sensitivity (TCS)58 about 15% higher than observations (Fig. 7.9).

0.1
0.0

0.5

1.0

CMIP5 MME

Historical data

Number of CO2eq  doublings

T °C

0.2 0.3 0.4 0.5

Figure 7.9  The annual global temperature change since 1880 as a function 
of the number of doublings of carbon dioxide equivalents (CO2eq).

ee Four 
different temperature series were used (bottom) and thirty-​two Coupled Model 
Intercomparison Project 5 (CMIP5) models were used (top). Because the CO2eq value 
is a little larger than the CO2, the result (the TCS) is similar to Figure 6.4B, with a 
slope that was the EffCS, but with a somewhat lower value: 2.02 ± 0.08°C for the 
observations and 2.30 ± 0.5°C for the models (CO2eq doubling). The spreads are the 
90% confidence intervals for the four series and the thirty-​two models, respectively. 
The MME is a bit too high by about 15%.59

Investments in the GCM approach to decrease the uncertainty now appear to be 
a classic case of diminishing returns, and the main proposal by the modelers is for 
more of the same: bigger, faster computers. It is claimed that if the resolution can be 
reduced from 10 to 50 km down to 1 km, that the models will be “cloud resolving” so 
that, finally, these limitations will be overcome.60

However, projecting the state of the atmosphere involves averaging GCM outputs 
over simulated decades. Will the inclusion of kilometric structures that live typically 
for less than an hour—​a millionth of this time—​really improve projection realism?ff

  

ee For example, the value 0.5 corresponds to half a doubling—​meaning, there has been a factor of 
20.5 = 1.41 increase in the CO2eq above the preindustrial value of 277 ppm (i.e., it corresponds to 391 ppm).

ff Beyond the ten-​day deterministic predictability limit, the GCMs are stochastic, so that it is suffi-
cient that the models generate realistic statistics. Realistic small-​scale structures and morphologies are 
not needed and may not be possible anyway. Although GCMs may be excellent research tools, they 
are not—​at least at the moment—​the best way to predict either seasonal or annual temperatures, or to 
project temperatures to 2050 or to 2100.
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But using the MME is problematic. It isn’t obvious that the average of the cli-
mate sensitivity over diverse GCMs, each with its own climate, is a good estimate 
of Earth’s actual climate. Surveying these sensitivity distributions, Knutti and 
Hegerl61 commented: “These distributions reflect the uncertainty in our knowledge 
of sensitivity, not a distribution from which future climate change is sampled.”

The problems arising from the limitations of GCMs are far from academic. At 
the moment, they are the only technique available for projecting the climate to 2050 
or 2100 and, because of their differing climates, each GCM makes significantly 
different projections, leading to large uncertainties. Figure 7.10 shows that, over 
the coming decades, the uncertainties are sufficiently large that widely divergent 
scenarios of economic development lead to significantly overlapping projections. 
Both high and low emission pathways have non-​negligible probabilities of staying 
within the agreed 2°C threshold for dangerous effects. If we use (standard) 90% 
confidence ranges, then in 2050, any of the scenarios used in IPCC AR5 (2013) 
could be claimed to be compatible with any threshold in the range 1.85 to 2.2°C.
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Figure 7.10  A comparison of the Coupled Model Intercomparison Project 5 projections 
(“C”), the simple historical method (five-​year memory, “A”), and the generalized historical 
method using scaling climate response function projections (“B”) for 2050 (left) and 2100 
(right) for three representative carbon pathway (RCP) scenarios, with the numbers indicating 
the watts per square meter of the scenario forcing in 2100. The vertical bars indicate 90% 
confidence intervals. For each projection date, the horizontal gray rectangles (bounded by 
the dashed lines) show the regions of overlap of the GCM (“C”) projections. For 2050, all 
the scenarios are compatible with a warming anywhere in the range of 1.85 to 2.2°C. For 
2100, with the exception of the 2100 RCP8.5 projection, all scenarios are compatible with 
a warming anywhere in the range of 1.8 to 2.5°C. In comparison, for a given date, both 
historical methods (“A” and “B”) give (nearly) completely distinct projections, allowing policy 
choices (the RCPs) to be made according to the desired outcomes (temperatures). For the 
year 2100, the GCMs (“C”) can exclude only the “business as usual” (RCP8.5) scenario. In 
contrast, the historical projections (“A” and “B”) have projected ranges that are sufficiently 
narrow that they separate policies (RCPs) and consequences (temperature ranges) cleanly.62

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   299 29-Dec-18   8:15:26 PM



300	 Weather, Macroweather, and the Climate

At the moment, policies ranging from very low to very high emissions—​
RCP2.6 to RCP8.5—​a range of more than a factor of 3 (see Fig. 7.8 and Box 7.5) 
could all be said to be compatible with any of these thresholds. Policy choices 
(emissions) do not map uniquely onto outcomes (temperatures; Fig. 7.10). But, 
there is a further qualitative uncertainty:  IPCC projections rely on a unique 
(GCM) modeling approach, and this is not perfect. From the point of view of 
scientific methodology, this reliance is a weakness that cannot be redressed 
without the development of qualitatively different approaches. This much lower 
uncertainty is possible and emphasized in Box 7.6, which shows that, using the 
alternative discussed later, a one hundred-​year “projection” made in 1909 could 
have been extremely accurate. In the next sections, we look at how these histor-
ical (and scaling-​based!) alternatives can reduce uncertainties while providing a 
second path to projections.

Box 7.6  The International Committee for Projecting the Consequences of Coal 
Consumption: Hindprojections with Representative Coal and Petroleum Pathway 1.45

In the 1896 article in which Arrhenius estimated that doubling atmospheric CO2 
would increase global temperatures by 5 to 6°C, he commented that over the next 
3,000 years, coal burning would lead to a 50% increase of CO2 levels. Later that year 
he noted:  “We would then have some right to indulge in the pleasant belief that 
our descendants, albeit after many generations, might live under a milder sky and 
in less barren surroundings than is our lot at present.”63 Later, in 1908 (at a time of 
much higher rates of global coal consumption), in a popular book, he revised this 
millennial estimate downward to centuries.

For fun, let’s imagine what might have happened if this idea had been seized 
upon by his heat-​starved Scandinavian colleagues. Let’s say they possessed a 
modern estimate of the EffCS (2.33 ± 0.36°C/​CO2 doubling, 90% confidence64), a 
modern estimate of the fraction of the CO2 emissions that end up in the atmosphere 
(aboutgg 43%), and reliable global data since 1880. Looking back, an early 21st 
century historian might have written the following account:

To investigate global warming, in 1909, Arhennius and his colleagues constituted 
the International Committee for Projecting the Consequences of Coal Consumption 
(ICPCCC). The committee economists drew up a series of scenarios, the “representative 
coal and petroleum pathways” (RCPPs), and numbered them by their radiative forcing 
in the year 2000. Although Arhennius had originally only mentioned coal, petroleum 

gg Knowledge of the atmospheric fraction is needed to estimate the relationship between CO2 emis-
sions and the increase in atmospheric concentrations. The rest of the CO2 ends up in biomass (12%) and 
in the oceans (45%), where it contributes to ocean acidification, See DeVries, T., Holzer, M., & Primeau, 
F.,Recent increase in oceanic carbon uptake driven by weaker upper-​ocean overturning. Nature 542, 
215–​218 (2017).
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Macroweather predictions and climate projections	 301

was included because it had already become clear that it would soon overshadow coal 
as a source of energy.

Three RCPPs were proposed, corresponding to low, medium, and high economic 
growth:  RCPP0.85, RCPP1.45, and RCPP2.75. The low-​ and high-​growth RCPPs 
were believed to be overly pessimistic or overly optimistic, respectively, so policymakers 
focused on the intermediate one (RCPP1.45), which assumed an increase in radiative 
forcing of 1.45 W/​m2 by the year 2000.

Using the CO2 concentrations from the RCPP1.45 scenario, ICPCCC scientists 
made global temperature predictions using a new technique called StatCLIP (Statistical 
Climate Prediction). These predictions were based on the CO2 concentration scenario 
and on the preceding thirty years of global data. These data were the oldest that were 
judged reliable. The otherwise arbitrary use of thirty years as a “regular climate” 
period was justified, because it was believed to be a convenient duration over which 
to average the temperature and gauge the state of the planet. The StatCLIP result was 
a genuine prediction conditioned only on the CO2 emission scenario. It predicted both 
the macroweather variability as well as the temperature response to future atmospheric 
CO2 concentrations.

At the time, it was expected that other consequences of coal burning—​notably, 
aerosols—​would also affect the predictions and, in addition, it was expected there would 
be errors resulting from the time delay associated with the ocean absorbing the heating 
and then re-​emitting it years later. Pointing this out, some of the more sophisticated 
committee members derided the ICPCCC approach as simplistic. Extremists even 
claimed that atmospheric prediction was not even possible and ridiculed the entire 
enterprise.hh

Today, this daring ICPCCC focus on CO2 can be checked by comparing their 
predictions with the temperatures over the following century. As it happened, the 
ICPCCC economists got lucky. The one hundred-​year ICPCCC RCPP1.45 scenario 
was amazingly accurate. It ensured that the results of their one hundred-​year 
prediction (shown in Fig.  7.11A) was accurate, with an uncertainty dominated 
by the global, annual resolution macroweather variability (i.e., about 0.2°C, 
which is much less than the 0.8–​1°C rise over this period). Recognizing that the 
macroweather variability was a distraction, the ICPCCC scientists had also made 
a centennial-​scale projection simply by using the EffCS and the scenario-​based 
CO2 concentration levels (Fig. 7.11B). By comparing it with the real data passed 
through a thirty-​year smoother65 (the thick line in Fig. 7.11B), it can be seen that 
the projection was surprisingly accurate. It was only 0.017°C too high and it had 
only a small spread (of 0.010°C). The uncertainty came from the spread in the 
estimates of the EffCS.

hh Richardson’s first attempt to use the equations of fluids was more than a decade away, and there 
were even serious doubts that it might be at all possible. See the discussion in Lynch, P. The Emergence 
of Numerical Weather Prediction: Richardson’s Dream. (Cambridge University Press, 2006).
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Figure 7.11  (A) If, in 1909, one had a reliable scenario about the future carbon 
dioxide (CO2) emissions, and one knew the globally, annual averaged temperature 
back to 1880 (This information mainly helps improve the forecast in the 1909 to 1919 
decade. Beyond that, the hindcast depends almost only on knowledge of the CO2 
concentration. Then the global temperature could be predicted (the smooth middle 
line) to within 0.22°C with 95% certainty (see the dashed lines).ii,66 (B) Hindprojecting 
the temperature from 1909 to 2021 using the effective climate sensitivity 2.33 ± 0.36 
(upper and lower bounds) and a (thick) thirty-​year running smoother (same CO2 and 
temperature data as in Fig. 6.5). This is a “hindprojection” rather than a “hindcast,” 
because a thirty-​year smoother was used in an attempt to remove the high frequencies 
to isolate the responses to anthropogenic forcing.67

In retrospect, the success of the ICPCCC prediction and projection was assured 
because the CO2 turned out to be highly correlated with economic activity that was 

ii This figure was tweeted in response to Scott Pruitt, who had just been sworn in as director of 
the US Environmental Protection Agency (March 2017). On the occasion, he was famously quoted as 
denying that there was a relationship between the levels of CO2 and Earth’s temperature.
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highly fossil fuel dependent and, hence, with the other anthropogenic effects. It was 
an excellent surrogate for these.

After the ICPCCC projections were published, it started to become clear that 
the world was on a dangerous path. The RCPP1.45 scenario indicated that the 
threshold of 0.5°C of warming would be exceeded between the years 1977 and 1987 
(90% certainty), and that if measures were not taken, the threshold of 1°C might be 
reached as soon as 2007, but no later than 2021.68 In comparison, the high-​end69 
RCPP2.45 scenario predicted that 2°C would be exceeded sometime around the year 
2010 (with a thirteen-​year uncertainty either way).

Today’s 1°C warming has already turned out to be dangerous enough; it is 
fortunate for us that the 1909 policymakers were sufficiently wise to reject the 2°C 
RCPP2.45 scenario. This was no mean feat. At the time, they had to resist well-​
financed lobbying efforts, particularly by representatives of Standard Oil Company. 
This lobbying was based mainly on the unsubstantiated claim that almost all the 
fossil fuel CO2 would end up being absorbed by the oceans and, consequently, would 
not increase atmospheric CO2 concentrations. It was also claimed that, except over 
geological epochs, the climate was known to be constant. It is sobering to realize 
that from 2017 until he resigned in 2018, the ex-​Chief Executive Officerjj of the 
descendant of Standard Oil (Exxon-​Mobil) personally occupied one of the highest 
political positions in the world’s most powerful economy, and he did everything in 
his power to block attempts at limiting emissions.

The most important point of this fable is that the main source of uncertainty in 
the ICPCCC projection came from the uncertainties in projecting the economy—​not 
in uncertain climate science. Faced with the ICPCCC projections, early twentieth-​
century policymakers would at least have been given a clear choice. Based on whether 
they were ready to accept 0.5°C, 1°C, or 2°C of warming one hundred years in the 
future, they could choose the corresponding RCPP. This is unlike today’s situation, 
in which the GCM-​based IPCC projections have such large spreads that there is 
no longer a strong link between climate policies (emissions) and climate outcomes 
(temperatures; see Fig. 7.10); there is a looming “uncertainty crisis” (Box 7.7).

This example underscores an important advantage of the historical approach 
to projections, which are based on the relatively well-​reconstructed historical CO2 
concentrations. This approach avoids assumptions about the (poorly reconstructed) 
aerosol levels, as well as debatable assumptions about the magnitudes of the direct 
and indirect aerosol radiative effects. However, it does make simplistic assumptions 
about the way the atmosphere–​ocean memory works. It assumes that globally 
averaged temperatures react to the forcings over a period of only a few years.70 In 
reality, some of the response is over timescales much further into the past. If we 
stopped emissions tomorrow, as a result of the “warming in the pipe” (e.g., in deep, 
slow ocean currents), the temperature would continue to rise for decades or longer 
(Box 7.1). These effects can be taken into account using a more sophisticated scaling-​
based historical method (see Box 7.8).
  

jj  Although US Secretary of State Rex Tillerson no longer works officially for Exxon-​Mobil, the 
company gave him a $180 million retirement package.
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Box 7.7  A looming uncertainty crisis

The range of 1.5 to 4.5 °C for a CO2 doubling has been with us for so long that 
we are used to its imprecision, but the implications of this large uncertainty for 
projections and hence for policymaking are unacceptably large. For example, the 
COP 21 agreement (2015) included in its preamble the noble aim of keeping global 
temperatures to less than 1.5°C. When will we reach this level? Analysis of the CMIP5 
GCMs used in the IPCC AR5 (Plate 7.5) shows that if we use a plausible emissions 
scenario, such as RCP4.5, that with 90% certainty the 1.5°C threshold will be exceeded 
between 2010 and 2050. This interval is so large that it can already be reduced simply 
by using the knowledge that today—​several years after 2010—​the increase is only 
about 1°C. This basic point has already been discussed by Andersen and Bows,71 
who pointed out that the amount of decarbonization required to remain within a 
1.5°C or 2°C limit varies substantially, depending on which part of the GCM-​derived 
probability distribution of climate sensitivity is used, underscoring the deleterious 
consequences of the considerable policy “wiggle room” allowed by this wide range of 
climate sensitivities. Without another approach, it seems unlikely that the large range 
of projected futures will be reduced.

How, then, can we justify the strongly negative emission policies needed to follow 
RCP2.6 if the consequences are difficult to disentangle from high-​emission RCP4.5, 
which—​even in 2100—​has a significant overlap in the projected temperature ranges?

The current lack of alternatives has another deleterious policy consequence: the 
methodological consequences of relying on a single projection tool. In science, when 
only a single method or model predicts a given result, scientists are generally reserved, 
if not outright skeptical. Climate deniers posing as skeptics have skillfully exploited 
this situation to dismiss the projections and undermine public confidence not only 
in the projections, but also in the anthropogenic provenance of the warming itself. 
Policymaking flowing purely from GCM projections will be exposed politically and 
hence will be weak. However, using the qualitatively different historical projection 
method, the primary source of uncertainty is the reconstruction of past climate 
forcing rather than with the model dynamics. With some moderate (but interesting) 
differences, the new method gives reasonably similar projections. Therefore, our 
confidence in the common conclusions takes a qualitative leap. Skeptics now must 
reject two scientifically independent approaches.

Plate 7.5 shows the 1.5°C and 2°C thresholds that, according to international 
agreements, we should, respectively, aim to stay below and actually stay below.kk 
Comparing the implications of the historical projections’ lower mean and smaller 
uncertainty for RCP4.5, we see that the 1.5°C threshold will be crossed sometime in 
2034 to 2052 (GCMs) and 2044 to 2052 (historical) (with 90% certainty), and that 

kk  Neither goals were chosen on scientific grounds, but both on political grounds. The 1.5°C 
threshold was inserted at the last minute into the COP 21 (2015) preamble as a laudable goal, but did not 
figure in the convention itself (which was, in any case, nonbinding) (https://​unfccc.int/​files/​meetings/​
paris_​nov_​2015/​application/​pdf/​paris_​agreement_​english_​.pdf). The 2°C goal was ordained officially 
at the COP 16 meeting (held in Copenhagen December 7–​18, 2010) as an agreed threshold that should 
not be crossed.
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the 2°C threshold will be crossed between 2040 and 2100 (GCMs) and between 2070 
and 2100 (historical).

The historical method has a further advantage:  its simplicity. GCMs are highly 
complex constructs, built by generations of scientists, each of whom contributed 
(at most) modules emulating specific climate processes. Few, if any, completely 
understand the resulting fully integrated system. For the vast majority of GCM users, 
they are “black boxes.” Because the final projections are not even based on a single 
GCM, but on an MME, to evaluate the ensemble projections properly requires an 
understanding of the detailed similarities and differences between all the models in 
the ensemble. In comparison, the historical method is simple and can be understood 
easily. It is graphically represented in Figures 6.4B and 7.9. The anthropogenic effect 
is approximately linear with CO2 forcing, whereas deviations represent natural 
variability. The basic method also works on the GCMs, proving that it is not exotic 
and respects GCM physics. Finally, the method can be improved to take into account 
its main limitations: its treatment of system memory (Box 7.8) and its handling of 
aerosols.
  

Box 7.8  Using scaling to improve the memory of the historical approach

The simple historical method had shortcomings. First, it ignored the long-​term 
system memory, especially as a result of the fact that most of the heat goes into the 
oceans, so there is a delay in atmospheric response. Up until the present, long-​term 
memory effects have not been so important. This is because—​as a result of rising 
emissions—​the forcing was constantly increasing and the responses to recent forcing 
effectively swamped the lingering (old) responses to past forcing.72 However, once 
we start mitigating the emissions, the memory effect will be more evident. This is 
why the simple historical method generally worked well on the MME scenario runs, 
except for the IPCC RCP2.6 scenario—​the only one that used sufficiently massive 
negative emissions to reverse the forcing trend.

Another weakness of the simple historical method is that it assumed implicitly 
that however much aerosols contribute to the forcing, their contribution remains a 
fairly constant fraction of the total. If there is a likely “cleanup” over the upcoming 
decades (especially over Asia), then, for regional projections, we need to account 
separately for the aerosols. The RCPs assume that the aerosol forcing pattern evolves 
as western countries and then China clean up their emissions; it will take longer for 
India and Africa. This explains some of the discrepancy observed between the EffCS 
GCM regional projections and their actual integrations.

The basic method to overcome these limitations is to use a climate response 
function (CRF) that is scaling: an SCRF (Fig. 7.12, the curve).73 Although the simplest 
historical CRF has one parameter—​the effective sensitivity to CO2eq doubling—​the 
SCRF has two extra parameters:  a small-​scale cutoff estimated at two years (the 
shortest timescale for which the linearity assumption holds) and the key scaling 
(power law) exponent,74 which determines the long-​term memory. To estimate it, we 
need to give special consideration to volcanic75 and aerosol forcing.76
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Figure 7.12  Examples of the shapes of various linear climate response functions 
(CRFs). The rectangles are the simple historical responses at five-​year resolutions 
(their widths). The one on the left is without a lag and the one on the right has a 
twenty-​year lag, meaning that today’s response depends only on the forcing twenty to 
twenty-​five years ago. The lower curve is the scaling response with exponent HR = –​0.4 
truncated at two years, the ocean atmosphere coupling scale. In this figure, only the 
relative shapes are important. The actual CRF is obtained by multiplying these by a 
climate sensitivity factor.

For the (most plausible) RCP4.5 scenario (Plate 7.5), the results of these 
improvements are shown with extra embellishments. We see that with respect to the 
previous direct historical projection method, the mean projection is a little higher 
(but only about 15% less than the CMIP5 MME, compared to 25% for the historical 
method), and that the spread is a little wider than before (but it is still about half that 
of the CMIP5 MME). As before, the origin of the uncertainty in the SCRF method 
is in the historical reconstructions.77 It is larger than before, mainly because aerosol 
emissions are so uncertain. Another important contribution to the uncertainty 
comes from the scaling (memory) exponent that determines the importance of the 
long-​term memory. Its effect is more apparent when the forcing relaxes, as in the 
IPCC RCP2.6 scenario. In Plate 7.5, we can see that the SCRF method—​unlike the 
CMIP5 GCMs—​reproduces the 1998 to 2015 “pause” well (when a natural cooling 
offset anthropogenic warming temporarily (see Box 6.278). For reference, Plate 7.5 
also shows the 1.5°C threshold. We can see that the range of dates when it is projected 
to be exceeded is much narrower for the SCRF (2030–​2042) compared to the large 
range of the MME (2010–​2052; see Fig. 7.10).
  

7.3.2  Projecting to 2100: The historical method

We saw that projections require a model that can distinguish the internal varia-
bility from anthropogenic responses. GCMs do this by attempting to take every-
thing into account, integrating basic equations at subhourly time steps and then 
averaging the result over a factor of 100,000 in time (decades) as well as over many 
realizations, each differing by slightly different initial conditions (the stochastic 
ensemble). The alternative to GCMs was already discussed in Chapter 6. It was to 
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exploit the linearity approximation, justified theoretically by the fact that anthro-
pogenic forcings are about 1% of the average total solar power, justified empirically 
by the observed linearity of the temperature–​forcing relationship (Figs. 6.4A and 
7.9), and confirmed impressively by the hindprojection discussed in Box 7.6.

The linear framework is not as restrictive as it might seem at first sight. It simply 
states that the future response is a combination of past forcings, each weighted by 
an amount that depends on how far in the past the forcing occurred. The weights 
as a function of their lags are called the CRF (see Fig. 7.12 for examples).

The linear framework uses past data weighted by the CRF. It is a general “his-
torical” method equivalent to specifying an infinite number of weights. Without 
additional simplifying assumptions, it is intractable. In Chapter 6 we examined the 
simplest historical assumption: to assume the responses were essentially “instanta-
neous,” albeit using five-​year-​resolution forcing data. Figure 7.12 graphically shows 
these weights79; they fall to zero for times longer than five years, which is not too 
realistic. A simple alternative is to lag the response. The right-​hand rectangle in 
Figure 7.12 shows an example with a twenty-​year lag also at five-​year resolution, so 
only the forcings at twenty to twenty-​five years earlier are important.80

You should not be surprised to learn that the best way to make the CRF trac-
table is to constrain it by temporal scaling symmetry. The resulting SCRF is essen-
tially a new emergent law that describes how the globally averaged temperature 
responds to external forcings. It can be justified here in a direct way by appealing 
to the scaling of the forced response or, more convincingly, via a scaling energy 
storage mechanism (Box 7.1). In the latter case, the FEBE determines both the 
scaling of the internal (macroweather) variability and the externally forced (cli-
mate) variability. However, there are various technical issues that make the SCRF 
a bit cumbersome, so let’s first examine the consequences of the simple histor-
ical assumption that worked so well on the globally averaged industrial epoch 
temperatures described in Chapter 6 and in Box 7.6.

Let’s compare our projections to the IPCC’s CMIP5 GCM simulations. Instead 
of the CO2 forcing, let’s use the IPCC CO2eq forcing, which Figure 6.5 showed was 
about 1.12 times larger than the pure CO2 forcing. From 1750 to the present, the 
forcings are reconstructions from a variety of sources that cover both anthropo-
genic reconstructions (notably of past CO2, CH4, and aerosols) and reconstructed 
solar and volcanic forcings (Box 7.5). Figure 7.9

 shows the plot analogous to Figure 6.4A, confirming the near linearity of the 
temperature response, but with a slightly different effective sensitivity to doubling81 
of CO2eq:  2.02 ± 0.08.82 Figure 7.9 also shows the corresponding results for the 
CMIP5 MME, demonstrating that it overestimated the warming in the historical 
period by about 15% (we return to this later).

7.3.3  Global-​scale projections

To project the temperatures into the future, the IPCC created four emission 
scenarios, as mentioned earlier, called RCPs (Box 7.5). The RCPs are numbered 
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by the total climate forcings (measured in watts per square meter) that the sce-
nario assumes for the year 2100. For example, the most benign, RCP2.6, assumes 
that in 2100 there will be 2.6 W/​m2 of anthropogenic forcing, whereas the most 
dangerous—​RCP8.5—​assumes more than three times as much.

Following the method of Figure 7.9 (using CO2eq) we obtain Plates 7.5 through 
7.7, which compare this historically based method (labeled TCS for “transient 
climate sensitivity,” based on CO2eq forcing83) with the CMIP5 GCM projections 
obtained in the usual way—​by integrating numerically the coupled atmosphere–​
ocean models. The figure shows both the mean84 and the spreads (90% confi-
dence), representing the uncertainties. We can draw several conclusions. The first 
is that the mean of this simple historical method is within the 90% confidence level 
of the GCM projections. Statistically, the two methods agree with each other. The 
second is that the mean GCM projections are about 25% greater than the historical 
method mean. Third, the uncertainty of the historical method is reduced by a large 
factor (about 5).

Detailed analysis suggests that the MME is a too high because the GCM 
parameters were adjusted using data over past decades, which involved overly 
strong aerosol cooling, which masked the fact that the model climate sensitivities 
were too high. This would not matter if, in the future, the proportion of aerosol 
to total greenhouse gas forcings was the same. However the RCPs assume that 
aerosols (pollution) will soon be largely “cleaned up.” Therefore, with little future 
negative forcing (cooling), the model oversensitivities become more apparent. As 
for the uncertainties, the reason why the historical projections have much smaller 
uncertainties (spreads) than the GCMs is that they are projected from the real 
world—​not GCM climates. Their main uncertainty is from the temperature and 
forcing reconstructions, which lead to uncertainties in overall climate sensitivity. 
In comparison, the GCM projections use common reconstructions as inputs. 
Their projection uncertainties arise because each GCM has its own climate, and 
the uncertainty reflects this large spread (see Box 7.8 for more details).

Also indicated in the plot are the 1.5°C and 2°C thresholds that, according to 
international agreements, we should aim to stay below and actually stay below, 
respectively. We can now compare the GCM and historical-​based projections to 
the implications of the historical projections’ lower mean and smaller uncertainty. 
Avoiding the unrealistically extreme RCPs, we see that for RCP4.5, with 90% cer-
tainty, the 1.5°C threshold will be crossed in 2034 to 2052 (GCMs) and in 2044 to 
2052 (historical). The 2°C threshold will be crossed in 2040 to 2100 (GCMs) and 
2070 to 2100 (historical).

7.3.4  Regional projections

We can now see how well the historical method does at a regional scales. Plate 7.8 
(top left) shows the result when the regression method of Figure 7.9 is applied at 
each grid point to estimate the local TCS. Overall, we see that nearly all the grid 
points have warmed, especially at the high latitudes. The only exceptions are two 

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   308 29-Dec-18   8:15:27 PM



Macroweather predictions and climate projections	 309

cooling areas off Greenland and near Antarctica (blue), which is likely a result of a 
stratification of the ocean, with freshwater flowing from the accelerated melting of 
the ice sheets.85 Because we are currently at about one half of a doubling of CO2eq, 
the plot is easy to interpret: By dividing the numbers in the figure by two, we ob-
tain an estimate of the historical warming at each grid point. This projection just 
says that whatever we’ve had in the past will continue in the future.

We can compare this historical estimate of past warming to the CMIP5 estimates 
(Plate 7.8, top right). Plate 7.8 (bottom) shows there is a large spread between the 
approaches.86 Comparing the GCM sensitivities to the historical ones (Plate 7.8, 
top), we see that the GCMs have overestimated the warming since 1880 over most 
of the globe, but they also underestimated it over some significant regions, such 
as Northwest Canada and Central Asia. This is confirmed directly in Plate 7.8 
(bottom), which shows the map of the difference between them. For more than 
half of the grid points, the GCMs and the historical data are statistically in disa-
greement. The GCMs reproduced the past poorly, and at the regional level even 
more so. This gives us confidence in the slightly lower historical projections made 
by extrapolating the historical sensitivities into the future (Plate 7.8, upper left).

We can now use TCSs at each pixel to project the temperatures to the period 
2080 to 2100 for each of the RCP scenarios (Plate 7.9). For the historical method, 
the spatial patterns are all the same because the forcings are all applied globally. 
The difference between the RCP scenarios is only in the total CO2eq. In compar-
ison, the CMIP5 projections have some spatial variation, notably because they in-
volve a stronger reduction in aerosols over China and the Indian subcontinent. 
These differences have important policy consequences (discussed in Box 7.7).

Notes

1. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–​141 (1963).
2. Roughly the lifetime of planetary structures. See Section 7.2 for this inverse cascade 

of error growth.
3. Mathematically, the logistic model is a “mapping.” It evolves in discrete time. This 

means the model determines the state only at specific intervals of time, not at in-​between 
times. [Lorenz, E. N. The problem of deducing the climate from the governing equations. 
Tellus 16, 1–​11 (1964).] As he was studying logistic mapping, Lorenz was also developing non-
linear models of systems that were continuous in time (mathematically, “flows”). Notably, 
he discovered the famous “Lorenz model”: Lorenz, E. N. Deterministic nonperiodic flow. J. 
Atmos. Sci. 20, 130–​141 (1963).

4. It can be mapped onto the real axis of the Mandelbrot set by a nonlinear transforma-
tion of variables.

5. So that 68% of all the series are between the top and bottom red curves in Plate 7.1B.
6. In real forecasting using GCMs, the long-​term error is often not well estimated, so 

they often have negative skill (see Section 7.3).
7. In this case, γn is simply a random number drawn independently of the previous ones. 

Conventionally, the innovations are chosen to be from the bell curve.
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8. Box, G. E. P. & Jenkins, G.M. Time Series Analysis: Forecasting and Control. (Prentice 
Hall PTR, 1970).

9. It falls off exponentially, which is faster than any power law.
10. A generalization to processes with power law memories does exist (the fractional 

autoregressive integrated moving average, or FARIMA), but most practitioners consider it 
to be exotic; it is not much used.

11. This model is linear. At long-​enough timescales—​centuries or millennia—​there are 
nonlinear couplings between forcings and albedo. Also I’ll only discuss the simplest ap-
proximation in which Earth is treated as a uniform body so that spatial temperature (and 
other) variations are ignored (the model is “zero dimensional”).

12. The value of this relaxation time is hard to measure and is not well known, but is 
likely to be about two years, because this is the time required for the oceans and atmosphere 
to be strongly coupled.

13. Another mathematical difference between the EBE and FEBE is that, as a result of 
the long memory, the relevant FEBE is a “past value problem,” not the usual “initial value” 
problem.

14. For an fGn with parameter H, the weights of the innovations a time j steps in the 
past fall off as j(H–​1/​2). Because the statistics depend on the variance (the second moment), 
the average importance of the innovations (their statistical weight) decays more quickly as 
j(2H–​1). However, the statistical weight of all the innovations that are older than j steps in the 
past only fall off as j2H. In this example, H = –​0.1, so the influence of the ancient past decays 
extremely slowly. Note that when H > 0, it diverges. It turns out that the basic H > 0 fBm 
model can nevertheless be saved by effectively subtracting out the infinity.

15. Lorenz, E. N. The predictability of a flow which possesses many scales of motion. 
Tellus 21, 289–​307 (1969).

16. Interestingly, Lorenz’s article (“The predictability of flow”) uses a statistical turbu-
lent approach that assumes planetary-​scale scaling, but the article is not well known. For 
a review, including a generalization to account for the effect of intermittency, (causing the 
predictability to be lost in “bursts”) see Schertzer, D. & Lovejoy, S. Uncertainty and pre-
dictability in geophysics: Chaos and multifractal insights. In: State of the Planet: Frontiers 
and Challenges in Geophysics (eds. R.  S. J.  Sparks & C.  J. Hawkesworth), pp.  317–​334 
(2004). 

17. Recall from Chapter 4: Lifetime = (Energy rate density)–​1/​3(Size)2/​3.
18. The overall time for the planetary-​scale prediction to be corrupted is, in fact, the 

sum of the times for the smaller structures to have their predictions corrupted. However, 
the critical prediction time for structures of a given spatial scale (equal to their “lifetime”) 
grows as the two-​thirds power of their size, so that for all practical purposes, it is only the 
lifetime of the largest structures that matters. If the large-​scale turbulence had been two 
dimensional—​as is conventionally assumed—​then in principle, the predictability would be 
much longer. This is because in two dimensions, the lifetime of structures only grows loga-
rithmically with size, so the error propagation to larger scales is much slower.

19. The exact status of STSF is not clear, although empirically it is supported by temper-
ature and precipitation data, and there are theoretical arguments that it holds at least as an 
approximation. See Lovejoy, S. & Schertzer, D. The Weather and Climate: Emergent Laws 
and Multifractal Cascades. (Cambridge University Press, 2013); Lovejoy, S. & de Lima, M. I. 
P. The joint space–​time statistics of macroweather precipitation, space–​time statistical fac-
torization and macroweather models. Chaos 25, 075410, doi:10.1063/​1.4927223 (2015).
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20. Hasselmann, K. Stochastic climate models, part I: Theory. Tellus 28, 473–​485 (1976).
21. The latter is somewhat a misnomer because it excludes restrictively fractional or-

dered (but still linear) terms, yet these fractional terms are crucial for obtaining realistic 
scaling. See, for example, Sardeshmukh, P., Compo, G. P., & Penland, C. Changes in prob-
ability associated with El Nino. J. Climate 13, 4268–​4286 (2000); Penland, C. A stochastic 
model of IndoPacific sea surface temperature anomalies. Physica D 98, 534–​558 (1996); 
Penland, C. & Sardeshmuhk, P. D. The optimal growth of tropical sea surface temperature 
anomalies. J. Climate 8, 1999–​2024 (1995); and Newman, M. An empirical benchmark for 
decadal forecasts of global surface temperature anomalies. J Climate 26, 5260–​5269 (2013).

22. Newman, M. An empirical benchmark for decadal forecasts of global surface tem-
perature anomalies. J Climate 26, 5260–​5269 (2013).

23. Suckling, E. B., Jan van Oldenborgh, G., Eden, J. M., & Hawkins, E. An empirical model 
for probabilistic decadal prediction: A global analysis. Climate Dynam. 48, 3115–​3138 (2017).

24.  Lovejoy, S., del Rio Amador, L., & Hébert, R.  The ScaLIng Macroweather Model 
(SLIMM): Using scaling to forecast global-​scale macroweather from months to decades. 
Earth Syst. Dynam. 6, 1–​22 (2015).

25. Baillie, R. T. & Chung, S.-​K. Modeling and forecasting from trend-​stationary long 
memory models with applications to climatology. Intl. J. Forecasting 18, 215–​226 (2002).

26. fGn naturally involves strong low-​frequency undulations and we have to try to dis-
tinguish these macroweather variations from the anthropogenic climate variations and 
forecast the two separately (see the next section).

27.  Lovejoy, S., del Rio Amador, L., & Hébert, R.  The ScaLIng Macroweather Model 
(SLIMM): Using scaling to forecast global-​scale macroweather from months to decades. 
Earth Syst. Dynam. 6, 1–​22 (2015).

28. Lovejoy, S. Using scaling for macroweather forecasting including the pause. Geophys. 
Res. Lett. 42, 7148–​7155 (2015).

29. For the anomaly averaged over three years.
30. Adapted from Lovejoy, S. Using scaling for macroweather forecasting including the 

pause. Geophys. Res. Lett. 42, 7148–​7155 (2015).
31. Gripenberg, G. & Norros, I. On the prediction of fractional Brownian motion J. Appl. 

Prob. 33, 400–​410 (1996). This was investigated numerically in Hirchoren, G. A. & D’attellis, 
C. E. Estimation of fractal signals, using wavelets and filter banks. IEEE Trans. Sign. Proc. 
46, 1624–​1630 (1998).

32. Technically, we minimize the square of the prediction error. We obtain a “minimum 
square” estimator.

33. Gripenberg, G. & Norros, I. On the prediction of fractional Brownian motion J. Appl. 
Prob. 33, 400–​410 (1996).

34.  Reproduced from Del Rio Amador, L.  The Stochastic Seasonal to Interannual 
Prediction System. PhD thesis, McGill University (2018).

35. With regard to the range, 0.09 indicates the spread of the H values for the thirty-​six 
different models, and it is quite small. The actual range of values was –​0.02 to –​0.2, which is 
the model-​to-​model variation in H.

36. One for each of the available periods in the control, typically for each control run. 
There were several thousand hindcasts; the MSSS is an average over all of them.

37. Figure 7.5 compares the mean and spread of the hindcasts, and the theory on the con-
trol runs. Although it cannot be deduced from this figure, further analysis shows that each 
individual control run was hindcast nearly to its theoretical limit.
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38.  Reproduced from Del Rio Amador, L.  The Stochastic Seasonal to Interannual 
Prediction System. PhD thesis, McGill University (2018).

39. With globally averaged temperatures, the annual cycle is very small and, in anomaly 
data, it is very small.

40. Using the National Center for Environmental Prediction reanalysis data (at 5° × 5° 
resolution).

41. The annual cycles and low frequency trends use data over the previous thirty years 
so that, for example, the 1980 cycle and trend are estimated from data over the period 1950 
to 1980.

42.  Reproduced from Del Rio Amador, L.  The Stochastic Seasonal to Interannual 
Prediction System. PhD thesis, McGill University (2018).

43. The trend in Figure 7.6 was deduced directly from the previous thirty years of tem-
perature data. It turns out that a slight improvement can be made by, instead, estimating 
anthropogenic warming at each point using the CO2 forcing and the observed response at 
the point. This improvement has been introduced in more recent versions of the StocSIPS.

44. The theoretical skill depends only on the value of H, which varies somewhat from 
place to place (Fig.  5.5). See the review by Lovejoy, S., Del Rio Amador, L., & Hébert, 
R.  Harnessing butterflies:  Theory and practice of the Stochastic Seasonal to Interannual 
Prediction System (StocSIPS), In:  Nonlinear Advances in Geosciences (ed. A.  A. Tsonis), 
pp. 305–​355. (Springer Nature, 2017).

45. Merryfield, W. J., Denis, B., Fontecilla, J.-​ S., Lee, W.-​ S,. Kharin, S., Hodgson, J., & 
Archambault, B. The Canadian Seasonal to Interannual Prediction System (CanSIPS): An 
Overview of Its Design and Operational Implementation. (Environment Canada, 2011).

46. The assimilation in this case is highly sophisticated. It is called “4D Var” for four-​
dimensional (space and time) variational method. It uses the equations of the atmosphere 
(as embodied in the model) to “ingest” all available data with meteorological information 
(i.e., station data, but also data from aircraft and satellites). Because each model has different 
and rather specific algorithms, reanalyses based on different models are somewhat different.

47. This is done with the standard method that uses the previous thirty years of data, 
removing the annual cycle, as described in Chapter 5.

48.  It may be helpful to write this symbolically. First, define the model climates and 
anomalies from the actuals:

	 T r t T r T r tCanSIPS i t CanSIPS CanSIPS( , ) ( ) ( , ),= + ′( ) 	

	 T r t T r T r tECMWF i t ECMWF ECMWF( , ) ( ) ( , ),,= + ′( ) 	

where the overbar represents the climatological temperature T ri ( )  at position (grid point) 
r; for the month number i = 1, 2, . . . , 12; and the primes indicate the anomalies, which are 
functions of both position and time [i(t) denotes the month number of time t]; TECMWF(r,t) 
and TCanSIPS(r,t) are the real temperatures, the “actuals.” The conventional way to define T ri ( )  
is to use the averages over the previous thirty ith months (at each location/​pixel r).

The CanSIPS initializing temperature T rCanSIPS( , )0  uses the ECMWF anomaly at 
time t = 0:

	 T r T r T rCanSIPS i CanSIPS ECMWF( , ) ( ) ( , ).( ),0 00= + ′ 	
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49. Unfortunately, five years is too short to estimate the trend properly (the true trends 
are buried in the macroweather noise until a decade or so in scale), so some of the in-
ternal five-​year variability is thus spuriously removed in the postprocessing. Merryfield, 
W. J., Denis, B., Fontecilla, J.-​ S., Lee, W.-​ S,. Kharin, S., Hodgson, J., & Archambault, B. The 
Canadian Seasonal to Interannual Prediction System (CanSIPS): An Overview of Its Design 
and Operational Implementation. (Environment Canada, 2011).

50. Depending on the location, it varies from several months to several years.
51.  Reproduced from Del Rio Amador, L.  The Stochastic Seasonal to Interannual 

Prediction System. PhD thesis, McGill University (2018).
52. Although we have not mentioned it, StocSIPS actually provides forecasts of the prob-

ability distributions [both mean (discussed up until now) and the standard deviation about 
the mean]. These are used for various probabilistic forecasts.

53. Low-​intermittency, temporal macroweather scaling with –​1/​2 < H < 0 and space–​
time statistical factorization. See Lovejoy, S. & de Lima, M. I. P. The joint space–​time statis-
tics of macroweather precipitation, space–​time statistical factorization and macroweather 
models. Chaos 25, 075410, doi:10.1063/​1.4927223 (2015).

54. Changes in land use also contribute, but to a much lesser degree.
55. For aerosols, this includes the geographical distribution of the sources.
56. Not surprisingly, the fourth scenario (RCP6.0) gives projections in between RCP4.5 

and RCP8.5. However, fewer CMIP5 runs were available for this scenario and we did not 
pursue it.

57. Adapted from Hébert, R., Lovejoy, S., & Tremblay, B. An observation-​based scaling 
model for climate sensitivity estimates and global projections to 2100. Climate Dynam. 
(under revision).

58. Recall that the TCS is the proportionality constant between the historical tempera-
ture response and the total (CO2eq) forcing. In comparison, the EffCS is the corresponding 
constant with respect to the pure CO2 forcing. Over the historical period, the TCS is about 
a factor 1.12 times smaller than the EffCS (Fig. 6.3).

59.  Reproduced from Hébert, R., Lovejoy, S., & Tremblay, B.  An observation-​based 
scaling model for climate sensitivity estimates and global projections to 2100. Climate 
Dynam. (under revision).

60.  See, for example, Shukla, J., Palmer, T.  N., Hagedorn, R., Hoskins, B., Kinter, J., 
Marotzke, J., & Miller, M., & Slingo, J. S. Toward a new generation of world climate research 
and computing facilities. Bull. Amer. Meteorol. Soc. 91, 1407–​1412 (2010). For a critical dis-
cussion, see Katzav, J. W. & Parker, S. The future of climate modelling. Climate Change 132, 
475–​487 (2015).

61. Myhre, G. Consistency between satellite-​derived and modeled estimates of the direct 
aerosol effect. Science 325 (5937), 187–​190 (2009).

62. Adapted from Hébert, R., Lovejoy, S., & Tremblay, B. An observation-​based scaling 
model for climate sensitivity estimates and global projections to 2100. Climate Dynam. 
(under revision).

63.  Cited in Sample, Ian. “The Father of Climate Change,” The Guardian, June 
30, 2005, https://​www.theguardian.com/​environment/​2005/​jun/​30/​climatechange.
climatechangeenvironment2.

64. The 90% uncertainty limits imply the range: 1.97 to 2.69°C/​CO2 doubling.
65. This is equivalent to annually updating a thirty-​year averaged climate state. Because 

there is only one Earth, the ensemble has a single member, so there is no ensemble averaging.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Sat Dec 29 2018, NEWGEN

9780190864217_Book.indb   313 29-Dec-18   8:15:29 PM

shaun2008
Cross-Out

shaun2008
Replacement Text
5B



314	 Weather, Macroweather, and the Climate

66. Adapted from Lovejoy, S. Using scaling for macroweather forecasting including the 
pause. Geophys. Res. Lett., 42, 7148–​7155 (2015).

67. The year 1909 is taken as the zero point; it was a year of record-​low residuals, so 
this choice leads to a particularly high systematic error. On average, the temperatures were 
0.017°C above the mean projection. The spread of the projection was only 0.010°C (90% 
confidence).

68. It was indeed exceeded in 2015 (Fig. 7.11B).
69. The slow-​growth RCPP0.85 would only have been projected to be about 0.5°C at that 

time (with a four-​year uncertainty either way).
70. The CO2 level was smoothed over a five-​year timescale.
71. Andersen, K. & Bows, A. Beyond “dangerous” climate change: Emission scenarios for 

a new world. Phil. Trans. R. Soc. A 369, 20–​44 (2011).
72.  Indeed, it can be shown mathematically that a forcing that is convex (upward 

curving) necessarily leads to a convex temperature response, both of which are observed.
73. The CRF dicussed here is an approximation to the FEBE discussed in Box 7.1. The 

smallest scale for which any linear model is appropriate is about two years:  the ocean–​
atmosphere coupling scale. Therefore, this minimum scale at which the power law memory 
holds is an important parameter in the model.

74. The FEBE (Box 7.1) shows that the energy storage mechanism—​and the memory that 
it implies—​ is fundamentally the same for macroweather (internal variability) and exter-
nally forced (climate) variability. However, each can be approximated by a different scaling 
law, with the two laws (their exponents) related as indicated in Box 7.1. Here I am discussing 
the low-​frequency power law memory valid for timescales longer than two years or so.

75. The monthly resolution volcanic forcings were too “spiky” (intermittent) and needed 
to be adjusted. More details are given in Hebert’s thesis: Hebert, R. A Scaling Model for the 
Forced Climate Variability in the Anthropocene. MS thesis, McGill University (2017).

76. For the aerosols, rather than attempting to make detailed models of the direct and 
indirect radiative effects, we used the IPCC aerosol forcing normalized by a factor deter-
mined by historical observations. Fairly similar results were obtained by using the total 
global sulfate emissions as a linear proxy for the aerosol forcing. Hébert, R., Lovejoy, S., 
& Tremblay, B. An observation-​based scaling model for climate sensitivity estimates and 
global projections to 2100. Climate Dynam. (under revision).

77.  Previously, we didn’t need explicit knowledge of the aerosol forcings because we 
assumed the aerosol fraction of the total forcing was constant. The uncertainty is the para-
metric uncertainty from the Bayesian parameter estimation.

78. Box, G. E. P. & Jenkins, G. M. Time Series Analysis: Forecasting and Control. (Prentice 
Hall PTR, 1970). Sardeshmukh, P., Compo, G. P., & Penland, C. Changes in probability as-
sociated with El Nino. J. Climate 13, 4268–​4286 (2000). Lovejoy, S., del Rio Amador, L., & 
Hébert, R. The ScaLIng Macroweather Model (SLIMM): Using scaling to forecast global-​
scale macroweather from months to decades. Earth Syst. Dynam. 6, 1–​22 (2015).

79. In addition, the CO2 forcing was taken as a linear surrogate for all the forcings—​the 
responses characterized by the EffCS to CO2 doubling.

80. A statistical treatment of all such lags between zero and twenty years is found in 
Lovejoy, S. Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic 
warming. Climate Dynam. 42, 2339–​2351 (2014).
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81.  Multiplying this value by 1.12 doesn’t exactly match the EffCS for CO2 doubling 
(which is 2.33; Fig. 6.4A), because the temperature data used here were slightly different. 
The value 1.12 was derived from the average of four different global temperature series. For 
details, see Hébert, R., Lovejoy, S., & Tremblay, B.  An observation-​based scaling model 
for climate sensitivity estimates and global projections to 2100. Climate Dynam. (under 
revision).

82. The spread in the historical-​based projections is a result of the use of four different 
temperature reconstructions, each with slightly different EffCS.

83. The EffCS is the result of using CO2 as a surrogate for all the forcings. The EffCS is 
also “transient” in the sense that it ignores the long-​term memory in the system. The term 
TCS introduced here is the sensitivity estimate using all the forcings (CO2eq), but—​unlike 
the ECS—​it ignores the memory.

84.  For the GCMs, the central line is the average over all the thirty-​two CMIP5 
models: the MME mean.

85. For the cooling of the North Atlantic, Hansen et al. have proposed that it depends on 
the amount of freshwater melting from Greenland. This addition meltwater leads to strati-
fication of the upper layer of the ocean, reducing the formation of deep water and thus re-
ducing the amount of warmer deep water that can rise to the surface. This means the cooling 
trend can potentially sustain itself as global warming increases and that the Greenland ice 
sheet continues melting—​that is, until it has completely melted. This cooling should not 
be reassuring, because it means that more heat is trapped in the deeper ocean waters and, 
most importantly, this injection of freshwater may eventually lead to a shutdown of the 
thermohaline circulation, resulting in an upsetting impact on the world’s climates. Hansen, 
J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-​Delmotte, V., Russell, G., Tselioudis, 
G., Cao, J., Rignot, E., Velicogna, I., Kandiano, E., von Schuckmann, K., Kharecha, P., 
LeGrande, A. N., Bauer, M., & Lo, K.-​ W. Ice melt, sea level rise and superstorms: Evidence 
from paleoclimate data, climate modeling, and modern observations that 2°C global 
warming is highly dangerous. Atmos. Chem. Phys. doi:10.5194/​acpd-​15-​20059-​2015 (2015).

86. About ±25%, although this ratio has some spatial variability. Also, it is expected that 
the ratio will not be the same because the spread between GCMs is the spread between dif-
ferent GCMs, whereas the spread between the different data sets is the result of different 
observations and statistical errors.
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 Conclusions: Richardson’s dreams

From big to small, from fast to slow, we traveled through scales—​through 
magnifications of billions in space and billions of billions in time. We looked at how 
the traditional scalebound approach singles out specific phenomena:  structures 
at specific spatial scales with specific lifetimes. The approach attempts to under-
stand each in a (scale) reductionist and (usually) deterministic manner. Yet it fails 
miserably to describe more than tiny portions of the actual variability, giving—​at 
best—​some qualitative insights. Viewing the big picture with the help of modern 
data, we saw that, quantitatively, the scalebound approach underestimates the var-
iability by a factor of a million billion (Fig. 2.3A).

The alternative is the scaling approach, which attempts to understand and 
model the atmosphere over wide ranges of scale. This approach is based on space–​
time scale symmetry principles. It describes statistically the synergy of nonlinear 
processes that act collectively over wide ranges of scale. To apply the idea in space, 
we needed to generalize the notion of scale itself (Chapter 3)—​notably, to be able 
to account for the stratification caused by gravity. The appropriate notion of scale 
is one that emerges as a consequence of strong nonlinear dynamics, rather than 
being imposed a priori from without. Applying scaling in time, we found that the 
familiar weather–​climate dichotomy was missing a key middle regime: from ten 
days to twenty years. It is a weather, macroweather, climate trichotomy.

When it comes to real atmospheric modeling, scientists have long realized the 
limits of the scalebound approach. When they “really need to know,” they defer to 
NWP or GCMs, the embodiment of Richardson’s dream of “weather prediction 
by numerical process.” This is fortunate, because the NWPs and GCMs respect 
space–​time scaling symmetries; without them, they would be hopelessly unreal-
istic. At least when used for their original purpose—​weather prediction up to the 
ten-​day deterministic predictability limit—​respecting scaling allows them to be 
reasonably accurate.

But Richardson had another dream: of using higher level statistical scaling laws 
to understand and model the atmosphere over huge ranges of scales. Rather than 
modeling deterministically and explicitly as many of the bumps, wiggles, cells, 
eddies, and structures as possible, the high-​level statistical approaches account 
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Richardson’s other dream	 317

for the collective, turbulent statistical effects of billions of billions of them. The 
low-​/​high-​level dichotomy is analogous to the statistical mechanics–​continuum 
mechanics dichotomy that underlies all atmospheric modeling. In principle, one 
could use (low-​level) statistical mechanics to account for the position and velocity 
of all the molecules in the atmosphere, but this is impractical. Instead, one uses the 
(higher level) laws of thermodynamics and continuum mechanics. Both levels are 
valid and are used according to the application. However, the continuum laws that 
describe individual eddies are not at the top of the hierarchy. There are even higher 
level laws that describe the statistics of large numbers of vortices.

Four decades ago, the nonlinear revolution promised insights and solutions. 
In the words of a prominent chaos, scaling, and fractal enthusiast, a new genera-
tion of scientists was exhorted to “junk your old equations and look for guidance 
in cloud’s repeating patterns.”1 It was hoped that this would solve the turbulence 
problem that had taunted scientists since the nineteenth century. Since then, non-
linear geoscience and atmospheric and climate science largely parted company. 
On the one hand, by using the low-​level laws and brute-​force numerics, GCMs 
have been wildly successful; on the other hand, the nonlinear revolution has only 
lived up partially to its promise of solving turbulence. This book is an attempt to 
reunite these two historic strands, these two complementary theoretical levels of 
atmospheric science.

As detailed in these pages, the scaling paradigm has made progress. Using 
modern data and new data analysis techniques, and with the help of stochastic 
models, the paradigm has verified and quantified space–​time scaling over wide 
ranges, and the scaling laws were found to be fundamental enough to apply to 
Mars as well as to Earth. An almost incidental byproduct was the vindication—​
nearly ninety years after it was first proposed—​of Richardson’s wide-​range scaling 
4/​3 law of turbulent diffusion. Other successes include the extension of scaling 
to tame atmospheric stratification and the strong tendency for variability to be 
“spiky” (turbulent intermittency), which turned out to be multifractal. And all of 
this was linked to extreme black swan events via scaling mechanisms, including 
the multifractal butterfly effect (Box 3.1).

In Chapters 6 and 7, we examined how these scaling advances can be applied 
to practical problems—​notably, the problem of global warming—​testing (and 
rejecting) the skeptics’ GNF hypothesis. We also saw how scaling can be used to 
exploit the newly discovered huge memory to make macroweather (monthly, sea-
sonally, and annually) forecasts nearly up to (new) stochastic predictability limits. 
Finally, in the brave new world of the Anthropocene, we discovered how scaling 
can improve climate projections up to the year 2100.

Note

1.  Cvitanovic, P.  Introduction. In:  Universality in Chaos (ed P.  Cvitanovic), pp.  3–​34. 
(Adam Hilger, 1984); quote, p. 4.
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{ List of abbreviations }

AGU	 American Geophysical Union
AMDAR	 Aircraft Meteorological Data Relay
AMO	 Atlantic multidecadal oscillation
AMS	 American Meteorological Society
AR	 Assessment Report (always accompanied by a number)
AR	 autoregressive
BECCS	 Bio-​Energy Carbon Capture and Storage
CaCO3	 calcium carbonate
CanCMx	 Canadian Climate Model x
CanSIPS	 Canadian Seasonal to Interannual Prediction System
CanStoc	 CanSIPS–​StocSIPS hybrid model
CCAF	 Canadian Climate Action Fund
CCAR	 Climate Change and Atmospheric Research Programme
CD	 Climate Dynamics
CFCAS	 Canadian Fund for Climate and Atmospheric Science
CH4	 methane
CMIP3x	 Coupled Model Intercomparison Project Phase x
COP	 Conference of the Parties
CO2	 carbon dioxide
CRF	 climate response function
CSIRO	 Commonwealth Scientific and Industrial Research Organisation
CVAS	 climate variability across scales
DFA	 detrended fluctuation analysis
DMS	 dimethyl sulfide
EAH	 Early Anthropocene Hypothesis
EBE	 energy balance equation
ECMWF	 European Centre for Medium-​Range Weather Forecasting
ECS	 equilibrium climate sensitivity
EffCS	 effective climate sensitivity
EFS	 Ensemble Forecasting Systems
EGS	 European Geophysical Society
18O	 oxygen 18
ENSO	 El Niño southern oscillation
EOF	 empirical orthogonal function
EPICA	 European Project for Ice Coring in Antarctica
EuroSIPS	 European Seasonal to Interannual Prediction System
FARIMA	 fractional autoregressive integrated moving average
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320	 List of abbreviations

fBm	 fractional Brownian motion
FEBE	 fractional energy balance equation
FFT	 fast Fourier transform
fGn	 fractional Gaussian noise
FSP	 Fractals Sums of Pulses (model)
GASP	 Global Atmospheric Sampling Program
GCM	 General Circulation Model (sometimes and equivalently, Global 

Climate Model)
GDP	 gross domestic product
GHG	 greenhouse gas
GISS	 Goddard Institute for Space Studies
GNF	 giant natural fluctuation
GPS	 global positioning satellite
GRIP	 Greenland Ice Core Project
GRL1	 “Return Periods of Global Climate Fluctuations and the Pause”
GRL2	 “Using Scaling for Macroweather Forecasting Including the Pause”
GRL3	 “Giant Natural Fluctuation Models and Anthropogenic Warming”
GSI	 generalize scale invariance
HadCRUT	 Hadley Centre Climate Research Unit Temperatures
HAD4	 Hadley model, version 4
ICPCCC	 International Committee for Projecting the Consequences of Coal 

Consumption
IMO	 International Meteorological Organization
IPCC	 International Panel on Climate Change
IR	 infrared
LIM	 linear inverse modeling
MA	 moving average
MME	 multimodel ensemble
MOZAIC	 Measurement of Ozone by Airbus In-​service Aircraft
MSSS	 mean square skill score
MTSAT	 Multifunctional Transport Satellite
NAO	 North Atlantic oscillation
NASA	 National Aeronautics and Space Administration
NG	 Nonlinear Geophysics (focus group)
NGO	 nongovernmental organization
NOAA	 National Oceanic and Atmospheric Administration
NVAG	 nonlinear variability in geophysics
NWP	 Numerical Weather Model
PAGES	 Past Climate Change (working group)
PDO	 Pacific decadal oscillation
PETM	 Paleocene–​Eocene Thermal Maximum
QBO	 quasi-​biennial oscillation
RCP	 representative carbon pathways
RCPP	 representative coal and petroleum pathways
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RMS	 root mean square (the square root of the average of the square)
SCRF	 scaling climate response function
SLIMM	 Scaling Macroweather Model
SOC	 self-​organized criticality
SST	 sea surface temperature
StatCLIP	 Statistical Climate Prediction
StocSIPS	 Stochastic Seasonal to Interannual Prediction System
STSF	 space–​time statistical factorization
TAMDAR	 Tropical Airborne Meteorological Reporting
TCR	 transient climate response
TCS	 transient climate sensitivity
10Be	 beryllium 10
TRMM	 Tropical Rainfall Measurement Mission
TSI	 total solar irradiance
20CR	 Twentieth-​Century Reanalysis
UNEP	 United Nations Environment Programme
WMO	 World Meteorological Organization
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{ Glossary }

aerosol forcing  when airborne particles, most importantly sulfates, lead to a negative 
forcing by reflecting solar energy

anthropogenic forcing  all man-​made environmental changes that affect the radiative 
balance of Earth, mainly through changes in the atmospheric composition of the Earth, 
emission of aerosols, and changes in land use

anthropogenic variability  the temperature variability resulting directly from 
anthropogenic forcing, which is responsible for a large part of Earth’s surface warming 
during the twentieth century

assessment reports by the IPCC  published materials composed of the full scientific and 
technical assessment of climate change by the working groups of the IPCC. Five reports 
were published: in 1990, 1995, 2001, 2007, and 2013.

bell curve  the informal name of the “Gaussian” (or “normal”) probability distribution, so-​
called because its graph is in the shape of a bell. The bell curve is ubiquitous in statistics, 
but it has virtually no extremes and it is usually inappropriate for geo-​applications.

black swans  events that are so extreme that, according to standard (usually bell curve) 
theory, they should virtually never occur (their probability would be astronomically 
low). Originally, the term designated completely “out of the box”-​type events, but 
increasingly the term has been used to designate events produced by processes with 
power probability tails. Several mechanisms have been proposed for generating such 
extremes, including the multifractal butterfly effect and self-​organized criticality. They 
are typically associated with spatial and/​or temporal scaling, they are also associated 
with multifractal phase transitions and divergence of moments.

butterfly effect  Lorenz’s colorful description of the property of nonlinear systems to be 
so sensitively dependent on their starting values that even a butterfly could alter their 
future evolution

chaos  the converse of order, originally from Greek mythology. Various paradigms of chaos 
have been proposed, including deterministic and stochastic. In the former, randomness is 
only apparent, hiding a nonrandom rule or law, and manifested in sensitive dependence 
on the initial conditions (e.g., resulting from subjective measurement error) whereas in 
the latter, it is produced by an objectively random process or law.

climate  the range of timescales beyond macroweather in which fluctuations grow in 
amplitude with increasing time interval. During the preindustrial epoch, it is probably 
longer than one hundred years (although the duration is variable from epoch to epoch 
and place to place), whereas during the industrial epoch, it is the scale at which the 
anthropogenic changes dominate the natural variability, which is currently about sixteen 
to eighteen years—​a little less than the official climate-​normal period of thirty years.

climate forcing  the increase or decrease in the power per area (measured in watts per 
square meter) above or below a convenient long-​term level. Climate forcing quantifies 
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324	 Glossary

the rate of energy accumulation or loss resulting from a forcing agent. Climate forcings 
change the equilibrium temperature of Earth.

climate normal  thirty-​year averaged atmospheric data, defined by fiat by the World 
Meteorological Organization. In the current epoch, it is close to the macroweather–​
climate transition scale, so these data can be used to define climate states.

climate response function  relates climate forcing to a temperature response. It specifies 
how important old forcings are for today’s response. A scaling climate response function 
specifies that the weights of old forcings fall off in a power law, scaling manner. Unlike 
many approaches, it has no characteristic response time.

climate state  the mean climate state around which macroweather variability fluctuates; 
an average over the critical macroweather–​climate transition scale (or longer). It is 
conventional to approximate a climate state by taking an average over a thirty-​year 
climate-​normal period. For a GCM run in a control run (without any changes in the 
external forcing (including fixed atmospheric composition), at monthly and longer 
times, the model exhibits pure macroweather and the climate state is the average over 
an infinitely long run. It is different for each GCM; for a given GCM, it is different for 
each set of forcings.

climate variability  general term for climate change
CO2 equivalent  a way to reduce any climate forcing (usually measured in watts per square 

meter) to the forcing that would result from an equivalent carbon dioxide (CO2) 
concentration in parts per million, generally using the approximate relationship that 
states that doubling the CO2 concentration leads to an increase in forcing of about 
3.71 W/​m2.

control run  the output of a GCM when all the external parameters are fixed:  no solar 
variability, no volcanism, no changes in atmospheric composition, no orbital changes. 
For scales longer than a month or so, control runs exhibit pure macroweather variability. 
They slowly converge to a climate state—​ the model’s climate (which is different for each 
set of cliamte forcings and for each model).

Coupled Model Intercomparison Project  a framework for comparing and evaluating 
global coupled ocean–​atmosphere General Circulation Models from different modeling 
teams around the world. It began in 1995 under the auspices of the World Climate 
Research Programme’s Working Group on Coupled Modeling.

effective climate sensitivity  proportionality coefficient between the historical temperature 
series and the carbon dioxide (CO2) forcing series; usually expressed in degrees Celsius 
per CO2 doubling. It is useful because it is much more reliably reconstructed than the 
transient climate sensitivity (based on CO2eq) and because the other anthropogenic 
forcings are highly correlated with it as a result of economic activity. It ignores the long-​
term memory.

equilibrium climate sensitivity  the expected temperature change at equilibrium after a step 
doubling in carbon dioxide concentration; requires a climate model to be determined

feedback  a retro-​action loop in which a change in the system fosters other processes that 
can either reinforce the original change (positive feedback) or weaken it (negative 
feedback)

fluctuation  a general notion of change in a process over a given space or time period. The 
general mathematical theory of fluctuations is wavelets, although there exist fluctuations 
(such as those used in detrended fluctuation analysis) that are not wavelets. In this book, 
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the main fluctuations are differences, anomalies, and Haar fluctuations (equal to the 
difference of the anomaly).

forced variability  the temperature variability that results from all the external climate 
forcing

fractal  a geometric set of points that is symmetrical under scale changes. It is scaling and 
generally characterized by noninteger fractal dimensions.

fractal dimension  the exponent that characterizes how the size of the fractal set changes 
with scale; it can quantify sparseness or wiggliness

General Circulation Model  a numerical climate model based on the Navier-​Stokes 
equation of fluid dynamics for either the atmosphere, the ocean, or both. Sometimes 
the term “Global Climate Model” is also used when other climate-​relevant processes 
are included.

generalized scale invariance  a general system for defining the notion of scale and size 
in anisotropic scaling systems; requires only a unit scale (“unit ball”) and a rule (the 
“generator”) to go from one scale to a neighboring scale

Global Climate Model  see General Circulation Model
greenhouse gas forcing  man-​made emissions of greenhouse gases (e.g., carbon dioxide, 

methane, nitrous oxide, halogens, chlorofluorocarbons) that alter the atmospheric 
composition of Earth, which decreases the amount of thermal radiation lost to space 
(aka the “greenhouse effect”), and therefore leads to a positive climate forcing

hindcast  a way to validate predictions by using past data
Holocene  the warm interglacial period since the retreat of the ice sheets, about 

12,000 years ago
Intergovernmental Panel on Climate Change  a scientific and intergovernmental body 

under the auspices of the United Nations, established in 1988; an international group of 
experts on climate change that regularly reviews and assesses scientific, technical, and 
socioeconomic information relevant to the understanding of climate change

internal variability  the random fluctuations of the weather and macroweather that are 
linked to internal modes of heat storage of the climate and not to external climate 
forcing

macroclimate  is the climate regime between about 100,000 and 500,000 years in which 
fluctuations decrease quickly with timescale; apparently dominated by the responses 
to astronomical forcings, although it is not clear whether these responses are scaling or 
simply a broad quasi-​periodic regime

macroweather  the dynamical regime, starting at timescales of about ten days, in 
which fluctuations in atmospheric variables (e.g., wind, temperature, precipitation, 
humidity) decrease with timescale (H < 0). Because fluctuations tend to cancel, the 
macroweather regime has the property that states that averages over longer and longer 
times tend to converge. However, after some critical timescale—​the macroweather–​
climate transition—​averages again tend to increase (H > 0). In the Anthropocene, this 
transition time is currently about twenty years. During the preindustrial epoch, it was 
variable geographically and also variable from epoch to epoch. During most of the past 
800,000 years, it has varied from several centuries to millenia.

macroweather state  the state of the atmosphere after it has been averaged over the weather 
scales (typically taken as one month) and then subtracted from a climate state (typically 
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326	 Glossary

defined by an average over 30 years; the climate normal, with the seasonal cycle also 
removed). It is thus an anomaly with respect to the current climate state.

megaclimate  the regime from about 500,000 years to at least 550 million years in which 
temperature fluctuations grow with scale (H > 0). According to benthic paleodata, it is at 
least roughly scaling. It is thought to be dominated by biogeological processes.

multifractal  a mathematical field or measure of density that is symmetrical with respect 
to generalized scale changes (scaling). It is usually characterized by a scale-​invariant 
exponent that is a function. This is equivalent to an infinite number of exponents (one for 
each level of activity, weak or strong). This infinite hierarchy can often be reduced to three 
as a result of the existence of basic, stable attractive behaviors: multifractal universality.

multifractal butterfly effect  analogous to the usual butterfly effect in that it arises from 
tiny, small-​scale perturbations. In this case, the perturbations are distributed spatially 
(as though from a flock of butterflies), and the consequence is the occasional extreme 
(black swan) event, power law probability tails.

multimodel ensemble  an ensemble of General Circulation Model results with a mean that 
is often used to project climate change and with a dispersion that is used to quantify the 
uncertainty (sometimes called “structural uncertainty”).

multiproxy reconstruction  the use of large numbers (typically hundreds or thousands) 
of paleoindicators distributed geographically to reproduce the temperature evolution 
over centuries and millennia. Multiproxy reconstructions are of large-​scale (usually 
hemispheric or global) temperature series.

natural variability  is the response of the atmosphere to natural forcing agents, such as 
solar and volcanic forcing, that are external to the climate system.

negative emissions  technologies that remove carbon dioxide from the atmosphere; a form 
of geo-​engineering. To be useful for mitigating global warming (to offset, in part, the 
usual positive emission from fossil fuel burning), they would have to be deployed on a 
massive scale. At the moment, these are highly speculative although almost all scenarios 
of economic development include them.

paleotemperature  a proxy such as an oxygen isotope concentration that is related to the 
temperature in a known way; often used as a proxy for the actual temperature

pause  the period following the strong warming of the 1998 El Niño event, during which 
natural cooling temporarily offset anthropogenic warming; it was poorly forecast by 
GCMs. Sometimes called the “hiatus” or “slowdown” in the warming.

phenomenological fallacy  the illogical inference of dynamical mechanisms from 
phenomenological form. The fallacy arises in two distinct but related ways. In the first, 
one attributes qualitatively different mechanisms purely on the basis of morphologies, 
structures, at different space and/​or timescales. In the atmosphere and climate, this is 
often unwarranted, because a single wide-​range scaling mechanism may suffice (e.g., 
clouds). In the second, even at given space and/​or timescale, different mechanisms 
may be attributed to weak and strong events. This occurs when there is scaling in the 
probabilities (see “black swans”).

predictions  forecasts of the evolution of the future state of the atmosphere. Macroweather 
predictions are over periods of typically months to years to decades. They generally 
exclude the response to changing climate forcings because they depend on anthropogenic 
forcing scenarios.

projections  the evolution of the forced climate change for decadal timescales and longer. 
Because they depend on climate forcing scenarios (i.e., human actions)
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Glossary	 327

reanalysis  a data–​hybrid; the result of assimilating meteorological observations into a 
Numerical Weather Model. This can help correct errors in measurements and allows the 
assimilation of satellite radiances and other indirect sources of information.

representative carbon pathways  future emission scenarios designed for Coupled Model 
Intercomparison Project Phase 5 to allow for intermodel comparison. There are four 
scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5), which were established based on 
different socioeconomic assumptions. The number in the name refers to the total 
radiative forcing (measured in watts per square meter) expected in 2100 under each 
scenario (in comparison with the preindustrial level).

scalebound  a way of thinking about the hierarchy of different processes and phenomena 
in the natural world; equivalent to the “new worlds” view. In the scalebound paradigm, 
one expects to find qualitatively different processes and phenomena every factor of 10 
or so in scale. One attempts to isolate phenomena by restricting the scale range. Biology 
furnishes typical scalebound examples. For example, adult human beings are roughly in 
the range between 50 cm and 2 m in height; their height and size is scalebound.

scale invariant  the exponent in a scaling system (such as the fractal dimension D or the 
fluctuation exponent H) that does not change with scale. Scale can be defined in a 
rather general, anisotropic way via generalized scale invariance. Mathematically, it only 
requires a notion of size (a measure), not notion of distance (a metric). In multifractal 
processes, the scale-​invariant exponents are not numbers; they are functions and are 
equivalent to a different exponent for every level of activity (e.g., strong, weak).

scaling  when a property such as volume, mass, or temperature fluctuation varies in a power 
law way with spatial scale (or has the analogous property with respect to timescale 
or with respect to space-​time). Because power laws have no characteristic size, they 
describe dynamics and phenomena that act over wide ranges of scale. Their exponents 
do not change with scale; they are scale invariant.

scaling regime  a range over which the variability of a system respects a scale invariance 
symmetry; it is scaling. Over a scaling regime, there is no fundamental space or 
timescale and the same basic dynamics hold, repeating scale after scale, for example, in 
a cascadelike manner.

simple climate model  a numerical climate model with few degrees of liberty in which 
climate sensitivity is usually specified as a parameter that can be found by comparison 
with the historical record

solar forcing  small variations in the sun’s total irradiance resulting from solar turbulence 
and internal solar cycles (especially sunspot cycles with a period of about eleven years). 
The forcing is measured as deviations from a long-​term average “solar constant.”

spectrum  sometimes called the “power spectrum”; the variance (mean square) of a process 
per frequency (time) or per wavenumber (space). It characterizes variability as a 
function of inverse time (frequency) or inverse length (wavenumber).

transient climate  the constant of proportionality between the temperature response and 
the total climate forcing over the historical period. It ignores the longer term memory 
and is expressed in terms of the temperature change after a doubling in carbon dioxide 
equivalent concentration. The difficulty in estimating it empirically comes from 
uncertain past reconstructions, especially aerosol emissions.

transient climate response  the temperature change after a gradual doubling in 
carbon dioxide concentration over seventy years. It can only be determined from a 
climate model.
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328	 Glossary

turbulence  the regime of chaotic fluid flow that occurs when the forces stirring a gas 
or liquid are much larger than the internal friction forces (viscosity), which tend to 
dampen the motions. The atmosphere is typically turbulent at all scales larger than a 
small viscous scale of less than a millimeter.

volcanic forcing  when volcanic eruptions eject large amounts of sulfate aerosols up to the 
stratosphere, where they reflect solar rays and therefore lead to negative forcing

warming in the pipeline  the committed warming stored in the Earth system, mostly in the 
oceans. This stored energy will warm the atmosphere in the future even if the forcing 
were to stop today.

warming limits of 1.5°C (or 2°C)  thresholds often invoked that should not be surpassed to 
ensure the habitability of our planet. Since the COP 21 meeting in Paris in 2015, the 1.5°C 
limit is one that the international community aims to respect whereas, since the COP 
16 meeting in Cancun in 2010, the 2°C limit is a threshold that is imperative to respect.

weather  the dynamical regime in which fluctuations in atmospheric variables (e.g., 
wind, temperature, precipitation, humidity) increase with timescale (H > 0). From 
milliseconds to the macroweather transition scale around ten days. This is the typical 
lifetime of planetary structures.

weather state  the average state of the atmosphere for timescales up to the scale of the 
weather–​macroweather transition of about 10 days. Typical weather maps are weather 
states reperesenting averages over 6 hours or so. The longer the weather state is averaged, 
the lower is its spatial resolution, because in the weather regime, space and time are 
connected statistically by the typical large-​scale wind (about 10 m/​s).
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