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ABSTRACT :

Many geophysical  f lu id dynamical  systems are highly anisotropic and
intermit tent  over a wide range of  scal-es.  In the fo l lowing, we develope a formal ism
cal led general i -sed scale invar ianee (GSI) which is necessary when the stat ist ical
propert ies are no Ionger symmetr ic wi th respect to rotat ion,  but remain symmetr i .c
under general  scale changing operators which can no lonqer correspond
tosel f -s j .mi lar  d i lat j .ons.  The physical ly s igni f icant invar iants are densi t ies of
scal ing measures which are symmetr ic under these general ised scale changes. By
relat ing GSI to exj ,st ing cascade models,  we show that scal ing measures are
character ised in generaJ" by mult ip le f ractal  d imensj .ons, and are associated with
the interest ing phenomena of  the divergence of  h iqh order stat ist ical  moments.
Final Iy,  we analyse radar rain f ie lds showing not only scal ing but also dimensional
dependence of  stat i_st ical  averaqes.

1.  Introduct ion :

Scale invar iance is a not ion widely used in isotropic systems with many scales
such as turbulence. However,  many natural  f lows, exhibi t  strong anj .sotropy which
resul ts f rom the existence of  prefered direct ions (e.g.  in the atmosphere due to
gravi ty or rotat ion).  In meteorology this common and unfortunate asscciat ion of
scal ing wj , th i .sotropy has raised the quest ion of  whether a s ingle scal ing regime
exists at  a l I  :  the c lassical  scheme of atmospher ic dynamics postulates a quasi- two
dimensionaJ. regime at  large scafes and a quasi- three dimensional  reqime at  smal l
scales

.  Recent ly,  we have proposed an al ternat ive scal ing Lheory((1,  Z,  J)  see also
(4r 5) for  non- mathematical  reviews) in which the aniso[ropy introduced by gravi ty
via the buoyancy force resul ts in a di f ferent ia l  strat iFicat ion and a consequent
modif icat ion of  the metr ic.  This Ieads to a reduct ion of  the ef fect ive dimension of
space ( f rom the isotropic value D=l to 2J/9=2.5555.. . ) .  The metr ic is modif i -ed
because in a cascade process, the most natural  metr ic to use is the one i -n wh1ch
the "baLLs'r  j . t  def ines coincide with the average eddies.  In the isotropic case, the
baI ls are sel f -s imi lar  spheres, 'but  when there is a pr iv i leciged direct i -on,  we
expect these to be replaced by sel f -af f ine el l ipsoi .ds (see f iq.  i  and z).

In order to take into account th is and other ef fects such as the di f ferent ia l
rotat ion introduced by the Cor io l is force,  a general  formal ism of scal ing j ,s
required. In fact ,  as pointed out in Sect ion I  anJ 5,  onJ-y measurable,  not  metr ic
propert ies are necessary.  This is because the scafe not ion may be extended so as
to depend only on measurable propert ies of  the bal1s.

As indicated and i l lustrated in Sect ion 2,  the fundamental  problem is that  of
f i ld inq a fami ly of  "bal- Is"  represent ing the stat ist ical  propert i .es of  eddies at
di f ferent scales.  These baI ls def ine physical ly important,  scale i -nvar iant
(mathematical)  measures such as the f lux ' (or  d issipat ion) of  energy through
structures of  a given scaLe. In Sect ion ) ,  a general ,  formal ism is deduced from
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these phenomenological  considerat ions to take into account both anisotropy and
intermit tency.  This formal ism is given a sound foundat ion by the I inear metr ic
ease which is explored in sect ion 4.  Sect ion 5 is devoted to several  of  the
numerous impl icat ions for  scale invar iant  measures,  in part icular we discuss

"mul" t id imensional"  intermj- t tency which is descr ibed not by a s ingle dimension but
rather by a sequence of  d imensions. Sect ion 6 gives direct  exper imental  support
for  mult id imensionalLty in the rainf ie ld (obtained from remotely sensed radar
data).

2. Phenomenolqqy oF_Lqrbulent cascedes :

2.1.  Isgtropic enerqy cascades :

Since Ri-chardson (6) the phenomenology of  turbulence has been cJ-ose1y
associated with sel f -s imi lar  cascades. In th ls sect ion we review simple cascade
schemes, out l in ing several  var iat ions in order to capture both anisotropy and
intermit tency.  In an isotropic,  homogeneous cascade, non- l inear interact ions
break-up larqe eddj .es lnto smal ler  sub-eddies,  t ransfer ing their  energy (wi thout

dissl-pat ion) in the process (energy is thus an invar iant  of  the process).  Fig.  A,  B
schematieal ly shows a s ingle step of  such a cascade. The j .n i t ia l  eddy (A)t

represented for convenience as a square,  i -s t ransformed into 8. .  Each of  the
sub-eddi .es are cooies of  the or iq inal  reduced bv the l inear rat io \  (here taken
\= Z) and each containing a f ract ion!2 of  the or ig inal  eneigy.  I f  the process is
cont inued indef inately,  i t  is  c lear that  the energy distr ibut ion remains
homogeneous and isotropic.

In order to account for  the "spott iness" (7) of  turbulence ( the fact  that  the
act ive regions only occupy a smal l  f rnct ion of  the total  volume avai lable),  th is
cascade scheme has been elaboraled, through the work of  Novj .kov and Stewart  (B),

Yagtom (S) to the more general  scheme of Mandelbrot  (10).  The simplest  case (known

as the "  p model"  (11) is i l lustrated in f ig.  1C. As before,  the large eddy is
broken up' isotropical . ly .  Now however,  the sub-eddies are randomly chosen to be
el ther "dead" or "al i -ve" (act ive),  wi th the energy at  each step belng dlv ided
equal ly only between the N act ive sub-eddies wi th<N)< IZ When the the number of
steps tends inf in i ty,  the energy is eventual ly distr ibuted over a set  of  points
(cal Ied the "support  of  t .he turbulence") ,  wi th (Hausdorf f )  f ractal  d imension D" =
Iog<N/1og( t r  ) .  In fu l ly  developed three dimenslon turbulence, ?t  is  found
empir ical ly that ,  D" *  2.5 (12).

This s imple scheme can readi ly be extended to account for  the more real ist ic
case involv ing turbulence with a cont inuum of intensi t ies.  This leads to a number
of interest lng impl icat ions (10, 1,  2,  J,  1t) ,  including the hyperbol ic nature of
extreme f luctuat ions (divergence of  the high moments of  the densi ty of  energy
f lux),  and the mult id imensional  nature of  the intermit tency,  both of  which we
dj.scuss in Sect ion 5.  For the moment,  we rather concentrate on showing how these
simple schemes can deal  not  only wi th intermit tency,  but also the strong
anisotropy.

2.2.  Anisotropic cascades :

The strong anisotropy in the almosphere is pr imari ly due to gravi ty which
induces a di f ferent ia l  strat i f icat ion and the Cor io l is force which lnduces a
di f ferent ia l  rotat ion.  The simptest  way to deal  wi th th j .s (3r 13) is to consider
anisotropic cascades in order to account for  the vert ical  strat i f icat ion.  This
natural  idea leads to the surpr i .s ing conclusion that t .he ef fect ive dimension
(cal led an eJ. I ipt ical  d imension D"1 -  see Seet ion 4) of  the atmosphere is 2t /9 =

2.5555 rather than 2 or J as in the usual-  models.  To see how this intermediate
dimension can ar ise,  consider Lhe schematic i l l "ustrat ion of  a s imple anisotropic
cascade shown in f ig.  1D, t .  Rather than producing. sub-eddies by divfd. ing both axes
in f ig.  1 by the same factor,  we div ide one by A and the other bylHz. Fig.  1D, E
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shows this wi th )  = 4,  Hz = 1/?.  The resul t ing el l ipt ical  d imensi .on is 1+H, = 1,5
rather t l ,an 2 as in the isotropic case. In the intermit tent  case, (E),  the support
has an ef fect ive dimension (also of  the el l ipt ieal  type) Ds( Dg1. Note that at
each step of  the process, the in i t ia l  rectangular eddy is reduced in s ize and
elongated. The transformat ion f rom one scale to another now j-nvolves a compression
as wel l  as a reduct ion.  Note that  as in the atmosphere, the structures at  the
largest scal-es are the most hor izontal ly strat i f ied.  In the atmosphere, theoret ical
and empir ical  resul ts show Ht = 519, hence D"1 = 2+H7 = 23/9 ( t )  .

One of  the mot ivat- ions for  the formaLism descr ibed below, is to go beyond
these square and rectangular eddy shapes, which are instruct ive,  but  hardly
real ist ic.  Using GSI,  the squares and rectangles can be replaced by near ly any
shape, the s implest  of  which are c i rc les.  Fig 2 i l lustrates th is wi . th a fami ly of
average eddies in a s j .mple example of  anisotropic scal j .ng involv ing both
di f ferent ia l  rotat j -on and strat i f icat ion.  For comparison recal l ,  that  under
isotropy, we transform from one member of  the fami ly to another by s imple
mult ip l icat ion by the.rat io )1 ,  hence the bal ls are concentr ic c i rc les.  In Fig.2 ,
we rather mult ip ly by , \b where G is a matr ix.

l .  General- ised not ion of  scale :

As noted above, in geophysics,  the not ion of  scal"e has to be general ised in
order to take into account anisotropy. However,  Geophysical  quant i t ies are also
often extremely var iable,  hence at  t .he very least ,  we require measures which are
both anisotrooic and intermit tent .

The previous examples out l j .ned the basic propert ies associated with the not i -on
of scale which can be restated in the fo l lowj-ng abstact  way :  there exists a, fami ly
g of ' rbaLls" B generat ing t l re topology of  a set  M and an appl icat ion g f rom

M to R+ whi.ch is increasing (  i .e.  B C B'  + P G)-< p (B')) .  FG) aer ines the
scale of  B.

The bal ls of  6 can be qenerated by a scale t ransformat ion of  rat io )  f rom
those of  a sub-fami- Iy Or (cover ing M) bounded for F ( i .e.  there exists a
posi t ive and f in i te real  number A such that :  Y Bl  €9,  1 Q(bt)< A ) .  t f r is  (abstract)
scale t ransformat ion.gf  rat io I  corresponds to an o 'y 'erator T1 ( f rom M to M) such
thar:  6 i^e)= 

^u/G).We are thus lead to the fo l lowing abstract  def in j . t ion ln terms of  a group ( the

"scal ing group") of  operators T1 for a topological  space M :

General ized scale t ransformat i -on (qlobal  def in i t ion) :

( i )  T\  is  a mult ip l icat ive group (  I  < nl l  of  t ransformat ion f rom M to M, i .e ' .

(3.1) T\ \ . -  T\  T) '

in part icular:  T1 = 1 = the ldent i ty and T11=t\- t ,

(  i i )  there exists a f  ami ly &l  of  t 'baI

S =Tlgr is a basis for  the to io logy of  M
sub-sets of  M) such that

S to R*,  bounded on 0l  and

I  st t  (  open

q

( i i i )  there exists an increasing funct ion p f ron
which factor izes in (D € Ra) :

( r .2.)  I \ /  = \ '  I
( in (r .2.)  r \d i -s naturar ly def ined by : rsda=btr i l ,VI ,a.



Note in ( i .2.)  the expressiorr  lD 
"""ul t "  

f rom the group property of  T1 since i tj -s impl ied by the assumption of  the existence of  a cont ino.us funct i ' r in q( l )  in
(7,  t  \

4", :" ,  easi ly shown, in case of  a metr ic space, D plays the rol-e of  a dimension
and et t2)  can be taken as the radius of  the bal ls def ined by the distance d(x,y)

, : : . . . .  
i . f  8" , .1_is the bal l  centred at  x,  radius L,  then ,  a".1= [ , /o<x,y) (  L ,

9(Brrg)=L and p = 1).  d (x,y)  can be calred the scal ing met i iE.  v-ore qenera)ry r"
can use the measurabi l i ty  property of  the bal ls.  For instance on Rd, we can take

p as the Lebesque (d voLume) r"""u." ,  by supposing that the Brs are Lebesgue
measurable,  and D equals d i f  the bal- Is are the usual  spheres or cubes. As we wi l l
seer th is is no Longer t rue wi th strongly anisotropi .c ba1Is (such as sel- f -af f ine,
but not sel f -s imiJ-ar,  e l l ipsoids).  Even more anisotropic (and,/or i r regular)  bal ls
can be addressed in th is formal ism (see Figs.3a, b:  the barrs need not be
convex).  Interest ing examples are isotropi-  or  anisotropic Cantor sets or more
general ly f ractal-  sets which are not Lebesgue measureabl-e but measurable by a
D-dimensi .onal  Hausdorf f  measure.  In aI I  these cases 6 .^n be taken as the correct
Hausdorf f  measure ( that  which is f in i te and posi t ive on the balrs)  and the scare
is given by /uo .  F 

"^n 
be cal led the scal inq measure.

The last  example already shows that al though i l  is  usualJ.y based on metr ics
the measurabi l i ty  not ion of  scale is more general  than the metr ic not ion.  I t  a lso
has the advantage of  being immediately t ransposable to the space K(M) of  the " test
funct ions" of  compact support  on M, s ince the equal i ty in (3.2.)  is  a lso t rue in
terms of  test  funct ions :
(J.J)  f  €^ K(M),  T\  f (x)  = f (T-, t  * ,
not  only in terms'bf  bal ls i .e.^ :  t )
(3.4) Q€K'(M),  f  eK(MDTtr p (r)  = ) , -  /  <r l  = p (Tr f ) .

We now establ ish several  precise resul ts tn ,n" f in"""  
"1"" .

4.  L inear GSI case :
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4.1 .  Introduct i -on :

In th is sect ion we wi l l  explore the necessary and suff ic ient  condi . t ions for
obtaining a scal ing group on a vector space M, where the T; wi l l  be a l inear
appl icat ion f rom M to M.

In th is case, i t  is  wel l  known that any muJ.t ip l icat ive group T; is generated
by a (bounded) I inear appl icat ion G accordinq to : '

(4.1.)  Tr = exp (Gloq )  )^ = 2 tta'f

To generate a general ized scal ing measure we proceed as fo lLows :  start  wi th
a given scar ing measur 'e (def ined by Gq,do,0J,  which may correspond to the usual
scal ing such as an isotropic-  metr ic.  Next deduce whether a given generator G
def ines a new scal- ing (wi th 0,  D).  This requires the use of  uni l  balG Dr ( i .e.

Qt!)7lg- lB,  )_:  
- t  

)  *ni"n '  should generate,  through T1 def j .ned uv (+]r ' . ) ,  the
whole fami ly I  of  bal ls of  the new scal ing,  i .e.  :

- ,

=
n

G

nl

(4.2.)  / (W= \  €t  la( B)- rT,
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4.2.  The measurable case :

This case is rather easy tg handle.  I f  we start  wi th a measure'  /oLnend

wi l l  be the image measure of  l% though Ty (which is cont inuous),  and thus wi l l

sat isfy the desired propert j -es i f  (1.2.)  is  sat isf ied wi th a posi t ive D. I f  we take

Qo ^" 
the Lebesgue measure on Ro, then we obtain :

(4.3.)  Det = Trace (G)

since the Jacobian of  the t ransformat ion T; is :

(4.4.)  det  ( Iy )  = exp (Trace(G)roq \)

Del  can be considered as the ef fect ive dimension of  the spacer and when the bal ls

aie el l ipsoidswe may cont inue to cal I  i t  the elJ. ipt ical  d i -mension of  the space
(cf .  1,2,  t ) .  See Fig.3a, b for  examples obtained by var ious non- l inear

generators G.

4.1.  The metr ic case :

Thls case is more demanding since the image of  a metr ic is not usual ly i tsel f
a metr ic.  Nevertheless i t  is  possible to establ ish (11) the fo l lowing proposi t ion
(start ing wi th an in i t ia l  metr ic d(x,y))  :

(4.5.)  inf  Re qr1c)>,  1

where (r(G) is the spectrum of G :

(4.5.)  a(c)  = [ lecl G-r l  {  non invert ib le on C O M

and C @ M is the complexi f j -ed space of  M.
I f  we started wj, th a uni t  balL def ined by the el l ipsoid generated by a

symmetr ic operator A qqQ eucl idean product ( '  ,  '  )  :
(4.2) x € e1<> (Ax,x)1/23 1

Then we obtaj .n the fo lLowing condi t ion :

(4.8) j .nf  c(sym (AG) )> 1

where Sym (AG) denotes the symmetr ic part  of  AG.

4.4.  Some simpLe examples on the plane :

A part icular ly s imple example of  f inear GSI may be obtained by the use of
quaternions. 0f  the many possible representat ions of  quaternions (such as the Paul i
matr i .ces) we choose the fol lowing four 2x2 matr ices:  f .he ident i ty (1) and:

(4.s)  I  = (o-11 o), J = 1o 11 o),  x = (1 oo-t)

these sat isfy the fo l lowing ant icomutat ion refat ions :

(  4.10 )

and I

(4.11)

IJ=-JI=-K
JK= KJ= I
KI=-IK:-J

1=-I2=J2,y2
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^ ^I f^ we decompose G on this basis,  then :  G=d1+cK+eI+fJ also,  taking

^2="2*92-"2,  
we obtain,  wi th u = Log\:

(4.12) \G = )ot1 cosh(au) + (G -d 1) s inh(au)1(a))

0f  course, I  and K corespond to the elementary I inear operat ion of  mult ip l icat ion
by i  and complex conjugat ion.  J has the same effect  as K coupled with a rotat ion,
namely we have :

(4.13) cK + fJ = c 'R*KR 1c'2 = 1c2+f\ ,  R=eI!  t  - t "n-11f lc)

I f  a is imaginary,  the rotat ion ef fect  (due to I )  is  dominant,
strat i f icat i -on ef fect  (due to K and J) dominates.  Fig.2 shows
fami l ies of  By for the l imi t ing case where the el l ipsoids
log-spiraI ,  f=1,  e=2, &t=-3.  When rotat ion dominates,  the axes of
rotate indef inatel ,y,  otherwise the total-  rotat ion i -s only tan- l ( f /c)
of  such metr ics are assured by :

(4.14) 62 S- .2 *  72

otherwise, the
an example of

touch along a
the el l ipsoids

.  The existence

Lovejoy and Schertzer (14) expJ-oi t  the stochast ic f ractal  model discussed in
Lovejoy and Mandelbrot  (  1 5) to give examples of  (mono-dimensionaL) f ie lds
respect ing l inear metr ic GSI.

5.  GSI is a naturaf  f ramework for  mult ip l icat i -ve chaos and mult id imensional
rntenmrttencv:

5.1 .  Introduct ion :

UsuaI stochasf ic process
( weighted) addi t ior f l independent
(e.g.  integrals of 'whi te noise)
that in GSI the most natural
mul t io l  icat  ion.

(such as Brownian mot ion) are obtalned by the
ident ical ly dj .str ibuted ( i . i .d.)  random var iables
.  Conversely,  the mult j -p l icat ive group T1 suggests
type of  process to use are those obtained by

The di f ference in nature of  addi t ive and mult ip l icat ive processes j -s profound
sj-nce the former is mono-dimensional" ,  whi le the lat ter  generalJ.y leads to mult ip le
dimensions. This di f ference needs under l in ing s ince many ef for ts have been made to
relate the most obvious aspect of  intermit tency- i ts "spott iness" (7) to a turbulent
support  wi th a s ingle f ractal  d imension (10, 11) I f  we def ine act i .ve ( turbulent)
regions as those exceeding an arbj- t rary threshold,  then the act ive regions may
indeed be character ised in th is way: the turbulence occupies a much smal ler  space
than that avai lable.  However,  as pointed out in (1r 2),  phenomenological  models of
interm-i t tency (8,  9r  10) 1ead, more general ly to supports character ised by mult i .p le
dimensions, corresponding to the di f ferent ( tensor ia l )  powers of  the measure of  the
f lux of  energy.  Indeed, a sequence of  d imensions is easi ly obtained (2r j )  6y
consider ing the divergence of  h igh moments of  the densi ty €4 of  th is f lux wi th
respect to di f ferent D4-dimensional  Hausdorf f  measures:

(5.1) €Rd for D4(,C(h)=Det-D(h)
C(h)=Iog <Wn> /(h-1)

where W is the random var iable which distr ibutes the densi ty dur ing a step of  the
cascade ( i .e.  f rom an eddy to a sub-eddy in f iq.1).  Increasing h corresponds to
studying the more intense regions. Si .nee D(h) is a decreasing funet ion of  h,  the
most intense regions are the most sparsely distr ibuted.
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5.2 GSI and addi t i -ve Processes :

Combining the act ion of  Ty wi th addi t ion creates random structures,rof

di f ferent s j -zei  and intensi t ies.  ' indeg$o take an i . i .d.  random test  funct i665 ! \A/

of  a given spat i .a l  resolut ion (e.g.  V(I , t= constant over the uni t  bal l :  the process

is theiefore the sum of i . i .d.  indicator funct ions of  uni t  baLls) .  Thus:

( ,  .D uf  Tl- t  1Y(I)  I  ( \> 1 )

wil l  be a random test  funct ion of  l -ower spat ia l  re.soJut ion )  -1.  Summing these
di f ferent V\ ( renormal is ing their  intensi t ies by A-o,  Y>0 i f  necessary),  we

obtain 
"  

. " f rdor densi ty wi th respect to the ( fundamentaL) scal inq measure m (T\m=

PeI m).  thus dpf ine mr as:
(5.3) LL= ( , [  Xo r l?rZf l '  (  d>o)

is  a random measure corresponding to a hierarehy of  structures of  scale rat io \  ,
and the act ion of  T;  ( for  any ))  wi l l  obviously leave this property unchanged.
More precisely,  the-densi ty of  T1m wi l l  a lso be the sum of i . i .d.  densi t ies of  the

""ru 
iyp" as 

- for  
m except for  t  magnif icat ion \ -C where C depends on I  and the

probabi l i . ty  d istr ibut ion of  the V; ) .  Thus:

d^( 5.4) Tp Lt = f "j-
(  I  meaning equal i ty in distr ibut ions,  C=D"1-D) and D is the unique dimension
character is ing the supports of  aI I  the any moments of  m Note that we have
i .mpl ic i te ly supposed that both (V) =0 and {rg}0.  This is not restr ict ive s ince we
can normal l""  r l rUV adding ,o 

Lu- 
fm= <qi)wheiE f  is  the densi ty of  the average of

rv.

5.f  GSI and mult ip l icat ive processes-mult ip l icat ive chaos :

Instead of  adding random increments of  f iner and f iner resolut ion along the

cascade, one may mult ip ly by random increments of  f iner and f iner resolut i -on.  Thi .s

mult ip l icat ive procedure corresponds to the non-I inear break-up of  eddies into

sub-eddies.  The resul t j .ng random densi ty wi l l  be of  the form:

rn(5.5) { [  =f,="*n$, vrdX/X )m

where the Vr wi l l  s t i l l  resul t  f rom the act ion of  Tt1 on i . i .d.  V0 (of  resotut ion
1).  Mandelfrot 's  cascade model of  intermit ten"y on^" r ig id gr id corrgsponds to a
discrete summation-( ln= 5n, d\ / ) ,=6-1,  the i . i .d.  random vir iable Wn(r)  6"tnn ,n"
intensi ty of  exp(Vn(5-1))  on the i th cube of  resolut ionA-n).

In such processes, one is interested in m. =IgL t . , , t  (even when f  has no l imi t
in the sense of  funct ions),  which represents a di-Ff ibu] t -mathematical  problem where
few resul ts have been obtained (15).  Nevertheless,  due to the mult ip l icat ive
property of  both Tland the way the process is constructed, we may introduce the
co-dimension funct ion C(h) :

(5.6) < r) ,  t ) - f  n- t  )ctn)4 f ty
In th is paper,  we wi l l  not  devel-ope the formal ism further,  but  only note that

1t  c lear ly indi .cates that mult id imensional i ty is qui te general .  0ther work on
mult j .d imensional i ty may be found in Hentschel  and Procaccfa (17),  Grassberger (18),
Mandelbrot  (19),  Par is i  and Fr isch (20).
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5. Intermit tent  mult id imensional-  measures in the radar determined rain f ie ld :

5.1.  The inteqral  structure funct ion :

From the preceeding i t  is  cLear that  the most obvj-ous way of  empir ical ly
studyi .ng scaLe invar iance is by measur ing var ious powers of  cascade quant i t ies over
di f ferent scales and dimensions. We therefore introduce the inteoral  structure
funct ion S(h,  L,  D4) def ined for a quant i ty X(r)  as:

In.n-
s(h,  L,  D4)--(((  j  x{")a 'nr) /L 'A)h)
where L is the s ize of  the D4-dimensional  hypercube over which the averages are
take. SeaIe invar iance impl ies :

s(h,  , \  L,  D4) = |  
-R(h'DA) s(h,L,Dq)

where I  is  our usual  enlargemenf rat io and p(h,Dq) is a funct ion not only of  h,
but also of  D4. Note that d"Ar denotes a Hausdorf f  measure,  d imensi-on D4 :  the
averaging can clear ly be performed over any fractal  set .

The funct ion p(hrD4) contains al l  the informat j .on about the scale and
dimension dependence of  both intense ( large h) and weak (smal l  h)  phenomena.

.  For the s imple case where the phenomenon is mono-dimensional  wi th dj-mension D"
(co-oimension = Del-Ds=Cs) (e.9.  the "pmodel")  i t  can be shown (zt)  tnat  p(h,  D4)
takes the folLowj,ng simple form ( for h)0) :

p(h,  DR) = inf(C",  D4).(h -  1)

i .e.  for  DR)Cs, P is independent of  the averaging dimension and is l inear in h.
When D4)Cs, the averaginq set and the phenomena intersect :  when the dj .mension of
the averaging set is large enough to intersect the phenomenon then averages are
independent of  D4.

This has immediate consequences for p(h,D4) of  mult id imensional  phenomena :  as
D4 is decreased from j- ts maximum possible value more and more of  the intense
regions (wi th lowest dj-mension) wi I l  fa i l  to intersect the averaging set.  hence,
p(hrD4) wi I I  be sensi t i ,vely dependent on DA. Averages of  mult id j .mensional  phenomena
are therefore not only scale dependent,  they are also dimension dependent.  A
related di f ference is that  p(h,  D4) is no longer I inear in h.

6.2.  Ihe rain f ie ld :

0f  aI l  the geophysical  f i .e lds,  none are known with as high a resol-ut in ln the
four dimensions of  space and t ime as the radar-determined raj .n f ie ld.  For example,
the data used in the study descr ibed below were from 5 ser ies of  Constant A1t i . tude
Z Log Range maps (CAZLORs).

The radar measures the total  backscatter f rom aI l  the drops within a
scatter ing volume, wi th an ampl i tude proport ional  to the drop volume squared, and
with a random phase due to the random posi t ions of  the drops. The totat  integral  Z
is indirect j .y related to the rain rate (R),  by an approximate formula (ZZ) t
R {  70.6.

Fiq.  4 shows the funct ions p(h,D4) for  Dq= 1,  1.5,  Z,  31 4 corresponding to a)
azimuthal  averaging, b) averaging over 1.5 dimensional  f ractals c)  azimuth--range
averagi .ng,  d) azimuth-range-elevat ion averaging, e) azimuth-range-elevat ion-t ime
averaging. The curve for D4 = 1.5 is of  j -nterest  beeause Lovejoy and Schertzer (2,1,
2l)  show that geophysical .measur ing networks are c lustered at  aLl  scaLes (e.g.  on
cont inentsr near c i t ies) wi th D4( Z (e.g.  in Canada the meteorological  surface
network h.as D4 u 1.5.  In France the cl imate network has D4 x 1.8 ,  U+ +lo\ l  agtoork,
Dp*lJc-)  I  4 -  /
7.  CONCLUSION :
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Motivated by the strong anisotropy and intermit tency of  the atmospherer we

have developed a formal ism cal led general ised scal-e invar iance. The formal ism is

based on two sets of  e lements and may be regarded as an extension of  earLj-er work

on cascade processes (especiat ly 10, 3).
The f i . rst  is  a group of  general  scale changing operators,  whereas the second

are the intermit tent  measures lnvar iant  under the operators.  In a turbulent

cascade, the scale chanqing operator t ransforms eddj-es into sub-eddiesr whi le

Ieaving the physlcal ly s igni f icant energy f lux invar iant  (here represented by a

scal ing measure).  The scal ing operators can be classi f ied according to whether the

bal ls associated with the eddy topology def ine a metr ic or are only measurable.  I t

can further the c ssi f ied aecording to whether the under ly ing space is homoqeneous
( i .e.  t ranslat ion lnvar iant ,  l inear GSI) ,  or  inhomogeneous (non-I inear GSI) .

ExampJ.es of  each are given. The scal ing measures can be classi f ied according to

whether they invotve a i ingJ.e f ractal-  d imension (mono-dimensional-  measures) ,  or

whether as in the more general  case) the measures are character ised by an inf j .n i te
sequence of  f ractal  d imensions with the most intense regions having the lowest
dj .mension. The lat ter  case is also associated with interest ing phenomena of
divergenee of  h igh order stat ist ical-  moments.

Final1y,  we test  some of these ideas direet ly on the radar determined rain
f ie ld.  The scale and dimension dependence of  the averages of  var ious Powers of  th is
f ie ld are c lear support  of  i ts  mult id imensional  nature.

8.  Aeknowledgements :

We aeknowledge frui t fu l  d iscussj .ons wi th G. Aust in,  D. Li11y, R. Cahalanr P.
Mul. ler .

We thank P. Audouard for her excel lent  typing.

9.  REFERENCES :

1. D. Schertzer and S. Lovejoy,  0n the dimension of  atmospher ic mot ions.  Prepr int
on turbulence and chaot ic phenomenon in f lu ids,  141-144, Kyotot

2.  D. Schertzer and S.
and chaot ic Phenomena

l .  D.  Schertzer and S. Lovejoy
dynamics.  Turbul-ent Shear Flow 4,

4.  D. Schertzer and 5.  Lovejoy
et Techniques (Mai 1984).

dimension of  atmospher ic mot ions.  Turbulent
Tatsurni .  North-HoLland 505-512 (1984J.

:  The dimension and intermit tency of  atmospher ic
l - t t ,  B.  Launder Ed.,  New York,  Spr inqer (1985).

:  Les f ractales dans 1'atmosphbre. 69-72, Sciences

Lovejoy:
in Fluids,

0n the
Ed. T.

5. S. Lovejoy,  D. Schertzer :  Scale
si .mulat ions of  atmospher i ,c phenomena.

invar iance, Symmetr ies f ractals and stochast ic
AMS Bul let in ( in press).

6. L.F.  RichardsonrWeather predict ion by numerical  p!pqepe: (1922).  Republ ished by
Dover,  New York,  (1965).

7.  G.I .  Batchelor and A.A. Townsend, The nature of  turbuLent mot i -on at  large wave
numbers.  Proc.  Roy. Soc.,  A199, 238 (1949).

8. E.A. Novikov and R.
f luctuat ions of  energy
(1e64).

9- lewart ,  Intermit tency
dissipat ion.  Izv.  Akad.

of  turbufence
Nauk. SSSR Ser.

and spectrum of
GeoQzrr S,4O8,

9. A.M. Yaglom, The inf luence of  the f luctuat i .on in energy
of turbulent character ist ics in the inert i 'a l  interval .
(e66).

dj"ssipat ion on the shape
Sov. Phys. Dokl  .  ,  2,  26,



D. SCHERTZER and S. LovEJoY

10. B.B. Mandelbrot ,  Intermit tent  turbulence in sel f -s j -miIar cascades :  d ivergence
of high moments and dimension of  the carr ier .  J.  Fluid Mech.,  52,  Jt1,  (1974).

11. U. Fr isch, P.L.  Sulem and M. Nelk in,  A s imple dynamical  model of  intermit tent
fu l ly-developed turbulence. J.  Fluid Mech.,  87,  719-724 (978).

12. R.A Antonia B.R. Satyaprakash, A.J.  Chambers :  Reynolds nunber dependance of

veloci ty structure funct ions in turbulent shear Flows. Phys. FIuids '  25'  27-39
(1e82) .

13.  D. Schertzer,  S.  Lovejoy :  General ised Scale Invar iance :  symmetr iesr measures,

dimensi-ons and anisotr ip ic intermj. t tent  cascades. (Avai lable f rom the authors,

1985).

14. S. Lovejoy,  D. Schertzer:  General- ized SeaIe Invar iance i -n the atmosphere and

fractal  models of  ra in.  Wat.  Resour.  Res. ( in press).

15. S. Lovejoy and B. Man, le lbrot  :  Fractal  propert les of  ra in and a f ractal  model.

TeIIus ( in press) (1985).

15. J.P. Kahane :  Mult ip l icat ive Chaos (  in preparat ion) .

17.  H.G.E. Hentschel  and I .  Procaccia :  The inf in i te number of  general ised

dimensions of  f ractals and strange at t ractors.  Physica BD, 435-444 (1983).

18. P. Grassberqer :  General ised dimensions of  strange at t ractors.  Phys. Lett . r  97,

2?7-LiO (1981).

19. B.B. Mandelbrot ,  Fractal  ln physics:  squig c lusters,  d i f fusions, f ractal

measures and the unLci ty of  f ractal  d imensional . i ty .  J.  Stat .  Phys. '  14,895-930
(e94).

20. O. Par is j ,  and U. Fr isch :  A mult i f ractaf  model of  intermit tency.  The inter.
schoof of  physics "Enr ico Fermi",  Course 88 :  Turbulence and predictabi l i ty  in
geophysical  f lu id dynamics and cl imate dynamics.  Eds.,  M. Ghi l  et  AI . '  84-88,
(1e85).

21. S, Lovejoy,  D. Schertzer,  :  Extreme var iabi l i ty ,  scal lng and fractals in remole
sensing: analysj .s and simulat ion.  Diqi ta l  imaqe processinq in remote sensing. P.J.
Mul ler  Ed.,  Ch.14, Taylor and Francis,  London. (1985).

22. J.S. Marshal l ,  | , | .M. Palmer,1948: The distr ibut ion of  ra indrops with s ize.  J.
Met.  5,  165-167.

2i .  S.  Lovejoy,  D. Schertzer:  Fractal  character isat ion of  inhomogeneous
geophysical  measur ing networks.  Nalure (submit ted 26/06/85).



Ceneralised scale invariance in turbulent nhenomena

ISOTROPIC
= sel f  s imi lar i ty

reduct ion factors

633

N(u-to

o=J"91=z
log 2

N(L) .  Lo. ,

Dgl-r .H.=1ogB-rs
Iog 4

- L - '

!o9?"r  sa
log 2

t
U2

t

I
v2+ Ht-ld. f f f f i

lolul lol
N(t)  .1o.=log6=r 29

log 4

Ds Del

Fig.  ' l  :  A schematic representat ion of  how var ious turbulence models
treat the break-up of  an eddy (represented by the square in A) v ia
non- l - inear interact ions dur j -ng a s ingle step in the cascade process. The
var ious schemes are div ided from Ief t  to r l .qht  into homogeneous and
inhomogeneous (  intermit tent) ,  and from top to bottom into isotropic and
anisotropic cades. For each scheme, the formuta giv ing the number of
act ive eddies at  s ize (L) (=N(L))  is  shown.
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Fig.  2:  The shapes of  tnu.uur^f i ) t t the bal ls By )  for  an example wi th
both di . f ferent ia l  strat i f icat ion and rotat ion (moderl ing the ef fect  of
the Cor io l is force).  Here,  Del=2.
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Fig.  3 :  Example of  the bal ls By
obtained with var ious (non- l - inear
invar iant  t tcyclonett .

for  non-f inear,  non-metr ic GSIt
)  generators G. lb modeLs a scale
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Fig.  4 :  The structure funct j .on exponents p(hrD4) for  (symboJ.s bottom to
top respect ively) ,  DA:1,  DA=1.5 (using simul 'ated fractal  ra in gage
networks).  DA=z, D4=3 (space),  DA=4 (space-t ime).  t f re straight l ineJror
rarge h have slopes D4 which indicate the most intense regions have
dimension zero.
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