i
o
{3

i
5

Mﬂ*’ 20% KOLL,M &« [dlay nofe x/ L,

5C.4

A 1 :‘.[/ 5 / Ry oY
YRS LG s WO N
LT E CEE TS

L
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1. INTRODUCTION

Ever since the publication of Mandelbrot's
celebrated book "Fractals" in 1977, this new
chapter of classical geometry has been invading
physics. The fractal geometry of nature has
been discerned in a bewildéring variety of
places. Mandelbrot himself has examined the
fractal structure of language, stock-market
price series, the organization of matter in the
universe, the geometry of rivers and coastlines,
hydrological time series, biological structures
such as trees and bronchioli, as well as the
structure of turbulence.

What unites these diverse aspects of nature
is the existence of structure at almost every
space or time scale. This is perhaps the most
fundamental property of fractals. Since one of
the most striking features of satellite cloud
pictures or of radar rain maps is the wealth of
spatial and temporal structure, the idea that
rain and cloud areas are fractal, is intuitively
appealing. The aim of the present paper is to
show as simply and non-mathematically as possible,
that this intuition is indeed well founded.
Coincidentally, the theoretical groundwork for
the introduction of fractals into meteorology
has recently been laid. Chorin (1981) has proved
Mandelbrot's conjecture that the solution to the
Euler equations is a fractal set.

2. WHAT IS A FRACTAL?

The best explanation of fractals is to be
found in Mandelbrot's highly readable book
"Fractals", although briefer and more intuitive
accounts are Gardner (1978) and Mandelbrot (1981).
Undoubtedly, the best way to understand fractals
is to start by examining what they look like.
Figure 1 is a reproduction of one of Mandelbrot's
(1981) beautiful illustrations: a fractal cloud.
(A1though meteorologists may doubt whether some
real clouds are fractals, there is no doubt about
this one). To use Mandelbrot's expression, it is
a 100% geometric “fake", drawn by a computer
after specifying three parameters. The fact that
only three parameters were needed to unambiguously
specify this rather contorted, complicated shape
suggests that the figure has a basic geometric
simplicity, although it is clearly unlike any-
thing in classical geometry. Indeed, the con-
ceptual distance from Euclid may be Jjudged by
the fact that one way of mathematically defining
the dimension {strictly speaking, the "Hausdorf-
Besicovitch" dimension), is a non-integer frac-
tion. This should be compared to another type
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of dimension, namely the topological dimension.
The topological dimension clearly has the value
1 for a parameter.

Comparing the fractal cloud in Fig. 1 with
the simplest Euclidean shapes such as a circle
is illuminating. Whereas a circle is uniquely
determined by one size parameter - which is not
length - by a dimension (D) which controls the
"disconnectedness" or degree of "contorsion",
and by a random seed which selects a particular
cloud from the family of all clouds. If real
clouds are fractals, one would expect them to
differ only in size, and random seed, not in
dimension. This is because raising or Towering
D has the effect of making more or less "dis-
connected" clouds, and more or less Jagged edges
respectively, Intuitively, D ought to be deter-
mined by the physical processes which shape clouds.
In particular, one might expect D to be deter-
mined by the properties of turbulence. It is
therefore significant that Komolgorov's theory
of isotropic homogeneous turbulence predicts
D = 4/3, 5/3 for isobars and isotherms respect-
ively, in a two-dimensional cross-section of
three dimensional turbulence. These isobars and
isotherms are fractals because they satisfy Man-
delbrot's definition: a fractal set is a set which
has a Hausdorf-Besicovitch dimension greater than
the topological dimension.

3. REAL CLOUDS AND RAIN AREAS

Mandelbrot produced Fig. 1 by varying the
dimension of the perimeter until a realistic-
looking cloud was produced, choosing D = 3/2. No
actual data went into it, indeed, meteorologists
may feel that a lower value should have been
chosen because real clouds ook "smoother" than
this fractal cloud. We shall presently show that
real clouds have perimeters with D ~4/3,

One simple way to characterize the "smooth-
ngss" of the perimeter of a two-dimensional cloud
picture is to measure how much perimeter is needed

-to enclose a given area of cloud. If a long peri-

meter encloses only a small area, D is nearly two
times the dimension of a perimeter which literally
fills the plane. If only a small amount of peri-
meter is required to enclose the same area, D is
nearly 1, the dimension of a continuous line. 1In
the latter case, we would expect an area (A)=
perimeter (P) relationship of the form padA
since this is the formula for classical smooth
shapes such as circles or squares. If the peri-
meter is so "contorted” that_jt tends to fill the
plane (D~2), we obtain PNJT\J This suggests
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Fig. 1.

This figure is reproduced from Mandel-
brot (1981), and represents the surface of a 09C
isotherm in homogeneous isotropic turbulence.
Although Mandelbrot used this as a fractal cloud
model, the dimension of a 2-D cross-section is
5/3 and is too high to be compatible with the

data. This accounts for the fact that real clouds
Took "smoother". Any structure apparent in this
cloud is purely random.
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the general relationship P~s(/&)0. This intuition 10 Plkm) 10 3
is proved to be correct in Mandelbrot (1977). In 1
order to estimate D, we therefore measure the slope i
of the log P vs log A graph indicated in Fig. 2. Fig. 2. This figure shows the area (A)-perimeter
Here we have combined 1 x 1 km radar data from (P? relationship for radar rain data from the

tropical Atlantic rain areas, with GOES station-
ary satellite Infrared cloud area data, from over
the Indian Ocean. As can be seen, a fractal mode1
with D~4/3 is strongly suggested by this data
ranging over 6 orders of magnitude in A. Later
figures extend this at least another order of
magnitude in the direction of small areas and it
1s possible that deviations do not ocecur until
viscosity becomes important on a scale of meters
or less. In the direction of increasing A, it
may be hard to extend the curve much further
simply because very few clouds attain these sizes,
The largest cloud examined here extended over
%qu km from the centre of Africa to south of
ndia.

It should be remarked that the apparent absence
of a bend in Fig. 2 shows that no horizontal length
scale is associated with these rain and cloud
area perimeters. This strongly supports the posi-
tion of Pinus (1968), Vinnechenko (1970), Gage
(1979) and Gilet et al (1980), who report k=5/3
wind spectra (below ~s 6 km), out to distances of
up to 1500 km (Vingechenko (1970)). A transition
to the expected k™3 (2-D turbulence) behaviour
would yield an apparent lowering of D (an incr
in the slope of Fig. 2). This is because a k-
field is smoother than a k=5/3 one. No such trend
1s apparent in Fig. 2.
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tropical Atlantic, as well as for data from
infrared geostationary satellite data over the
Indian Ocean. For the radar data, the perimeter
separated regions with rainrate ¢ .2 mm/hr from
those with rates > .2 mm/hr. In the IR picture,
the threshold was -109C. The Teast mean squares
fit of log A and log P is also shown, indicating
D = 1.35 with correlation coefficient = .994.

4.  DEVELOPMENT

4.1 Random Fractals and non-Benign Chance

In the previous section we hinted at a basic
aspect of fractal rain and cloud geometries: the
stochastic element implied by the random "seed".
Traditionally, meteorologists have regarded the
“small scale" as a kind of random noise super-
imposed on a deterministic "large scale". The
fractal nature of rain challenges this distinction
unless the boundary between large and small is
shifted off _the graph in Fig. 2 to areas greater
than 108 km2.




s e sk gt -

The reason we feel uncomfortable with the
idea of random large scale structure is that unti]
now most random processes studied in nature have
been - to use Mandelbrot's (1973) term - "benign"
or Laplacian". The following discussion closely
follows that in Mandelbrot (1973). To illustrate
what is meant by the term "benign", as well as to
distinguish it from "non-benign" or "erratic"

randomness, consider the random function Y(t), e.g.

Y(T) - Y(0), as being composed of a sum of a large
number of random increments X(t):

Y(1)-Y(6)= 2 X

t=l

Benign randomness is characterized by two basic
properties:

>
(a) &, X(e)/1

tends to a non-random limit as T~»00 , denoted
<X

(b) the classical central limit theorem holds:

T

Z (X(t) - €% )/ AT is distributed as a

t=t
gaussian as T-»o@. Taking the limit as T -y 9©
is equivalent to ignoring the fine structure of
the process and studying the large scale, which
can clearly be decomposed in the way indicated
into the sum of a large number of small scale
contributions. If properties (a), (b) hold, then
fluctuations in Y{t) must tend to cancel, and we
are justified in regarding the change in Y(t) as
being due to a noise X{t) superimposed on a signal
<X? . It is this separation between noise and
signal that allows the noise to be removed and
the signal to be studied independently.
logy, the hypothesis of benign randomness justifies
the division between large and small scale pro-
cesses.,

Let us examine property {b) in greater detail;
it can be decomposed into four parts:
i) there exists two functions A(T), B(T) such
that

(é)«t))/h(?'sﬁ')was a limit as T ~»<0

ii) this limit is a gaussian.
iii) A(T) = JT

iv) X(t) and X(t+ty) are independent for suf-
ficiently large t,.

When any of these four conditions does not
hold, we speak of "non-benign" or "erratic"
fluctuations. Non-benign fluctuations manifest
themselves either as an extreme fluctuation far
from the norm or as a series of persistent de-
partures from the norm. In reference to the
biblical stories of the flood, and of the "seven
lean, seven fat years", Mandelbrot has called
these the Noah and Joseph effects respectively.

In meteoro-
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4.2 The Joseph Effect in Rainfall

An example of the Joseph effect is stream
flow. In this case (see Mandelbrot and Wallis
(1968)), A(T) = TH where H~ .6-.9 (depending on
the river), and the future is by no means indep-
endent of the distant past (condition (iv) above
does not hold). In the case of the Nile, it is
possible to speak of "wet" millenia and "dry*
millenia,.indicating persistent departures from
the mean over enormous time scales. A more fam-
iliar example is that of isotropic homogeneous
turbulence. Although temperature fluctuations
are distributed as gaussians, A{T) = T1/3 and
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Fig. 3. The probability (Pr(Ar)> 4R)) of a

random difference in rain rate (Ar), exceeding
a fixed 4R, when rainfall is integrated over an
jsolated storm using Spanish radar data. Only
negative 4r is shown, since positive Ar is
distributed similarly. Data are from 21 storms
on two afternoons in the spring. Lovejoy et al
(1981) shows nearly identical curves for Montreal
and the tropical Atlantic. Note that doubling
the time over which AR is evaluated, multiplies
the distributions by 2H where H~2/3. Also to
be noted is the as¥m8§otic behaviour:

Pr(4Qr> AR) ~R™1-22,
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Fig. 4a. The probability (Pr(Ar > AR)) of a

random difference Ar {negative Ar only), ex-
ceeding a fixed AR for spatial increments in
.25 km x 1 km averaged rain rates. These radar
data are from the tropical Atlantic, and curves
are shown for .25 km, .5 km, 1 km separation
respectively. The parallel, uniform spacing of
these curves is evidence of a lack of length
scale down to .25 km. This suggests that the
P-A relationship plotted in Fig. 2 could be ex-
tended to .25 km x .25 km areas. Doubling the
spatial separation, multiplies the distributions
by a factor 2H with H ~1/2. Also shown are the
best fit symmetric Stable-Levy distributions for
& = .75, along with an asymptotic & = 2 region
{see Section 6).

thus the departures from the mean tend to ca%?

more quickly than they would in the benign T

case {which would prevail if the independence condi-
tion (iv) holds). For gaussian distributions, we
therefore have the classification benign if A(T) = TH
H = 1/2, "antipersistent" for H € 1/2, “"persistent"
if H > 1/2. We shall later see that rainfall dis-
tributions require a generalization of this notion
to non-gaussian cases.

In order to examine the Joseph effect in rain,
we would like to evaluate A(T) from the data. The
simplest way of doing this is to regard each X(t)
value as a small increment in the rain rate R(t)
(Jugt as for Y(t) previously). Then

Zx(t) = R(T)-R(0) would measure the change in
t=1
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Fig. 4b. The same as Fig. 4a, except for a diff-
erent day. The only apparent difference between

4a, 4b is the scale parameter (width), and the
location of the onset of the &=2 regime. The
actual shapes of the rain areas appeared quite
different, however.

rain rate over a time T. By plotting the distri-
bution of AR for different T, A§T) could be
evaluated. In particular, for A(T) = TH, we ex-
pect:

Pr((R(ty*T)-R(to))P4AR) = £q. 1
Pr(h-H(R(to+hT)-R(to)) D4R

for all ty, T, h where Pr indicates "probability",
R(t) the rain rate as a function of time, AR is
a given change in R, The validity of this rela-
tionship and the value of the parameter H can be
evaluated by plotting

log Pr{(R{to+hT}-R(tg))>4R

against log AR for different values of h. On
such a plot (Fig. 3), one expects to find parallel
curves for different h, separated by a constant
distance H Tog h. As discussed in Lovejoy et al
(1981), these distributions appear to be the same
for rainfall in any diverse locations: e.g.,




Montreal, Spain, and the tropical Atlantic, and
yield He~2/3 depending somewhat on the method of
estimation. An important point to note is the
asymptotic straiggt line behaviour indicating
Pr(ArDAR}WAR- ™ withK~1.65 for the probability
of a random difference Ar exceeding a fixed AR.

The same plot may be made for the distribu-
tion of AR in space (Fig. 4). Here H~1/2, and
the distributions appear to be hyperbolic with
&~ _ 75, with an extreme 0(=2 regime (see Section
6). These distributions were identical in shape
for all the cases examined in the tropical Atlan-
tic. The asymptotic regions of these plots are
quite important, and will be dealt with in Sec-
tion 4.3. For now, it suffices to note that
these distributions contain far more "extreme"
points than a gaussian, and thus the gaussian
classification persistence; H>1/2, independence:
H = 1/2, antipersistence H <1/2, does not hold.
In the next section, we shall see that the He~1/2
case corresponds to antipersnstence because the
increments in Fig. 4 must cancel considerably
more quickly than in the independent case to
yield such a small H.

As can be seen from these figures, an accurate
estimate of H may be difficult. In fact, there
is a much better method of investigating persist-
ence known as R/S or "Re-scaled range" analysis
(Mandelbrot and Wallis (1969)). Since this
requires a fairly long uninterrupted series of R
values, it was only performed on the spatial dis-
tributions. R/S analysis also yields H~.50.

4.3 The Noah Effect in Rain

As mentioned earlier, the Noah effect occurs
when X{t) occasionally takes on such extreme
values that

u = (24 X(t))/A(T)-B(T)
tsl

cannot possibly be distributed as a gaussian.
Indeed, it is possible to show that if u has a
limiting distribution for T-»eo , that it must
belong to a four-parameter family of distributions
gnown as Stable-Levy distributions. This result
is a form of a generalized central limit theorem
which includes the gaussian limit as a special
case. If u has a finite variance, then the limit
is a gaussian, otherwise it is another member of
the Stable-Levy family. These distributions have
the following asymptotic form:
* .

Priud U)m (UU")" S for ®< 2
fgr the probability of a random u exceeding a
f1xed U. X is the most important parameter since
it determines the total probability contained in
the extreme tail of the distribution; in other
words, it controls tge frequency of occurrence of
"extreme” values. U" is a parameter analogous to
the standard deviation and measures the width of
the distribution.
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For AL 2, the variance is infinite, since

00

<U2>a S"UZdPr-)” and, for X § 1, the mean
is also infinite. The earliest tabulation and
application of these distributions was Mandelbrot's
(1960) work on income distribution. They were
probably first introduced into meteorology in
Lovejoy et al (1981), which also contains an
appendix giving a fuller discussion. A standard
reference is Feller (1966). Another property
relevant to the present case is that if consecutive
X(t) values are independent, and yield u dis-
tributed as a Stable-Levy, parameter o , then
A(T) = TH with H = 1/ . The gaussian case (H=1/2)
is obtained by putting® =2. In the more general
case, we obtain persistence if H> 1/ , anti-
persistence if H<I X .

Since Figs. 3 and 4 indicate X~ 1.65, .75 for
the temporal and spatial variations of R respect-
ively (ignoring the extremeOX =2 behaviour in
Fig. 4 - see Section 6) and H~2/3, 1/2 respect-
jvely we have both Joseph effects (H#l/« ) and
Noah effects {non-gaussian distributions), al-
though in the temporal case the data is not
sufficient to exclude H=18¢ .

Before continuing, it is worth discussing in
detail the implications of the Noah effect in
meteorology. If changes in rainfall in time or in
space are hyperbolically distributed with & 2,
then occasionally such large values of AR occur
that the variance {and mean, ifo( € 1) of AR does
not converge. In other words, as we add more and
more AR's together, the variance (and mean for
o< 1) increase without 1imit. One immediate con-
sequence is that rainfall cannot be an RMS con-
tinuous random function; it is made of sharp dis-
continuities. Another way of looking at this is
to note that if we regard a change in rain rate as
being made up of many small changes, that the
Jargest of these will be much larger than all the
others. This is illustrated in Fig. 5, which
shows a computer generated R(t) series with K =1.5,
The visual impression is one of a few large "jumps"
separated by noise. It is tempting to regard
these jumps as a signal, although clearly such a
distinction would have no basis. This behaviour
is known as "clustering”" because the small jumps
appear to "cluster" around the large ones. In
rain fields, this effect would give rise to the
appearance of stochastic structure and organiza-
tion even if the Joseph effect (which can do the
same) was not present. Conversely, very different
looking rain areas yield similar probability dis-
tributions (see Figs. 4a,b). In this way, rain
areas differ by only two parameters (the width
and =.75 to =.75 transition point), of which
at least one, and possibly both, are random.

(See Section 6). )
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Fig. 5. A random function Y(t) produced with independent o« = 1.5 increments, shown with two

different values of Y(0) (at points 0, 0').

Also shown is the effect of "truncating" negative

values (below axis marked "T"), a procedure required if Y(t) is to model the rainrate R, since

R 20. (See Section 6).

5.  RAIN AREA DISTRIBUTIONS

Up till now, we have stressed two different
aspects of fractal rain areas. On the one hand,
a geometry with structure at all scales, and on
the other, the non-benign stochastic element which
permits this structure to arise in a non-

deterministic fashion, so that no detailed informa-

tion specifying the shapes is required. What
finds these two elements together, and allows for
a class of non-random fractals, is the concept of
self-similarity. A self-similar curve, such as a
rain area perimeter, has the property that the
structure is in some sense the same at all
scales, with the exception of a scale factor.
This means that it is impossible to distinguish
the perimeter of a large cloud from that of a
small cloud enlarged by some factor. In both
cases the relative sizes of the "bumps" and
"wiggles" of the perimeter are the same. This
invariance is expressed mathematically by Eq. 1
for the case of random fractals. For non-random
fractals, such as the fractal "snowflake" in Fig.
6, self-similarity is determined by a fixed rule
which builds perimeters (or other structures)
with a hierarchy of identical shapes.

Self-similarity is a powerful concept because
it can unite the various parameters we have
estimated, such as D~4/3, &~ 1.65, .75 and
H~2/3, 1/2 (for the temporal and spatial
structures respectively), into a coherent model
which could permit the construction of "mock" or
computer generated rain areas. The construction
of such a model would be very important because
it would allow, in principle, most of the statis-

\/

Fig. 6. Reproduced from Mandelbrot (1981). This
geometrical, non-random “snowflake" is shown in
the first three stages of construction {which
proceeds an infinite number of steps before be-
coming a true fractal). The result is known as
the self-similar Koch curve, with D = 1.26.

tical properties of rain to be derived theoreti-
cally. Unfortunately, it appears (Mandelbrot,
private communication), that antipersistent,
infinite variance fractals have not been ade-
quately investigated, and thus it seems that the
problem of rain structure is partly a mathemati-
cal one, requiring new techniques. If the problem
is solved, mock radar scans and time histories
could be produced which are completely in-
distinguishable from real ones, and the random
structure of rain would be indisputable. Skeptics
should look back at Fig. 1 or at any of the
illustrations in Mandelbrot (1877). Naturally,
such a fractal description of rain would pose the
question not only of the origins of the particular
parameters, but also of the consequences of stoch-
astic rain structure.




Returning to the notion of self-similarity,
Mandelbrot (1977) has shown that if a 2-D field
{such as R(x,y)), has self-similar relief (i.e.,
Eq. 1 holds), that the distribution of fractal
"islands" (e.g., rain areas) must be of the form
Pr(a>A)~ (A/A*)-B for the probability of a
random area a exceeding A, whose A* is the width
parameter. In fact, in the case of gaussian dis-
tributions of 4 R, one would expect B = D/2.
However, in the present case, we have two sources
of hyperbolic behaviour of Pr(a)»A): the self-
similar R field, and the hyperbolic A R distribu-
tion. It is not known how these should combine
to determine B.
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Fig. 7. The probability (Pr(Ja DJK)) of a
random root rain area (J4a) exceeding a fixed
root area (JK). Data are replotted from Lopez
(1978). Also shown is the best fit tog-norma)
curve, and the least mean squares straight line
fir (correlation coefficient = .990), yielding
slope -1.64. The areas are thus distributed as
Pr (aDA)vA-B, with B = .82,
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Figure 7 shows the distribution of rain
areas in the tropical Atlantic, clearly indicating
hyperbolic behaviour with B~ .82. Data from
Spain, Florida and Montreal yield similar values
of B (see Lovejoy et al (1981)). The fact that
this distribution has neither finite variance nor
mean indicates that enormous fluctuations in rain
area are possible. Even if one argues that the
width of the distribution (A*), is determined by
the traditional large scale meteorological para-
meters (the existence and nature of this rela-
tionship is the object of the cumulus parameter-
ization project), fluctuations of actual rain
areas (which are random samples from such a dis-
tribution), can still be very large. For example,
computer simulations show that two sample rain
areas taken from distributions with the same A*
(i.e., the same large scale conditions), differ
by a factor 3, 40% of the time, and by a factor
10, 16% of the time (see Lovejoy et al (1981) for
the details of this calculation). Because of the
infinite mean property, the total area of rain
covered by a large number of storms will behave
in a similar way: relative cancellation of
fluctuations does not occur, because the extreme
rain area is always comparable in size to the sum
of all the others. The existence of large
fluctuations in rain area is important, especially
in the tropics because in addition to latent heat
and moisture transport the area of convection also
controls the "friction" which balances tropical
pressure gradients. Even in mid-latitudes where
the dynamics are controlled by coriolis force/
pressure gradient balance, these stochastic
effects may be very important. If A* is not
determined by the large scale but is itself a
random variable, then the prospect of stochastic
forecasting may be unavedidable.

6. A FURTHER NOTE ON "MOCK" RAIN MAPS

Before concluding, a final note on “mock"”
rain maps and A R distributions should be made.
Although fractals with H~1/2, & ~3/4 cannot at
present be computer generated, H = 4/3, & = 3/4
fractals are quite easy to produce because H = 4/3
is the scaling one obtains for independent & = 3/4
increments (see Section 4.3). Although such
fractals show little resemblance to the strongly
anti-persistent rain type fractal (H~1/2, ®xA3/4),
they can explain the asymptotic & =2 region in
Fig. 4, which we have previously ignored.

These computer generated fractals are prod-
uced in fashion similar to that shown in Fig. 5
by adding positive and negative random increments.
The resultant R field will in general contain
physically meaningless negative R values (those
below the t axis in Fig. 5). These negative R
values must be set to zero. When this procedure
is performed, the extreme AR are clearly more
likely to be truncated than the others, and the
result seems inevitably to be an® =2 asymptote -
at least over the range of H,o& values tested.
The abrupt transition point varying randomly for
a fixed sequence of random increments. The oK =2
region therefore has a natural and simple explana-
tion as a truncation effect produced by the
condition R 2 0. As far as I know, no analytic
derivation of this effect exists, although it
seems to occur in many situations {see Lovejoy et
al (1981)).




7. CONCLUSIONS

Convective rain and cloud area are shown to
have fractal structure with dimension D~4/3 for
over more than 7 orders of magnitude in area.

Thgs suggests that convective structures up to

0% km? are stochastic in origin and do not have a
characteristic length scale. This view was sup-
ported by an analysis of the spatial and temporal
structure of rain, which indicates that the rain
field exhibits several unusual properties des-
cribed under the rubric of "non-benign" or
"erratic" fluctuations. Rainfall is shown to ex-
hibit the Joseph effect, which means that rainfall
at even distant points in time or space are not
independent. Perhaps more significantly, it is
also shown to exhibit the Noah effect, which means
that rainfall varies in time and space in a much
more erratic manner than in the usual models. The
temporal and spatial scaling parameters (H) are
estimated to be approximately 2/3. 1/2 respectively.
The corresponding parameters characterizing the
importance of fluctuations, are oL~1,65, .75
respectively. The distribution of rain areas was
shown to be hyperbolic, in agreement with the
fractal model (exponent ~ -.82). These parameters
suffice to specify the type of fractal involved.
Unfortunately, there is no known method of combin-
ing them in a computer model that could generate
"mock" rain area maps.
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