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Scaling Geocomplexity and Remote Sensing

Shaun Lovejoy

Introduction

Remotely sensed radiances from planetary surfaces or atmospheres reveal 
�elds of immense complexity with structures typically spanning the range 
of scales from planetary to submillimetric: 10 or more orders of magnitude. 
The natural framework for analyzing, modeling, and indeed understanding 
such hierarchies of structures within structures is scale invariance: fractal 
sets and multifractal �elds. A little over 15 years ago, several colleagues and 
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42 Integrating Scale in Remote Sensing and GIS

I gave a short review of some of the theories relevant to remote sensing, 
including several examples (Pecknold et al. 1997; see also Lovejoy et al. 2001a, 
especially the discussion of correlated scaling processes). This chapter is an 
update discussing some of the advances that have occurred since then.

Resolutions have improved and channels have multiplied. Today, images 
are often collected at regular intervals so that today remotely sensed data 
are very much space–time products. As the quantity of remotely sensed data 
and the range of scales that they span has grown, the data are increasingly of 
global extent. In some cases such as topography or cloud imagery, compos-
ite data analyses spanning up to eight orders of magnitude are possible. In 
parallel with that, global numerical models may also show wide-range scal-
ing; this includes weather prediction models and reanalysis products. They 
show that the standard atmospheric state variables are scaling up to plan-
etary scales (typically 5,000 km or larger). This is fortunate because it allows 
them to be compatible with the scaling of the �elds as determined by in situ 
and remotely sensed measurements. Other signi�cant developments include 
improvements in some of the older data analysis techniques (notably trace 
moments, in particular their use to explicitly determine the outer scales) but 
also in the development of new techniques (Haar �uctuations).

However, many phenomena—especially atmospheric—evolve rapidly 
enough in time that it is important to understand the space–time behavior. 
With respect to both atmospheric and oceanic phenomena, there has been 
important progress, notably in clarifying the notion of weather and climate 
with the realization that there is a third regime (macroweather) that is inter-
mediate between the two (Lovejoy 2013). A consequence is that it turns out 
that the climate is not “what you expect”; it is rather macroweather. Whereas 
in the weather regime (up to 5–10 days, the lifetime of planetary struc-
tures), �uctuations on average increase with scale (the exponent H de�ned 
below is  >0), in macroweather, on the contrary, they decrease with scale 
(H < 0). In this regime, successive �uctuations tend to cancel each other out: 
“Macroweather is what you expect.” The climate regime starts at much lower 
frequencies (≈30 years in the industrial epoch) and again, H > 0. In the section 
“Space–Time Scaling: Example of MTSAT,” we therefore discuss the space–
time development of geostationary thermal IR �elds providing a theoretical 
framework for understanding atmospheric motion vectors (AMVs).

Spatial Scaling Spectra: Some Examples

Spectra

Scale invariance is a symmetry such that when one changes from one scale to 
another, some aspect is unchanged (conserved). In scale-invariant systems, �uc-
tuations ΔI over distances Δx have power law dependences: ΔI(Δx) ≈ φ ΔxH, where 
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43Scaling Geocomplexity and Remote Sensing

φ is the driving �ux whose statistical mean [φ] does not depend on scale. The 
exponent H characterizing the �uctuations is scale invariant, whereas the �uctu-
ations themselves are power law functions of scale; they are said to be “scaling.” 
The corresponding (Fourier and power) spectra are of the form E(k) ≈ k −β where 
k is a wave number (inverse distance scale) and β is the “spectral exponent.”

Spectra have several useful features: they are traditional, familiar, and 
applicable to any geophysical signal. They are also very sensitive to breaks in 
scaling and—when these are due to quasiperiodic nonstationarities (such as 
daily of annual cycles)—of easily separating these from the otherwise scaling 
“background.” The main disadvantages are that (1) their interpretation is not 
as straightforward as for (real space) �uctuations; (2) they are not well adapted 
to situations with missing data; and (3) they only characterize the second-order 
statistical moments so that—unless the signal is quasi-Gaussian—it only gives 
a very partial characterization of the statistics. In this section, we give a quick 
tour of some of examples; in the section “Multifractals, Structure Functions,” 
we discuss alternative real space analysis techniques.

Let us recall the basics. We will be dealing mostly with two-dimensional 
(2D) remotely sensed radiance �elds I(r) (r = (x,y) is a position vector), so that 
we can de�ne the 2D (Fourier) spectrum P(k) by the following:

 ;� � �I k I k k k P k I k e I r drik r∫( ) ( ) ( ) ( ) ( ) ( )′ = δ + ′ = ⋅  (3.1)

where k is the wave vector dual to r, ( )�I k  is the Fourier transform of I, and δ 
is the Dirac delta function. For �nite data, the delta function is replaced by a 
�nite difference approximation such that at k = −k’, it is equal to the number 
of degrees of freedom of the system (the number of pixels) N. For a real signal 
I, we have * ( ) ( )= −� �I k I k  (the asterisk [*] indicates a complex conjugate) so that:

 ( ) ( )∝ �P k I k
2

  (3.2)

where the constant of proportionality is N. If the system is statistically isotro-
pic, then P only depends on the vector norm of  k: P(k) = P(k); k = |k|. Now per-
form an isotropic Fourier space “zoom” k → λk (i.e., a standard “blowup”) by a 
factor of λ > 1 so that in physical space there is an inverse blowup: x → λ−1x. 
If the system is “self-similar,” that is, if it is both isotropic and scaling, then the 
condition that the smaller scales are related to the larger scales without refer-
ence to any characteristic size (i.e., that it is scaling) is that the spectra follow 
power law relations between large wave numbers λ|k| and smaller ones |k|:

 P(|λk|) = P(λ|k|) = λ−s P(|k|) (3.3)
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44 Integrating Scale in Remote Sensing and GIS

that is, that the form of P is independent of scale. Equation 3.3 is satis�ed by 
the following scaling law for P:

 P(k) = |k|−s  (3.4)

We can now obtain the power spectrum E(k) (with k = |k|) by integrating 
over all the directions:

 ∫ )(= ′ ′
′ =

( )E k P k dk
k k

  (3.5)

In d = 2, the region of integration is the annuli between the radii k and 
k + dk. Therefore, if the process is isotropic in 2D, E(k) = 2π kP(k). In terms 
of data analysis, where one has a �nite rather than in�nite sample size, this 
angle integration is advantageous because it reduces the noise. In the follow-
ing examples, we therefore take the power law dependence of the spectrum:

 E(k) ≈ k −β; β = s − 1 (3.6)

as evidence for the scaling of the �eld f, and the exponent β being the “spec-
tral slope.” Note that in some areas of geophysics, angle averages (P(k)) are 
used rather than angle integrals (E(k)). This has the disadvantage that the 
resulting spectral exponents will depend on the dimension of space so that, 
for example, one-dimensional sections will have exponents that differ by 1 
from 2D sections. In contrast the angle integrations used here yield the same 
exponent β in spaces of any dimension (i.e., β is independent of the dimen-
sion of space, whereas s is dependent).

When permitted by the data, using the angle integrals over the 2D 
spectrum P(kx, ky) is advantageous because it reduces the spectrum to 
a function of a single  variable (the modulus of the wave vector) while 
 simultaneously improving the statistics. Often the data are easily ame-
nable to integrating over angles—for example geostationary satellites; 
others such as orbiting satellites commonly have swaths of limited width 
while being essentially 20,000 km long (i.e., half a circumference—no 
two points on the Earth can be further apart) so that they are more one 
dimensional.

Alternatively, it is possible to estimate the 1D spectra E(kx ), E(ky) by inte-
grating out the conjugate coordinates:

 ∫ ∫( ) ( ) ( )( ) = =, ; ,E k P k k dk E k P k k dkx x x y y y y x y x  (3.7)

and for isotropic statistics, Ex(k) = Ey(k) = E(k) (to within  constant factors). Of 
course, if the �eld is not isotropic, for example if it is scaling but with differ-
ent exponents in different orthogonal directions, ;E k k E k kx x x y y y

x y( )( ) ∝ ∝−β −β  
with βx ≠ βy , then the isotropic spectrum will in fact display a break (roughly) 
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45Scaling Geocomplexity and Remote Sensing

at the wave number k that satis�es Ex(k) = Ey(k) with one exponent dominat-
ing the behavior at the high frequencies and the other at the low frequencies. 
This is discussed further in  the section on space–time scaling in the context 
of the space–time analysis of satellite data.

The Horizontal

The Atmosphere

Over the last few years, a number of global scale satellite radiances have 
impressively demonstrated the global scale extent of the scaling. For exam-
ple, Figure 3.1a and b, taken from over 1,000 orbits of the Tropical Rainfall 
Measuring Mission (TRMM) satellite, shows that visible, near, and thermal 
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FIGURE 3.1
(a) Spectra from ≈ 1,000 orbits of the visible and infrared scanner (VIRS) instrument on the 
Tropical Rainfall Measuring Mission (TRMM) satellite, channels 1–5 (at wavelengths of 
0.630, 1.60, 3.75, 10.8, and 12.0 μm, from top to bottom, displaced in the vertical for clarity). 
The data are for the period January–March 1998 and have nominal resolutions of 2.2 km. 
The straight regression lines have spectral exponents β = 1.35, 1.29, 1.41, 1.47, and 1.49, 
respectively, close to the value β = 1.53 corresponding to the spectrum of passive scalars 
(=5/3 minus intermittency corrections). The units are such that k = 1 is the wave number 
corresponding to the size of the planet (20,000 km)−1. Channels 1 and 2 are re�ected solar 
radiation so that only the 15,600-km sections of orbits with maximum solar radiation were 
used. The high wave number falloff is due to the �nite resolution of the instruments. To 
understand the �gure we note that VIRS Bands 1 and 2 are essentially re�ected sunlight 
(with very little emission and absorption), so that for thin clouds, the signal comes from 
variations in the surface albedo (in�uenced by the topography and other factors), whereas 
for thicker clouds it comes from nearer the cloud top via (multiple) geometric and Mie 
scattering. As the wavelength increases into the thermal IR, the radiances are increasingly 
due to black body emission and absorption with very little multiple scattering. Whereas 
at the visible wavelengths we would expect the signal to be in�uenced by the statistics of 
cloud liquid water density, for the thermal IR wavelengths it would rather be dominated by 
the statistics of temperature variations—themselves also close to those of passive scalars 
(Adapted from Lovejoy, S., et al., Q. J. Roy. Meteor. Soc., 134, 277–300, 2008). (Continued)
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46 Integrating Scale in Remote Sensing and GIS
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FIGURE 3.1 (Continued)
(b) Spectra of radiances from the Thematic Microwave Imager from the TRMM satellite, ≈1,000 
orbits from January through March 1998. From bottom to top, the data are from Channels 1, 3, 5, 6, 
and 8 (vertical polarizations of 2.8, 1.55, 1.41, 0.81, and 0.351 cm) with spectral exponents β = 1.68, 
1.65, 1.75, 1.65, and 1.46, respectively, at resolutions of 117, 65, 26, 26, and 13 km (hence the high 
wave number cut-offs); each are separated by one order of magnitude for clarity. To understand 
these thermal microwave results, recall that they have contributions from surface re�ectance, 
water vapor, clouds, and rain. Because the particles are smaller than the wavelengths, this is the 
Rayleigh scattering regime and as the wavelength increases from 3.5 to 2.8 cm the  emissivity/
absorptivity due to cloud and precipitation decreases so that more and more of the signal origi-
nates in the lower reaches of clouds and underlying surface. Moreover, the ratio of scattering 
to absorption increases with increasing wavelength so that at 2.8 cm multiple scattering can be 
important in raining regions. The overall result is that the horizontal gradients—which in�uence 
the spectrum—increasingly re�ect large internal liquid water gradients. (c) One-dimensional 
spectra of Multifunctional Transport Satellite (MTSAT) thermal IR radiances; the Smith prod-
uct was developed with similar IR satellite radiance �elds. In black: the theoretical spectrum 
using parameters estimated by regression from the 3-D generalization fo equation 3.7 to include 
the  frequency Greek omega. and taking into account the �nite space–time sampling volume. 
The spectra are Ex(kx) ≈ kx

x−β , Ey(ky) ≈ ky
y−β , Et(ω) ≈ ω−βt with βx ≈ βy ≈ βt ≈ 1.4±0.1. Other parameters are 

Lw ~ 20,000 km; τw ~ 20±1 days; s ≈ 3.4±0.1. The straight line is a reference line with slope −1.5 (blue). 
Pink is the zonal spectrum; orange is the meridional spectrum; blue (with the diurnal spike 
and harmonic prominent) is the temporal spectrum. See the section titled “Space–Time Scaling: 
Example of MTSAT” and Figure 3.18 for further analysis and discussion. (Reproduced from 
Pinel, J., et al., Atmos. Res., 140–141, 95–114, 2014. With permission.) (Continued)
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47Scaling Geocomplexity and Remote Sensing

infrared as well as passive microwave radiances have nearly perfect scal-
ing up to the largest  scales. This is also demonstrated by Multifunctional 
Transport Satellite (MTSAT, also known as “Himawari”) geostationary 
imagery (Figure 3.1c), which shows the results of spectral analysis of a large 
(roughly 1,0003 points) data set in (x,y,t) space showing that the (1D) tempo-
ral and (horizontal) spatial statistics are nearly identical. This is an isotro-
pic space–time symmetry that we discuss further in “Space–Time Scaling: 
Example of MTSAT” (we also analyze and display spectra of the same data 
over various 2D subspaces). Moving to the opposite extreme of small scales, 
one can evaluate the spectra at small (“cloud”) scales, this time looking 
upwards with a handheld large-format camera (Figure 3.1d), which displays 
excellent scaling (of the angle integrated) spectrum of individual clouds at 
visible wavelengths. The theory and numerical modeling of radiative trans-
fer in scaling clouds are reviewed in the section of radiative transfer.

The atmospheric energy budget is essentially determined by the incoming 
�uxes at visible wavelengths; and the outgoing �uxes at infrared wavelengths, 
the basic sources and sinks do not introduce characteristic scales. The lower 
boundary conditions (e.g., the topography and ocean surface) are also scaling 
(see below), as are the atmospheric dynamical equations. We may therefore 
expect the state variables (wind, temperature, pressure, humidity) to also be 
scaling. This is directly demonstrated in Figure 3.2, which shows the spectra 
of the outputs of atmospheric reanalyses. Reanalyses are data-model hybrid 
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FIGURE 3.1 (Continued)
(d) The spectra of the 19 (of 38) highest resolution clouds analyzed with a spectral slope β ≈ 2 
shown by the reference lines. (Reproduced from Sachs, D., et al., Fractals, 10, 253–265, 2002. 
With Permission.)
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48 Integrating Scale in Remote Sensing and GIS

products in which data of all kinds—increasingly including satellite data—
are assimilated into a numerical weather model, which constrains them to 
satisfy the equations of the atmosphere as embodied in the numerical model.

The Earth’s Surface: Topography

The topography is of prime importance for several areas of Earth science, 
notably as the lower boundary condition for the atmosphere and climate, 
and also for surface hydrology, oceanography, and hence for hydrosphere– 
atmosphere interactions. The issue of scaling in topography has an even lon-
ger history than it does in atmospheric science, going back over 100 years to 
when Perrin (1913) eloquently argued that the coast of Brittany was nondif-
ferentiable. Later, Steinhaus (1954) expounded on the nonintegrability of the 
river Vistula, Richardson (1961) quanti�ed both aspects using scaling expo-
nents, and Mandelbrot (1967) interpreted the exponents in terms of fractal 
dimensions. Indeed, scaling in the Earth’s surface is so prevalent that there 
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FIGURE 3.2
Comparisons of the spectra of different atmospheric �elds from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) interim reanalysis. Top (red) is the geopotential 
(β = 3.35); second from the top (green) is the zonal wind (β = 2.40); third from the top (cyan) 
is the meridional wind (β = 2.40); fourth from the top (blue) is the temperature (β = 2.40); �fth 
from the top (orange) is the vertical wind (β = 0.4); at the bottom (purple) is the speci�c humid-
ity (β = 1.6). All are at 700 mb (roughly 3 km altitude) and between ±45° latitude, every day 
in 2006 at GMT. The scale at the far left corresponds to 20,000 km in the east–west direction, 
at the far right to 660 km. Note that for these 2D spectra, Gaussian white noise would yield 
β = –1 (i.e., a positive slope =+1).  (Reproduced from Lovejoy, S., and D. Schertzer, J. Geophys. 
Res., 116, 2011. With permission.)
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49Scaling Geocomplexity and Remote Sensing

are entire scienti�c specializations such as river hydrology and geomorphol-
ogy that abound in scaling laws of all types (for a review see Rodriguez-
Iturbe and Rinaldo 1997; see Tchiguirinskaia et al. 2000, for a comparison 
of multifractal and fractal analysis of basins) and that virtually require the 
topography to be scaling.

Ever since the pioneering power spectrum of Venig-Meinesz (1951) with 
β  ≈ 2, scaling spectra of topography from various regions have routinely 
been reported with fairly similar exponents (Balmino et al. 1973; Bell 1975 
[also with β ≈ 2]; Berkson and Matthews 1983 [β ≈ 1.6−1.8]; Fox and Hayes 
1985 [β ≈ 2.5]; Gilbert 1989 [β ≈ 2.1−2.3]; Balmino 1993 [β ≈ 2]; Lavallée et al. 
1993; and Gagnon et al. 2006).

Figure 3.3 shows the global scale spectrum of the ETOPO5 data set 
(a global gridded topography data set including bathymetry at a 5′ arc, 
i.e., about 10 km), along with those of other higher resolution but regional 
digital elevation models (DEMs, i.e., gridded topographic maps), land only. 
These include GTOPO30 (the continental United States at ≈1 km) as well as 
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FIGURE 3.3
A log–log plot of the spectral power as a function of wave number for four digital elevation 
models. From right to left: Lower Saxony, with trees (top), without trees (bottom); United States 
(in gray), GTOPO30 and ETOPO5. A reference line of slope –2.10 is shown for comparison. 
The small arrows show the frequency at which the spectra are not well estimated due to their 
limited dynamical range (for this and scale-dependent corrections; Equation 3.8). (Reproduced 
from Gagnon, J. S., et al., Nonlin. Proc. Geophys., 13, 541–570, 2006. With permission.)
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50 Integrating Scale in Remote Sensing and GIS

two other DEMs: the United States at 90-m resolution and part of Saxony in 
Germany at 50-cm resolution. Overall, the spectrum follows a scaling form 
with β ≈ 2.1 down to at least ≈40 m in scale.

The remarkable thing about the spectra is that the only obvious breaks are 
near the high wave number (small-scale) end of each data set. In Gagnon et al. 
(2006), it is theoretically shown that for wave numbers higher than the arrows, 
the data are corrupted by inadequate dynamical ranges (i.e., the ratio of the 
largest to the smallest resolvable changes in altitude). The basic idea is straight-
forward: if the dynamic range is small, then there will be large areas that are 
nominally at the same altitude, and this leads to spuriously smooth �elds. 
For example, the curve in Figure 3.3 with the largest break in scaling was the 
DEM at 90-m spatial resolution, which only had a 1-m altitude resolution. This 
implies that huge swathes of the country had nominally zero gradients and 
hence overly smooth spectra. To quantify this, denote the minimum and maxi-
mum heights by hmin and hmax. If they are measured in nondimensional digital 
counts, then for a spectrum E(k) ≈ k −β, we have the following:

 kmax/kmin ≈ (hmax − hmin)2/β (3.8)

The wave numbers at which this formula predicts that the spectra start to 
be corrupted are shown with arrows in Figure 3.3. This approximate formula 
works particularly well for the spectrum of the continental United States at 
90-m resolution, where it explains the drop in the high frequencies. In fact, 
the problem of insuf�cient dynamical range can probably explain many of 
the scale breaks seen in the literature that are interpreted as characteristic 
scales of the process. A related cause of spurious high wave number spectral 
falloffs occurs when data are sampled at a rate higher than the intrinsic sen-
sor resolution (oversampling).

The Ocean Surface: Ocean Color

The ocean surface is particularly important due to its exchanges with the 
atmosphere. Figure 3.4 shows a particularly striking wide-range scaling 
result: a swath over 200 km long at 7-m resolution over the St. Lawrence 
Estuary in eight different narrow visible wavelength channels from the 
 airborne multi-detector electro-optical imaging sensor (MEIS). The use of 
different channels allows one to determine “ocean color,” which itself can 
be used as a proxy for phytoplankton concentration. For example, the chan-
nels fourth and eighth from the top in the �gure exhibit nearly perfect scal-
ing over the entire range; these are the channels that are insensitive to the 
presence of chlorophyll; they give us an indication that over the correspond-
ing range ocean turbulence itself is scaling. In comparison, other channels 
show a break in the neighborhood of ≈200 m in scale; these are sensitive to 
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51Scaling Geocomplexity and Remote Sensing

phytoplankton. The latter are “active scalars” undergoing both exponential 
growth phases (“blooms”) as well as being victim to grazing by zooplank-
ton; in Lovejoy et al. (2000), a turbulence theory is developed to explain the 
break with a zooplankton grazing mechanism.

Another important ocean surface �eld that has been found to be scaling 
over various ranges is the sea surface temperature (SST). Relevant studies 
include in situ results such as those of McLeish (1970) (Eulerian, βT ≈ 5/3), 
Seuront et al. (1996) (Lagrangian, βT ≈  2), and Lovejoy et al. (2000) (towed 
instruments, βT ≈ 1.63). Remote sensing using thermal IR images �rst from 
aircraft (Saunders 1972) and then from satellites (Deschamps et al. 1981, 1984; 
Park and Chung 1999) yields, respectively, βT ≈ 5/3, ≈2.2, ≈1.9, ≈2, ≈1.87 ± 0.25 
out to distances of ≈100 km. At larger scales (out to at least ≈500 km), Burgert 
and Hsieh (1989) found βT ≈ 2.1 from “cloud free” satellite data. The satellite 
data—even if nominally “cloud free”—are somewhat smoothed by atmo-
spheric effects; hence their βT values are probably slightly too high. Monthly 
averaged in situ SST data were analyzed by Lovejoy and Schertzer (2013), and 
the literature was reviewed (see also Table 3.1). They concluded that the scal-
ing with βT ≈ 1.8 really does continue up to scales of 5,000 km or more, a con-
clusion that is bolstered by the corresponding spectral and cascade analyses.
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FIGURE 3.4
The ocean, Channels 1–8 offset for clarity, eight visible channels characterizing ocean color, 
210-km-long swath, 28,500 × 1,024 pixels, 7-m resolution. The extreme high wave number is 
(14 m)−1. (Adapted from Lovejoy, S., et al., Inter. J. Remote Sensing, 22, 1191–1234, 2001a.)
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TABLE 3.1

A Comparison of Various Horizontal Parameter Estimates: Summarizing the Values of Categories Using Approximate Values

C1 α H β Leff Range of scalesj

Remote Sensing of the Surface
Topographya (Earth) Altitude 0.12 1.8 0.7 2.1 20,000 40 m–20,000 km
Topographyb (Mars) Altitude 0.10 1.7 0.5 1.8 8,000 10 km–10,000 km
Sea surface temperaturec SST 0.12 1.9 0.50 1.8 16,000 500 m–50,000 km
Soil moisture indexd MODIS 0.05 2.0 0.14 1.2 512 m–25 km
Vegetation indexd MODIS 0.06 2.0 0.16 1.2
Surface magnetic �elde (Aircraft) <10 km 0.14 1.9 0.6 2.0 250 m– 20 km

(Aircraft) >10 km 0.08 2 0.1 1 20 km–1,000 km

Mostly Atmospherick

State variablesf u, v 0.09 1.9 1/3 (0.77) 1.6 (2.4) (14,000) 280 m–≈5,000 km
w (0.12) (1.9) (–0.14) (0.4) (15,000)
T 0.11 (0.08) 1.8 0.50 (0.77) 1.9 (2.4) 5,000 (19,000)
h 0.09 1.8 0.51 1.9 10,000
z (0.09) (1.9) (1.26) (3.3) (60,000)

Precipitationg R 0.4 1.5 0.00 0.2 32,000 4–12,000 km
Passive scalarsh Aerosol concentration 0.08 1.8 0.33 1.6 25,000 100 m–125 km

(Continued)D
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TABLE 3.1 (Continued)

A Comparison of Various Horizontal Parameter Estimates: Summarizing the Values of Categories Using Approximate Values

C1 α H β Leff Range of scalesj

Radiancesi Infrared 0.08 1.5 0.3 1.5 15,000 2–15,000 km
Visible 0.08 1.5 0.2 1.5 10,000 2–15,000 km
Passive microwave 0.1–0.26 1.5 0.25–0.5 1.3–1.6 5,000–15,000 20–15,000 km

Notes: When available (and when reliable), the aircraft data were used in precedence over the reanalysis values. In those cases where there was no comparable 
in situ value or when reanalysis was signi�cantly different from the in situ value, the latter is given in parentheses. For the estimate of the effective outer 
scale, Leff, where the anisotropy is signi�cant, the geometric mean of the north–south and east–west estimates is given (the average ratio is 1.6:1 EW/
NS, although for the precipitation rate the along-track TRMM estimate was used). Finally, the topography estimate of Leff is based on a single realization 
(one Earth, one Mars); in both cases, the values pertain to the large-scale scaling regimes: on Mars, >10 km; on Earth, >40 m. See Lovejoy and Schertzer 
(2013) for an extensive review. Note that the half circumference on Mars (the largest Martian distance) is 10,600 km, compared with 20,000 km on Earth.

a From Gagnon et al. (2006); data from GTOPO30 (≈1 km resolution), ETOPO5 (≈10 km resolution), and the continental United States at 90 m and Saxony 
(Germany) at 50 cm.

b From Landais et al. (2015); at scales smaller than 10 km there is also a (nearly) monofractal regime with H ≈ 0.75.
c These values are from both SST data at ≈500 km resolution and also satellite data at ≈500 m resolution; see Table 8.2 of Lovejoy and Schertzer (2013).
d From Lovejoy et al. (2007a).
e From airborne magnetic �eld anomaly measurements at 800 m altitude over Canada (two regions). The two different scale regions correspond to a 

break at the horizontal scale corresponding to the Curie depth (see Lovejoy et al. 2001b; Pecknold et al. 2001). The inner scale (approximately indicated 
here as 20 km) is thus only a rough average; the Curie depth varies from ≈10 to 50 km.

f From instrumented (Gulfstream) aircraft 280 m to 1,100 km (Lovejoy et al. 2010), the values in parentheses are from reanalyses from ≈100 to ≈5,000 km 
by Lovejoy and Schertzer (2011).

g From gauge networks from 200 to 5,000 km, reanalyses (≈100–8,000 km) and from TRMM satellite radar data, 4–12,000 km (Lovejoy et al. 2012).
h From airborne lidar backscatter ratios from 100 m to 125 km (horizontal) and 3 m to 5 km (vertical) (Lilley et al. 2004, 2008; Lovejoy et al. 2008).
i From >1,000 orbits of TRMM satellite data with visible, near-IR, IR, and passive microwave at varying resolutions (see Figure 3.1a and b). Also from 

MTSAT (geostationary) satellite data (Figure 3.3c) in the IR, 30–5,000 km, and GOES (Geostationary Operational Environmental Satellite; IR, visible 
geostationary) satellite data (Lovejoy et al. 1993b; Lovejoy et al. 2001c); there are many other scaling analyses of cloud radiances that used other analysis 
techniques that give exponents that cannot be used to determine the parameters in this table.

j This column gives the range of the scaling observed with the cited references. If the range covered by the cited data covers a well-de�ned scale break, 
then the range covered by the data may be larger. Similarly, the scaling range may cover scales beyond those that were empirically studied.

k With the exception of the passive scalars from lidar and precipitation (from satellite radar), the radiances are not purely dependent on atmospheric 
conditions; they depend also on the surface emissivities and temperatures (IR, microwave) and albedos (visible).
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54 Integrating Scale in Remote Sensing and GIS

Soil Moisture and Vegetation Indices from MODIS

Many surface �elds are scaling over wide ranges, particularly as revealed by 
remote sensing. Figure 3.5a shows six moderate-resolution imaging spectro-
radiometer (MODIS) channels at 250-m resolution over Spain (each a 512 × 
512 pixel “scene”). The scaling is again excellent except for the single lowest 
wave number, which is probably an artefact of the contrast enhancement 
algorithm that was applied to each image before analysis. These channels 
are used to yield vegetation and surface moisture indices by dividing chan-
nel pair differences by their means, so that the scaling is evidence that both 
vegetation and soil moisture are also scaling.

The vegetation and soil surface moisture indices are standard products 
described by Rouse et al. (1973) and Lampkin and Yool (2004):

 ;VI
2 1

2 1
SM

6 7

6 7

I I
I I

I I
I I

σ = −
+

σ = −
+

  (3.9)

Log10k
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E(
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(a)

FIGURE 3.5
(a) Spectra of six bands of MODIS radiances over a 512 × 512 pixel region of Spain (at 250-m 
resolution; k = 1 corresponds to 128 km): E(k) as a function of the modulus of the wave vector. 
In order from top to bottom at the point log10k = 0.7, the curves are as follows: purple = Band 6, 
black = Band 1, magenta = Band 7, light green = Band 2, cyan = Band 4, dark green = Band 3. 
Reference lines have slopes –1.3. The band wavelengths are (in nm): Channel 1: 620–670, 
Channel 2: 841–876, Channel 3: 459–479, Channel 4: 545–565, Channel 5: 1,230–1,250, Channel 6: 
1,628–1,652, Channel 7: 2,105–2,155. These data are used for determining both vegetation and 
soil moisture indices. Adapted from Figure 3.3a in Lovejoy et al. (2007a). (Continued)
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Log10E(k)k1.17
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(b)
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FIGURE 3.5 (Continued)
(b) The spectra of Bands 1 and 2 and the vegetation index (Equation 3.9) compensated by k1.17 
so that a spectrum E(k) ≈ k-1.17 is �at. Note that the variations are less than ±0.2, whereas the 
actual spectra vary by almost �ve orders of magnitude (Figure 3.5a). (c) The spectra of Bands 
6 and 7, and the soil moisture index (Equation 3.9) compensated by k1.17 so that a spectrum E(k) 
≈ k −1.17 is �at.
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56 Integrating Scale in Remote Sensing and GIS

where VI and SM are the vegetation and soil surface moisture indices and I 
is the radiance (the band number is indicated in the subscript); Equation 3.9 is 
usually stated without reference to any particular scale. We may immediately 
note that, although the Terra MODIS data have a resolution of 500 m (Bands 
1 and 2 were degraded from 250 m) and the variability of the radiances and 
surface features continues to much smaller scales, the surrogates are de�ned 
at a single (subjective) resolution equal to that of the sensor. One of the applica-
tions of our analyses was to investigate how the relations between the surro-
gates and the bands used to de�ne them change with scale: we anticipate that 
since the scaling properties are different, making the surrogates with data at 
different resolutions would produce �elds with different properties. This is 
investigated in detail in the section “Soil Moisture and Vegetation Indices.”

The Atmosphere, Vertical: Lidar Data

In spite of the fact that gravity acts strongly at all scales, the classical theories 
of atmospheric turbulence have all been quasi-isotropic in either two or three 
dimensions. Whereas a few models tentatively predict possible transitions 
in the horizontal (for example between k −5/3 and k −3 spectra for a transition 
from 3D to 2D isotropic turbulence for the wind), in contrast, in the vertical 
any 2D/3D “dimensional transition” would be even more drastic (Schertzer 
and Lovejoy 1985a; this is also true for passive scalars such as chaff; see e.g., 
Lesieur 1987).

The fact that these predicted drastic transitions in horizontal spectra have 
not been observed was the starting point for the anisotropic scaling model 
with the “in between” dimension Del = 23/9 = 2.5555 D proposed by Schertzer 
and Lovejoy (1985a), in which the horizontal and vertical have power law 
spectra but with different exponents βh and βv. When—as observed—βv > βh 
(and it is not obvious), this implies that structures with horizontal extent L 
have vertical extents HL z  with Hz = (βv − 1)/(βh − 1) so that they become �atter 
and �atter at larger and larger scales (see Figure 3.7b for an illustration). In 
addition, the volume of typical structures is HLLL z = LDel, where   Del = 2 + 
Hz is the “elliptical” dimension characterizing the effective dimension of the 
(nonintermittent, i.e., space-�lling) structures.

Although the existence of different scaling exponents in the horizontal 
and vertical was con�rmed by in situ measurements of many different atmo-
spheric variables (see notably Lilley et al. 2004, 2008; Lovejoy et al. 2007a, 
2007b, 2008; Radkevitch et al. 2008; Lovejoy and Schertzer, 2010a; and espe-
cially Chapter 6 in Lovejoy and Schertzer 2013), the overall situation took a 
long time to clarify. It turned out that there was a problem with the interpre-
tation of aircraft data in the horizontal: spurious breaks in the scaling were 
caused by aircraft following isobars rather than isoheights (Lovejoy et al. 
2009a). This had the effect of leading to a break in the horizontal scaling 
where the vertical displacement of the aircraft became large enough that the 
�uctuations in wind were dominated by the much stronger vertical shears 
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57Scaling Geocomplexity and Remote Sensing

(and larger vertical exponents). This was recently directly  demonstrated 
by the �rst joint vertical–horizontal structure function analyses of the hori-
zontal wind from 14,500 aircraft �ights (Pinel et al. 2012).

Although it was important to clarify the status of the in situ wind measure-
ments, the basic result—anisotropic scaling—had in fact already been very 
clearly established through the use of remotely sensed aerosol backscatter 
from airborne lidar (Lilley et al. 2004, 2008; Lovejoy et al. 2007a, 2007b, 2008; 
Radkevitch et al. 2008; see box 6.1 in Lovejoy and Schertzer 2013, for analogous 
results using CloudSat data and cloud liquid water radar re�ectivities). The 
key differential strati�cation can be observed directly by eye in Figure 3.6a 
and b, which shows vertical cross sections of lidar aerosol backscatter �elds 
with resolutions down to 3 m in the vertical. Starting at the low-resolution 
image (Figure 3.6a), we can see that structures are generally highly strati-
�ed. However, zooming in (Figure 3.6b) we can already make out waves and 
other vertically (rather than horizontally) oriented structures. In Figure 3.6c, 
we con�rm—by direct spectral analysis—that the �elds are scaling in both 
the horizontal and vertical directions and that the exponents are indeed 
different in both directions: the critical exponent ratio (βh − 1)/(βv − 1) = Hz 
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FIGURE 3.6
(a) Typical vertical–horizontal lidar backscatter cross-section acquired on August 14, 2001. 
The scale (bottom) is logarithmic: darker is for smaller backscatter (aerosol density surrogate), 
lighter is for larger backscatter. The black shapes along the bottom are mountains in the British 
Columbia region. The line at 4.6 km altitude shows the aircraft trajectory. (Continued)
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FIGURE 3.6 (Continued)
(b) Enlarged content of the (700–1,600 m) box in (a). Note that small structures become more 
vertically aligned, whereas large structures are fairly �at. The aspect ratio is 1:96. Zoom of 
the previous image, showing that at the small scales, structures are beginning to show verti-
cal (rather than horizontal) “strati�cation” (even though the visual impression is magni�ed 
by the 1:40 aspect ratio, the change in strati�cation at smaller and smaller scales is visually 
obvious). (Reproduced from Lilley, M., et al., Phys. Rev. E, 70, 036307, 2004. With permission.) 
(c) The lower curve is the power spectrum for the �uctuations in the lidar backscatter ratio, 
a surrogate for the aerosol density (B) as a function of horizontal wave number k (in m−1) 
with a line of best �t with slope βh = 1.61. The upper trace is the power spectrum for the �uc-
tuations in B as a function of vertical number k with a line of best �t with slope βv = 2.15; 
hence Hz = 0.61/1.15 ≈ 0.53. (Adapted from Lilley, M., et al., Phys. Rev. E, 70, 036307, 2004.)
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59Scaling Geocomplexity and Remote Sensing

is quite near the theoretical value 5/9, which is the ratio of the (horizontal) 
Kolmogorov value 1/3 and the (vertical) Bolgiano–Obukhov value 3/5. The 
wave number at which the spectra in Figure 3.6c typically cross is in the range 
from (10 cm)−1 to (100 cm)−1; this is the scale at which structures are roughly 
“roundish,” called the “sphero-scale.”

Anisotropic Scaling, the Phenomenological Fallacy, and 
the Missing Quadrillion

We have presented a series of striking wide-range scaling spectra covering 
many signi�cant atmospheric and surface �elds. In this “tour” of the  scaling, 
we have exclusively used a common statistical analysis technique (the power 
spectrum). The conclusion that scaling is a fundamental symmetry principle 
of wide applicability is hard to escape, although it is not universally embraced. 
The main dif�culty seems to be that we are inculcated with the “scale bound” 
(Mandelbrot 1981) idea that every time we zoom into structures (by magnifying 
them), we expect to see qualitatively different structures and different pro-
cesses. When trying to understand and model such phenomena, we are taught 
to search for mechanistic explanations involving processes  acting over only 
 narrow ranges of scale, and when we �nd them, we typically assume that they 
are incompatible with statistical theories and explanations. In atmospheric 
 science, a particularly extreme form of this was recently highlighted by Lovejoy 
(2014), who compared a (still frequently cited) 1970s “mental picture” of atmo-
spheric processes that proposed a spectrum dominated by narrow range spikes 
(such as the diurnal and annual cycles), with the rest being essentially unin-
teresting white-noise “background” processes (Mitchell 1976). By comparing 
this speculation with modern data, it was found that the mental picture was in 
error by a factor of ≈ 1015 and that almost all of the variance was in the nontriv-
ial scaling background. Similarly, publication of the nearly perfect space–time 
scaling of thermal infrared data over the Paci�c (�gure 3c, Pinel et al. 2014), was 
delayed for over a year due to strenuous referee objections based on a perceived 
incompatibility between the scaling statistics and the usual mechanistic phe-
nomenology of tropical meteorology (e.g., the dominance of waves). There was 
a similar reaction to the scaling statistics of  satellite-based Martian reanalyses 
in Lovejoy et al. (2014) and Chen et al. (2016).

Such reactions illustrate the “phenomenological fallacy” (Lovejoy and 
Schertzer 2007a), which arises when phenomenological approaches are only 
based on morphologies rather than underlying dynamics. The fallacy is to 
identify phenomenologically de�ned forms, structures, or morphologies 
with distinct dynamical mechanisms when in actual fact a unique dynami-
cal mechanism acting over a wide range of scales can also lead to structures 
that change with scale. The fallacy thus has two aspects. In the �rst, form 
and mechanism are confounded so that different morphologies are taken 
as prima facie evidence for the existence of different dynamical mechanisms. 
In the second, scaling is reduced to its special isotropic “self-similar” special 
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60 Integrating Scale in Remote Sensing and GIS

case in which small and large scales are statistically related by an isotropic 
“zoom” or blowup (Figure 3.7a). In fact, scaling is a much more general sym-
metry: it suf�ces for small and large scales to be related in a way that does 
not introduce a characteristic scale. Moreover, the relation between scales 
can involve differential squashing, rotation, and so on, so that small and 
large scales can share the same dynamical mechanism yet nevertheless have 
quite different appearances. Compare Figure 3.7a with b, which is the same 

(a)

(b)

FIGURE 3.7
(a) A self-similar (isotropic) multifractal cloud simulation. Each image is enlarged by a factor of 
1.7 (the areas enlarged are shown in yellow and red rectangles for the �rst few enlargements, 
top rows). (b) A sequence “zooming” into a vertical cross-section of an anisotropic multifractal 
cloud with Hz = 5/9. Starting at the upper left corner, moving from left to right and from top 
to bottom, we progressively zoom in by factors of 1.21 (total factor ≈ 1,000). Note that while at 
large scales, the clouds are strongly horizontally strati�ed, when viewed close up they show 
structures in the opposite direction. The sphero-scale is equal to the vertical scale in the left-
most simulation on the bottom row. The �lm version of this (and other anisotropic space–time 
multifractal simulations) can be found at http://www.physics.mcgill.ca/~gang/multifrac/
index.htm. (Adapted from Lovejoy, S., and D. Schertzer, The weather and climate: Emergent laws 
and multifractal cascades, Cambridge University Press, Cambridge, 2013.)
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61Scaling Geocomplexity and Remote Sensing

process but with different horizontal and vertical exponents corresponding 
to  differential (scale-dependent) “squashing.”

In order to illustrate how morphologies can change with scale when the 
scaling is anisotropic, consider Figure 3.8. This is a multifractal simulation of 
a rough surface with the parameters estimated for the topography; its anisot-
ropy is in fact rather simple in the framework of the generalized scale invari-
ance (GSI) (Schertzer and Lovejoy 1985b; for a review, see Chapter 7 of Lovejoy 
and Schertzer 2013). More precisely, it is an example of linear GSI (with a diag-
onal generator) or “self-af�ne” scaling. The technical complexity with respect 
to self-similarity is that the exponents are different in orthogonal directions, 
which are the eigenspaces of the generator, so that structures are systematically 
“squashed” (strati�ed) at larger and larger scales. The underlying epistemolog-
ical dif�culty, which was not simple to overcome and which still puzzles phe-
nomenologists, corresponds to a deep change in the underlying symmetries. 

FIGURE 3.8
This self-af�ne simulation illustrates the “phenomenological fallacy,” because both the 
top  and  bottom look quite different while having the same anisotropic mechanism at 
scales differing by a factor of 64 (top and bottom blowup). The �gure shows the proverbial 
geologist’s lens cap at two resolutions differing by a factor of 64. Seen from afar (top), the 
structures seem to be composed of left-to-right ridges; however, closer inspection (bottom) 
shows that in fact this is not the case at the smaller scales. (Reproduced from Lovejoy, S., and 
D. Schertzer, Nonlin. Processes Geophys., 14, 1–38, 2007b. With permission.)
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The top �gure illustrates the morphology at a “geologist’s scale” as indicated 
by the traditional lens cap reference. If this were the only data available, one 
might invoke a mechanism capable of producing strong left–right striations. 
However, if one only had the bottom image available (at a scale 64 times larger), 
then the explanation (even “model”) of this would probably be rather differ-
ent. In actual fact, we know by construction that there is a unique mechanism 
responsible for the morphology over the entire range.

Figure 3.9 gives another example of the phenomenological fallacy, this 
time with the help of multifractal simulations of clouds. Again (roughly) the 
observed cascade parameters were used, yet each with a vertical “sphero-
scale” (this is the scale where structures have roundish vertical cross sec-
tions) decreasing by factors of 4, corresponding to zooming out at random 
locations. It is evident from the vertical cross-section (bottom row) that 
the degree of vertical strati�cation increases from left to right. These pas-
sive scalar cloud simulations (liquid water density, bottom two rows; sin-
gle scattering radiative transfer, top row) show that by zooming out (left to 
right) diverse morphologies appear. Although a phenomenologist might be 
tempted to introduce more than one mechanism to explain the morphologies 

FIGURE 3.9
Examples of continuous in scale anisotropic multifractals in 3D (256 × 256 × 64), showing the 
effect of changing the sphero-scale (ls) on multifractal models of clouds with Hz = 5/9. The 
cloud statistical parameters are as follows: α = 1.8, C1 = 0.1, and H = 1/3 (similar to CloudSat 
and aerosols; see Table 3.1). From left to right, we decrease ls (corresponding to zooming out 
by factors of 4) so that we see the initially vertically aligned structures (bottom left) becom-
ing quite �at at scales 64 times larger (right). At the same time, the horizontal structures have 
scaling anisotropies so that they too change orientation and elongation (the horizontal sphero-
scale starts at 1 pixel, far left; for a review, see Lovejoy and Schertzer [2013, chapters 6 and 7] for 
this generalized scale invariance). The middle row is a false-color rendition of the liquid water 
density �eld; the bottom row is the corresponding vertical sections (side view); the top row 
is the corresponding single scatter visible radiation; the mean optical thickness is 2; isotropic 
scattering phase function; sun incident at 45° to the right. (Reproduced from Lovejoy, S., et al., 
Atmos. Chem. Phys., 9, 1–19, 2009a. With permission.)
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at different scales, in the �gure we are simply seeing the consequence of 
single underlying mechanism repeating scale after scale. The phenomeno-
logical fallacy can undermine many classical ideas. For example, Lovejoy 
and Schertzer (2013, Box 6.1) argued with the help of CloudSat analyses that 
the classical two-scale theories of convection are incompatible with data that 
are scaling—that division into qualitatively distinct small and large regimes 
is unwarranted.

Radiative Transfer in Fractal and Multifractal Clouds

Most wavelengths used for remote sensing are sensitive to the radiative 
transfer properties of clouds, and we have seen (Figure 3.1a through d) that 
the associated radiances are scaling over a wide range of scales. It is thus 
reasonable to simulate clouds using scaling models for the  distribution of 
scatterers and absorbers and then to model the radiative transfer through 
them at different wavelengths. Such models will be needed either to 
understand the clouds themselves—of fundamental importance in atmo-
spheric science—or to understand the role of clouds in modulating the 
transmission/absorption characteristics of the underlying surface �elds. 
An understanding of cloud and radiation variability and their interrela-
tions over wide is also a challenging problem in the physics of disordered 
media. Figure 3.10 shows some examples for a purely scattering atmo-
sphere (albeit with single scattering only). Figure 3.10a and b shows the 
external “faces” of the 3D liquid water concentration �eld for four realiza-
tion of an anisotropic (strati�ed) multifractal cloud with exponents near to 
those observed; the difference in the �gures is due to the different degrees 
of strati�cation, as can be seen best from the side views (Figure 3.10b). 
Figure 3.10c and d shows the corresponding visible radiation �elds above 
and below the cloud using single scattering only and an isotropic phase 
function (no absorption; numerical details on the multifractal simulations 
can be found in Lovejoy and Schertzer [2010c] and Lovejoy and Schertzer 
[2010b]; for some theory and numerics for multiple scattered radiative 
transfer in multifractal clouds, see Lovejoy et al. [2009b] and Watson et al. 
[2009]).

The classical theory of radiative transfer is elegant (Chandrasekhar 1950) 
but is only relevant in 1D (“plane parallel,” horizontally homogeneous) 
media, yet the use of 1D models has long dominated the �eld. This is because 
when we turn to horizontally inhomogeneous media, there is no consensus 
on the appropriate model of heterogeneity, nor is the transport problem ana-
lytically tractable. As a consequence, the effect of horizontal variability was 
underestimated and usually reduced to the problem of inhomogeneity of 
the external cloud/medium boundaries (e.g., cubes, spheres, and cylinders; 

D
ow

nl
oa

de
d 

by
 [

Sh
au

n 
L

ov
ej

oy
] 

at
 2

2:
10

 1
6 

Fe
br

ua
ry

 2
01

7 



64 Integrating Scale in Remote Sensing and GIS

Busygin et al. 1973; McKee and Cox 1976; Preisendorfer and Stephens 1984) 
with the internal cloud and radiance �elds still being considered smoothly 
varying if not completely homogeneous. When stronger internal horizontal 
inhomogeneity was considered, it was typically con�ned to narrow ranges 
of scale so that various transfer approximations could be justi�ed (Weinman 
and Swartzrauber 1968; Welch et al. 1980).

When the problem of transfer in inhomogeneous media �nally came to 
the fore, the mainstream approaches were heavily technical (see Gabriel 
[1993] for a review), with emphasis on intercomparisons of general purpose 

(a)

FIGURE 3.10
(a) The top layers of three-dimensional cloud liquid water density simulations (false colors); all 
have anisotropic scaling with horizontal exponents d = 1, c = 0.05, e = 0.02, f = 0 (see Lovejoy and 
Schertzer, 2013, for a review and de�nition of these parameters); strati�cation exponent Hz = 
0.555; and multifractal statistical exponents α = 1.8, C1 = 0.1, and H = 0.333. They are simulated 
on a 256 × 256 × 128 point grid. The simulations in the top row have horizontal sphero-scales 
of ls = 8 pixels (left column), 64 pixels (right column), with additional (trivial) anisotropy expo-
nents ξ = 0 (top row), ξ = 3/4 (bottom row); they all have ξz = 0.25 (the ξ parameters—not to be 
confused with the structure function exponent ξ(q)—are explained in Lovejoy and Schertzer 
[2013], from which all these �gures were reproduced). Note that in these simulations, ls = 8 and 
64 applies to both the vertical and horizontal cross-sections (i.e., ls = lsz). (Continued)
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(b)

(c)

FIGURE 3.10 (Continued)
(b) A side view. (c) The top view with single scattering radiative transfer; incident solar radia-
tion at 45° from the right; mean vertical optical thickness = 50.  (Continued)
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numerical radiative transfer codes (see the C3 initiative; Cahalan et al. 2005) 
and the application to large eddy simulation cloud models (Mechem 2002). 
At a more theoretical level, the general problem of the consequences of small-
scale cloud variability on the large-scale radiation �eld has been considered 
using wavelets (Ferlay and Isaka 2006) but has only been applied to numeri-
cal modelling. As a consequence, these “3D radiative transfer approaches” 
have generally shed little light on the scale-by-scale statistical relations 
between cloud and radiation �elds in realistic scaling clouds (e.g., see the 
collection in Marshak 2005). Overall, there has been far too much emphasis 
on techniques and applications with little regard for understanding the basic 
scienti�c issues.

The simplest interesting transport model is diffusion (on fractals see the 
reviews by Bouchaud and Georges [1990] and Havlin and Ben-Avraham 
[1987]  and on multifractals see Meakin [1987], Weissman [1988], Lovejoy 
et al. [1993a], Lovejoy et al. [1998], Marguerite et al. [1997]). However—except 
in 1D (Lovejoy et al. 1993a, 1995)— diffusion is not in the same universality 
class as radiative transport (Lovejoy et al. 1990).

The �rst studies of radiative transport on fractal clouds (with a constant 
density on the support) were by Barker and Davies (1992), Cahalan (1994), 

(d)

FIGURE 3.10 (Continued)
(d) The same as Figure 3.10c except viewed from the bottom.
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Cahalan (1989), Cahalan et al. (1994), Davis et al. (1990), Gabriel et al. (1990), 
Gabriel (1986), Lovejoy et al. (1990), and Lovejoy (1989). These works used 
various essentially academic fractal models and focused on the (spatial) 
mean (i.e., bulk) transmission and re�ectance. They clearly showed that 
(1) fractality generally leads to nonclassical (“anomalous”) thick cloud scal-
ing exponents; (2) the latter were strongly dependent on the type of scaling 
of the medium; and (3) the exponents are generally independent of the phase 
function (Lovejoy et al. 1990).

Some general theoretical results exist for conservative cascades (H = 0; see 
the section “Multifractals, Structure Functions” for a de�nition of H and α 
and the section “Multifractals and Trace Moment Analysis” for cascades), 
single scattering for log-normal clouds (Lovejoy et al. 1995) (α = 2), and 
for more general (i.e., α < 2), “universal” multifractal clouds dominated by 
low density “Lévy holes” (frequent low-density regions where most of the 
transport occurs; Watson et al. 2009). The latter shows how to “renormal-
ize” cloud density, that is, to relate the mean transmission statistics to those 
of an equivalent homogeneous cloud. Lovejoy et al. (2009b) extended these 
(numerically) to H > 0 and with multiple scattering including the case of very 
thick clouds. By considering the (fractal) path of the multiply scattered pho-
tons, it was found that due to long-range correlations in the cloud, the photon 
paths are “subdiffusive,” and that the corresponding fractal dimensions of 
the paths tend to increase slowly with mean optical thickness. Reasonably 
accurate statistical relations between N scatter statistics in thick clouds and 
single scatter statistics in thin clouds were developed, showing that the 
renormalized single scatter result is remarkably effective. This is because 
of two complicating effects acting in contrary directions: the “holes,” which 
lead to increased single scatter transmission, and the tendency for multi-
ply scattered photons to become “trapped” in optically dense regions, thus 
decreasing the overall transmission.

All results to date are for statistically isotropic media; for more realism, 
future work must consider scaling strati�cation as well as the statistical 
properties of the radiation �elds and their (scaling) interrelations with cloud 
density �uctuations.

Multifractals: Structure Functions

Quantifying the Variability over Scales: Fluctuations and Structure Functions

Spectral analysis is often convenient, but it is not always easy to interpret. 
In addition, it is only a second-order statistic so that—unless the process is 
quasi-Gaussian—it characterizes neither the intermittency nor the extremes. 
The real space alternatives are based on �uctuations of various sorts. 
Wavelets provide a general formalism for de�ning and handling �uctuations; 
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68 Integrating Scale in Remote Sensing and GIS

indeed, it is so general that the choice of wavelets is often made on the basis 
of  mathematical convenience or elegance. Although such wavelets may be 
useful in localizing singularities (if they are indeed localized!) or in esti-
mating statistical scaling exponents, the interpretation of the �uctuations is 
often opaque. An exception is the Haar �uctuation, which was in fact the �rst 
wavelet (Haar 1910; before the full theory). Haar �uctuations are simple to 
understand; the wavelet formalism is not needed in order to be able to easily 
apply them in remote sensing and geophysical applications. We could also 
mention the detrended �uctuation analysis (Peng et al. 1994; Kantelhardt 
et  al. 2002) method, which is nearly a wavelet method but, unfortunately 
with �uctuations that are not simple to interpret.

The Haar �uctuation ΔI(Δx) at timescale Δx of the intensity �eld I is sim-
ply the difference of the mean of I over the �rst and second halves of the 
interval Δx:

2 2
Haar

/2

- /2

I x
x

I x dx
x

I x dx
x x

x

x

x x

∫ ∫( ) ( ) ( )( )∆ ∆ =
∆

′ ′ −
∆

′ ′
−∆ ∆

∆

 (3.10)

where the subscript Haar was added to distinguish it from other com-
mon de�nitions of �uctuation, and the x dependence was suppressed 
because we assume that the �uctuations are statistically homogeneous. 
With an appropriate “calibration” constant (a factor of 2 is used below and 
is canonical), in scale regions where H > 0, the Haar �uctuations are nearly 
equal to the differences; in scale regions where H < 0, they are nearly equal 
to the anomalies:

( )

1
;

dif

anom

I x I x x I x

I x
x

I x dx I I I
x

x x

∫

( )

( ) ( )

( ) ( )

( )

∆ ∆ = + ∆ −

∆ ∆ =
∆

′ ′ ′ ′ = −
+∆  (3.11)

where I  is the mean over the entire series. The Haar �uctuation is essentially 
the difference �uctuation of the anomaly; it is also equal to the anomaly �uc-
tuation of the difference.

Now that we have de�ned the �uctuations, we need to characterize them; 
the simplest way is through (generalized) structure functions (generalized 
to �uctuations other than the usual differences, and generalized to moments 
of order other than the usual value of 2): I x q( )∆ ∆  where “[·]” indicates sta-
tistical (ensemble) averaging; this is the qth order structure function.

Physically, if the system is scaling, then the �uctuations are related to the 
driving �ux φ by the following:

 ΔI(Δx) = φΔxΔxH  (3.12)
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69Scaling Geocomplexity and Remote Sensing

where the subscript Δx on φ indicates that it is the �ux at resolution Δx. The 
structure function is

 I x xq
x

q qH( )∆ ∆ = ϕ ∆∆  (3.13)

Turbulent �uxes φ are conserved from scale to scale so that xϕ∆  = constant 
(independent of scale), implying that I x xH( )∆ ∆ ∝ ∆ , so that H is the mean �uc-
tuation exponent. Beyond the simplicity of interpretation, the Haar �uctuations 
give a good characterization of the variability for stochastic processes with –1 < 
H < 1. In contrast, �uctuations de�ned as differences or as anomalies are only 
valid over the narrower ranges 0 < H < 1 and –1 < H < 0, respectively (see Lovejoy 
and Schertzer 2012; Lovejoy et al. 2013). Outside these ranges in H, the �uctua-
tion at scale Δx is no longer dominated by wave numbers ≈Δx –1, so that the �uc-
tuations depend spuriously on details of the �nite data sample, typically either 
the highest or the lowest frequencies that happen to be present in the sample. 
For H outside these ranges, other de�nitions of �uctuations (wavelets) must be 
used. However, empirically, almost all geophysical �elds fall into this range.

In the spatial domain, remotely sensed �elds typically have 0 < H < 1 (see 
Table 3.1), so that there is not much to be gained by using Haar �uctuations 
instead of differences. However, in the time domain, –1 < H < 0 is quite gen-
eral for atmospheric �elds with resolutions of 5–10 days or more; for oceanic 
�elds, of resolutions ≈1 year or more (see chapter 10 of Lovejoy and Schertzer 
2013), so that Haar �uctuations have the advantage of being able to handle 
both temporal and spatial analyses, whereas differences are often not appro-
priate in the corresponding temporal domains.

The generic scaling process is multifractal so that, in general, φ has the 
following statistics:

 xx
q K qϕ ∝ ∆ ( )
∆

−   (3.14)

where K(q) is a convex function (the constant of proportionality depends on 
the external scale of the the process; see Equation 3.20). Substituting this into 
Equation 3.13, we obtain

 ;I x x q qH K qq q ( ) ( )( )∆ ∆ ∝ ∆ ξ = −( )ξ   (3.15)

where ξ(q) is the “structure function exponent.” Although we return to this 
in more detail below, for the moment note that the mean (q = 1) �ux <φΔx> 
is independent of Δx, so that K(1) = 0 and hence ξ(1) = H. Note also that for 
quasi-Gaussian processes, none of the moments of φΔx have any scale depen-
dence, so that K(q) = 0 and ξ(q) = qH (all the scale dependencies are charac-

terized by H). Finally, the RMS �uctuation I x 2 1/2
( )∆ ∆



  has the exponent 

ξ(2)/2 so that the error in using the quasi-Gaussian approximation for the 

variance (i.e., ξ(2) = 2H) is ξ(2)/2 − H = K(2)/2.
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70 Integrating Scale in Remote Sensing and GIS

Soil Moisture and Vegetation Indices

In the section titled “The Horizontal,” we displayed the excellent spectral 
scaling of the MODIS bands used to determine soil moisture and vegetation 
indices, noting that these surrogates are de�ned (Equation 3.9) in an ad hoc 
way using the (subjective and �nest available) resolution. Figure 3.11a shows 
the corresponding (difference �uctuation based) structure functions for the 
MODIS bands contributing to the vegetation and soil moisture indices. As 
expected from the spectra, except for the smallest scales where there are 
sampling and sensor smoothing artefacts, the scaling is excellent. The slopes 
(estimates of ξ(q)) are shown in Figure 3.11b.

The fact that the bands have nontrivial scaling implies that if the surro-
gates are de�ned at different resolutions, their statistical properties will 
be different; in other words, the single-scale surrogate (sss) can be (at 
most) correct at a single resolution. To see this more clearly, these sss (at 
scale ratio λ = L/Δx, where L is the large [image scale] and Δx is the reso-
lution) can be contrasted with the corresponding multiscale surrogates 

Log10〈∆I (∆x)q〉

Log10∆x Log10∆x

Log10〈∆I (∆x)q〉q = 1.9

q = 1.5

q = 1.1

q = 0.7

q = 0.3

0.5 1.5 2.52 0.5 1.5 2.52

0.5 1.5 2.5
(a)

2 0.5 1.5 2.52
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q = 0.3
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FIGURE 3.11
(a) Structure functions based on difference �uctuations for the MODIS bands discussed in the 
text, plotted as a function of lags log10Δx (with distance Δx measured in pixels = 512 m). The 
regression lines (slope ξ(q), �t for the range Δx = 8–256 pixels) are also shown; the linearity is 
an indication of the quality with which the scaling is respected. Adapted from Lovejoy et al. 
(2007a). (Continued)
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71Scaling Geocomplexity and Remote Sensing

(mss, at scale ratio λ). Mathematically, the difference can be expressed as 
follows:

 

;

;

, ,

, ,

, ,

, ,
, ,

I I
I I

I I
I I

I I

s s s i j

i j

m i j

i j
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−
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+
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λ Λ λ Λ
Λ Λ

Λ Λ

λ
λ λ

λ λ
λ Λ λ

  (3.16)

where Λ = L/l  is the maximum scale ratio (satellite image scale L)/(single pixel 
scale l) and the notation Ii,[ ]Λ λ

 and sσ 
( )
Λ λ

 denotes averaging from this �nest 
resolution up to the intermediate ratio λ < Λ (i.e., Δx > l). The mss is the sur-
rogate that would be obtained by applying an identical algorithm (Equation 
3.9) to satellite data at the lower resolution, whereas the sss is the surrogate at 
the same resolution but based instead on the �nest scale available.

From the single- and multiple-scale de�nitions of the surrogates, we can 
de�ne the difference �uctuations:

 
x x x x

x x x x

s s s

m m m

( )

( )

( ) ( )

( ) ( )

∆σ ∆ = σ + ∆ − σ

∆σ ∆ = σ + ∆ − σ

( ) ( ) ( )

( ) ( ) ( )

Λ Λ

λ λ

 (3.17)

where for the multiple-scale de�nition (second line), we have Δx = L/λ. 
In Figure 3.12a (bottom), we show that the resulting mss obtained across the 

0.40
ξ(

q)
0.35

0.30

0.25
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0.25 0.5 0.75 1 1.25 1.5 1.75 2
q

(b)

Band 2

Band 1

Band 6

Band 7

FIGURE 3.11 (Continued)
(b) The structure function exponent ξ(q) for MODIS bands 7, 1, 6, and 2 (top to bottom, the 
slopes from Figure 3.11a). The �gure is derived from Lovejoy et al. (2007a).
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FIGURE 3.12
(a) A comparison of the single- and multiple-scale indices (top and bottom rows, respectively) 
de�ned by Equation 3.17, that is, by degrading indices de�ned at the �nest resolution to an inter-
mediate resolution (single scale index) and by �rst degrading the resolution of the bands and then 
determining the indices (multiple-scale index). The moments from top to bottom are in order 
q = 1.9, 1.7, 1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3, and 0.2. Adapted from Lovejoy et al. (2007a). (b) Comparison 
of the structure function exponents for the vegetation and soil moisture indices (red and black, 
respectively), estimated using the single-scale and multiple-scale index de�nitions (solid and 
dashed lines, respectively; the slopes in Figure 3.12a). Derived from Lovejoy et al. (2007a).
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73Scaling Geocomplexity and Remote Sensing

same range of scales as the sss (Figure 3.12a, top) is quite different (it is statis-
tically signi�cantly larger). The comparison of the corresponding exponents 
(ξ(q)) is given in Figure 3.12b.

Haar Fluctuations and Martian Topography

An impressive application of the structure function method with Haar �uc-
tuations was recently published by Landais (2014) and Landais et al. (2015), 
using data from the Mars Orbiter Laser Altimeter (MOLA). Figure 3.13a 
shows an analysis over more than four orders of magnitude of scale, display-
ing two scaling regimes with a break at ≈10 km. In this case, the altimeter 
has numerous holes (some large) caused notably by obstruction of the signal 
by dust clouds. The usual method of �lling such holes is by interpolation, 
but if there is a signi�cant amount of interpolation, then the results can be 
badly corrupted. The reason is that even the lowest order interpolation (lin-
ear interpolation) is once differentiable it has H = 1, whereas the topography 
is only differentiable of order H ≈ 0.52 (see Figure 3.13b). Therefore, linear 
interpolation will mix segments of H = 1 with segments of H = 0.52, generally 
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~10 kmMonofractal

Scale >10 kmScale <10 km Multifractal

Planet scale

Linear fit on distinct scaling regimes (>10 and <10 km)
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FIGURE 3.13
(a) The Haar �uctuations from 5  ×  105 Mars Orbiter Laser Altimeter altitude estimates for 
moments of order 0.1, 0.2, …, 1.9, and 2 (bottom to top). Δx is in meters; S(Δx) is the correspond-
ing structure function for the q = 1 moment (the second red line from the bottom); the units are 
also in meters; and S(Δx) gives the mean vertical change over a distance Δx. (Continued)
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74 Integrating Scale in Remote Sensing and GIS

yielding a spurious result. Thus, in order to estimate the Haar �uctuations 
it is best to use an algorithm that does not require interpolation. One such 
simple algorithm is described in the appendix of Lovejoy (2014) and is freely 
available at: http://www.physics.mcgill.ca/~gang/software/index.html; it 
was used to generate the �gure.

Multifractals and Trace Moment Analysis

Characterizing ξ(q), K(q): Universal Multifractals

The previous examples estimating ξ(q) from MOLA and MODIS data under-
line a basic problem: that the scaling generally involves an entire nonlinear 

ξ(q)

1

Scale <10 km

H~0.75

H~0.52

1.5

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H = ξ(1)

H = ξ(1)

C1 =
ξ(1)–ξ´(1)

ξ(q) = qH

Scale >10 km

ξ(q) = qH–K(q)

q
(b)

FIGURE 3.13 (Continued)
(b) The structure function exponent ξ(q) estimated from the regression slopes in Figure 3.13a 
for the Martian topography (the blue curve). The bottom red curve is for the region >10 km and 
the top blue curve is for scales <10 km. While the latter is nearly linear and hence monofractal 
(with ξ(1) = H ≈ 0.75), the former is curved and multifractal. For this curve, we also show the 
graphical estimates of the mean �uctuation exponent H using H = ξ(1) ≈ 0.52 and (from the 
 tangent at q = 1) the intermittency correction near the mean, C1 = ξ(1) − ξ’(1) ≈ 0.1. (Adapted from 
Landais, F., et al., Nonlin. Processes Geophys. Discuss., 2, 1007–1031, 2015.)
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75Scaling Geocomplexity and Remote Sensing

convex function ξ(q) (equivalently the concave function K(q) = qH − ξ(q)) for 
its characterization, and empirically this is the equivalent of determining 
an in�nite number of parameters. In order to make the problem manage-
able (to reduce the parameters to a �nite number), we can make use of a 
multiplicative analogue of the usual (additive) central limit theorem for ran-
dom variables. This shows that under fairly general circumstances, K(q) is 
determined by only two parameters that de�ne multifractal “universality 
classes”:

 
1

; 0 21K q
C

q q( )( ) =
α −

− ≤ α ≤α  (3.18)

where α is the Levy index and C1 is the codimension of the mean (Schertzer 
and Lovejoy 1987). From Equation 3.18, we see that C1 = K’(1); this provides 
a convenient way of estimating the parameters. Figure 3.13b shows how 
it can be graphically estimated from ξ(q); for α, it is also possible to use 
α = K’’(1)/K’(1). Table 3.1 shows the resulting parameter estimates for many 
geophysical �elds, including several that were remotely sensed. In addition, 
note that the difference between the exponents of the RMS and mean (impor-
tant for interpreting the slopes in the RMS Haar graphs) ξ(2)/2 − H = K(2)/2 = 
AαC1, where Aα = (2α−1 − 1)/(α − 1). Because empirically 1.5 > α > 2 (Table 3.1), 
we �nd 0.83 > Aα > 1 (near 1) so that often C1 provides a good estimate of 
the error in using the RMS exponent ξ(2)/2 in place of H. From the table it is 
evident that, in space, the difference ξ(2)/2 − H can readily be ≈ 0.1, which is 
signi�cant. The intermittency quanti�ed by C1, α leads to much larger vari-
ability than would be expected from classical (quasi-Gaussian) processes. 
Additional dif�culties in the interpretation of data analyses arise when the 
scaling is anisotropic (see Lovejoy and Schertzer [2007b] or section 7.1.6 of 
Lovejoy and Schertzer [2013]).

Note that with the help of remote sensing, many solid earth �elds have 
also been shown to be scaling over various ranges. These include the 
rock density, magnetic susceptibilities, surface magnetic �elds, and sur-
face gravity �elds; see the review by Lovejoy and Schertzer (2007b) for 
examples, references, and theory for these geopotential �elds. Visible 
and infrared emissions from geothermal regions have been studied by 
Laferrière and Gaonac'h (1999), Harvey et al. (2002), Gaonac'h et al. (2003), 
and Beaulieu et al. (2007).

Cascades and Trace Moment Analysis

We investigated the nonlinearity of ξ(q), K(q) (intermittency) directly from 
the structure function, estimating ξ(q) from the exponents of the qth order 
moments and then estimating K(q) as ξ(q) + qξ(1) (see Equation 3.15, recall-
ing that K(1) = 0). However, frequently, the H value is quite a bit larger 
than the C1 value, so that the linear contribution to ξ(q) is much larger than 
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76 Integrating Scale in Remote Sensing and GIS

the nonlinear contribution, making C1, α dif�cult to accurately estimate. 
However, by estimating φ and hence K(q) directly, we can obtain improved 
estimates of C1, α. We are also able to estimate the outer scale of the underly-
ing cascade process.

To see how this works on gridded data, we can conveniently estimate ΔI 
as the absolute �nite difference along the transect. The normalized high-
resolution �ux is then obtained by dividing Equation 3.12 by its ensemble 
average to obtain the following:

 
I
I

ϕ
ϕ

= ∆
∆   (3.19)

Finally, this high-resolution �ux can be systematically degraded to lower 
resolution by averaging. The generic multifractal process is a multiplicative 
cascade; if such a process starts at outer scale Leff, then the statistics follow:

 ; = /effM L xq K q= ϕ = ′λ ′λ ∆( )
′λ   (3.20)

where λ′ is the scale ratio of the outer scale to the resolution scale of the 
degraded �ux Δx and φλ′ is the normalized �ux at scale ratio λ'. When qϕ ′λ  is 
estimated in this way (by taking q powers of the successively degraded �ux), 
it is called a trace moment. In empirical analyses, Leff is not known a priori; it 
has to be estimated from the data. Here, we replace it by a convenient refer-
ence scale, Lref = 20,000 km, which is the largest distance on Earth (half the 
circumference), and use λ = Lref/Δx. If Equation 3.20 holds, then for all q the 
lines of qlog ϕλ  against log λ will cross at a scale corresponding to λ = λeff 
= Lref/Leff.

Figure 3.14a shows the results of estimating the various moments of 
order 2 ≥ q ≥ 0 for the TRMM orbiting weather radar data analyzed along 
the orbit direction. It is evident from the log–log linearity that the scal-
ing is excellent up to near-planetary scales of 10,000 km, and the conver-
gence of the lines to a common outer scale, λeff, is a direct con�rmation 
of the multiplicative (“cascade”) nature of the statistics (Equation 3.20). 
The lines plausibly cross at a scale of the order of the size of the planet 
(see Table 3.1). The fact that Leff = Lref/λeff can be a little larger than the size 
of Earth is because, even at planetary scales (20,000 km), there is some 
residual variability due to the interaction of the precipitation �eld with 
other atmospheric �elds—Leff is simply the “effective” scale at which the 
cascade would have had to start in order to explain the statistics over the 
observed range.

Precipitation is particularly interesting because, according to Table 3.1, it 
is the most intermittent of the common geophysical �elds (the value of the 
intermittency parameter C1 is the highest, ≈0.4) and therefore is presumably 
the most dif�cult to measure. Figure 3.14b shows the corresponding results 
for other precipitation products (both gauge- and reanalysis-based) as well 

D
ow

nl
oa

de
d 

by
 [

Sh
au

n 
L

ov
ej

oy
] 

at
 2

2:
10

 1
6 

Fe
br

ua
ry

 2
01

7 



77Scaling Geocomplexity and Remote Sensing
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FIGURE 3.14
(a) The TRMM re�ectivities (4.3-km resolution). The moments M (see Equation 3.20) are for q = 0, 
0.1, 0.2, …, 2, taken along the satellite track. The poor scaling (curvature) for the low q values 
(bottom with negative slopes) can be explained as artefacts of the fairly high minimum detect-
able signal. Lref = 20,000 km so that λ = 1 corresponds to 20,000 km; the lines cross at the effective 
outer scale ≈32,000 km, C1 ≈ 0.63. (Reproduced from Lovejoy, S., et al., Geophys. Resear. Lett., 36, 
L01801, 2009c. With permission.) (b) East–west analyses of the gridded precipitation products 
discussed in the text. Upper left: The TRMM 100 × 100 km, 4-day averaged product. Upper right: 
The ECMWF interim stratiform rain product (all latitudes were used). Note that the data were 
degraded in constant angle bins so that the outer scale is 180°. To compare with the other analy-
ses, a mean map factor of 0.69 has been applied (the mean east–west outer scale was ≈14,000 km). 
Lower left: The CPC hourly gridded rainfall product (US only). (Reproduced from Lovejoy, S., 
et al., Adv. Water Res., 45, 37–50, 2012. With permission.) (Continued)
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78 Integrating Scale in Remote Sensing and GIS

as for a lower-resolution TRMM product, all analyzed in the east–west 
direction. It is evident that the qualitative behaviors are very similar. More 
detailed analysis (Lovejoy et al. 2012) shows that there are nevertheless sig-
ni�cant differences in parameters, notably C1. Similarly, in the macroweather 
regime (for precipitation, ≈2–4 days up to 40 years in the industrial epoch), 
this is also true (de Lima and Lovejoy 2015; Lovejoy and de Lima 2015), lead-
ing to the conclusion that the problem of accurately estimating areal precipi-
tation is still unsolved.

Interestingly, the same data can be analyzed in the temporal domain. 
The reason for expecting scaling in time as well as space is that the wind 
�eld that connects the two is scaling (see, e.g., the spectrum in Figure 3.1c). 
Figure 3.14c shows that the straight lines on the log–log plot converge—
the behavior expected for multiplicative cascades (Equation 3.20) and 
the signature of multifractality—but at timescales a bit longer than the 
outer scale of the weather regime (the point timescale at which the scal-
ing becomes poor, closer to ≈10 days). The main exception is the TRMM 
data, which seem to have excellent scaling out to the limit of the 5,900 
orbits (about 1 year). It is possible that the reason for this signi�cantly 
larger outer timescale is that the TRMM data are mostly captured over 
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FIGURE 3.14 (Continued)
(c) The temporal analyses of the various precipitation products analyzed spatially in 
Figure  3.14b (for the TRMM satellite radar at 4 days to 1 year; the ECMWF stratiform rain 
product, 3 hours to 3 months; and the CPC network, 1 hour to 29 years; the 20CR reanalysis 
was for 45°N, every 6 hours for 138 years). (Reproduced from Lovejoy, S., et al., Adv. Water Res., 
45, 37–50, 2012. With permission.)
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79Scaling Geocomplexity and Remote Sensing

the tropical oceans and the oceans have a signi�cantly longer outer scale 
(about 1 year) due to the much lower energy rate densities in the ocean 
(see chapter 8 of Lovejoy and Schertzer, 2013, for a review of the theory 
and data).

Other signi�cant examples of the use of trace moments are for char-
acterizing the Earth’s energy budget as a function of scale. Figure 3.15a 
and b shows the results for the TRMM satellite (from two of the chan-
nels  whose spectra were analyzed in Figure 3.1a and b) at visible and 
 thermal infrared wavelengths, respectively. Upon inspection, it is evi-
dent that the multiplicative cascade Equation 3.20 holds very accurately 
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FIGURE 3.15
(a) TRMM visible data (0.63 mm) from the VIRS instrument, Channel 1, with �uxes estimated 
at 8.8 km. Only the well-lit 15,000-km orbit sections were used. Lref = 20,000 km, so that λ = 1 
corresponds to 20,000 km, the lines cross at Leff ≈ 9,800 km. (Reproduced from Lovejoy, S., et al., 
Geophys. Resear. Lett., 36, L01801, 2009c. With permission.) (b) Same as Figure 3.15a except for 
VIRS thermal IR (Channel 5, 12.0 μm), Leff ≈ 15,800 km (Reproduced from Lovejoy, S., et al., 
Geophys. Resear. Lett., 36, L01801, 2009c. With permission.) (Continued)
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80 Integrating Scale in Remote Sensing and GIS

(to about ±0.5%) up to about 5,000 km. Figure 3.15c shows the analogous 
result for the (geostationary) MTSAT thermal IR radiances over the 
Paci�c (same as the data in Figure 3.1c). Finally, Figure 3.16 shows the 
results of trace moment  analysis on meteorological state variables esti-
mated through a reanalysis (see  Figure 3.2). It  is therefore not surpris-
ing that numerical weather prediction models also show excellent scaling 
and similar  multiplicative trace moments (see Stolle et al. [2009] and Stolle 
et al. [2012] for analyses of several forecast  models). In situ aircraft data of 
meteorological variables of state also show very similar cascade charac-
teristics (Lovejoy et al. 2010).

Finally, we can return to the topography data whose spectra were ana-
lyzed in Figure 3.3. Figure 3.17 shows the cascade structure of the topo-
graphic gradients obtained by combining the four different data sets used 
in Figure 3.3 spanning the range 20,000 km down to submetric scales. As 
for the spectrum, the scaling holds quite well until around 40 m. Gagnon 
et al. (2006) argued that this break is due to the presence of trees (for the 
high resolution data set used over Germany, 40 m is roughly the horizon-
tal scale at which typical vertical �uctuations in the topography are of the 
order of the height of a tree). Over the range of planetary scales down to 
≈40 m, it was estimated that the mean residue of the universal scaling form 
with parameters C1 = 0.12, α = 1.79 (for all moments q ≤ 2) was ±45% over 
this range of nearly 105 in scale (this error estimate was for the “reduced” 
moments 

1/q q
ϕ , e.g., for q = 2, root mean square moments).
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FIGURE 3.15 (Continued)
(c) Logs of normalized moments M (Equation 3.20) vs. log10λ for 2 months (1,440 images) of 
MTSAT, thermal IR, 30-km resolution over the region 40oN to 30oS, 130o east–west over the 
western Paci�c, the average of east–west and north–south analyses. Lref = 20,000 km so that 
λ = 1 corresponds to 20,000 km; the lines cross at the effective outer scale ≈ 32,000 km (from 
Pinel 2012) and C1 ≈ 0.074 (close to the TRMM thermal IR results, Table 4.7a, VIRS 4, 5).
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81Scaling Geocomplexity and Remote Sensing

Space–Time Scaling: Example of MTSAT

Remotely sensed products remapped into convenient coordinate systems are 
increasingly available at regular time intervals. This allows for the system-
atic study and assessments of trends. It also requires us to understand the 
full (joint) space–time variability. As an example, in this section we study 
global scale thermal infrared data from MTSAT (see Figure 3.1c for the 1D 
spectra and Figure 3.18a through c for three 2D subspaces) and show how 
knowledge of its spectral density in (kx, ky, ω) space (horizontal wave number 
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FIGURE 3.16
The trace moment analysis of the 700-mb ECMWF interim reanalysis products analyzed in the 
east–west direction, data at 700 mb (about 3 km altitude) between ±45o latitude. The �elds are 
speci�c humidity (hs), temperature (T), east–west wind (u), north–south wind (v), vertical wind 
(w), and geopotential height (z); �elds at 24-hour intervals for the year 2006 were used. The 
moments are for orders q = 2, 1.9, and 1.8 (descending from top to bottom); λ = 1 corresponds 
to 20,000 km. See Table 3.1 for some parameter estimates. (Reproduced from Lovejoy, S., and 
D.  Schertzer, The weather and climate: Emergent laws and multifractal cascades, Cambridge 
University Press, Cambridge, 2013. With permission.)
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82 Integrating Scale in Remote Sensing and GIS

and frequency) can be used to determine AMVs, which are used as surro-
gates for winds.

The MTSAT data set used for this study is comprised of nearly 1,300 
hours of hourly geostationary MTSAT data (at 30-km resolution) from an 
8,000 × 13,000 km2 region centered on the equatorial Paci�c (see Pinel et al. 
2014, for details). It is convenient to use Fourier techniques. Introduce the 
nondimensional space–time lag ΔR and nondimensional wave vector K:

 
, ; ,

, ; ,

R r t r x y

K k k k kx y( )
( )

( )

( )∆ = ∆ ∆ ∆ = ∆ ∆

= ω =
 (3.21)

The nondimensionalization can be achieved by using the pixel and sampling 
periods or the planet scale (space) and the corresponding lifetime of planetary 
structures (time, roughly 10 days). We can now estimate the space–time (“st”) 
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FIGURE 3.17
The trace moments of the data sets whose spectra were analyzed in Figure 3.4: ETOPO5 (cir-
cles), continental United States (Xs), and lower Saxony (squares). For the latter, a subsample was 
also analyzed (light circles) that was (mostly) free of trees, the difference indicating the effect 
of trees. The regression lines distinguish between the q values of the associated points: q = 2.18, 
1.77, 1.44, 1.17, 0.04, 0.12, and 0.51 (top to bottom). (Reproduced from Gagnon, J. S., et al., Nonlin. 
Proc. Geophys., 13, 541–570, 2006. With permission.)
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FIGURE 3.18
(a) Contours of log P(kx, ky), the spatial spectral density. Black represents empirical contours; 
colored lines are from the �t using Equation 3.32 with a = 1.2 ± 0.1. (b) Contours of log P(kx, ω), 
the zonal wave number/frequency subspace. Black represents empirical contours; colored 
lines are from the �t using Equation 3.32. The orientation is a consequence of the mean zonal 
wind, –3.4 m/s. (Continued)
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spectral density P K I Kst

2
( ) ( )∝ �  (see Equation 3.2). We can determine the 

three 1D spectra by successively integrating out the conjugate variables:

 

E k P k k dk d k

E k P k k dk d k

E P k k dk dk

x x st x y x x

y y st x y y y

t st x y x y

x

y

t

, ,

, ,

, ,

∫
∫
∫

( )

( ) ( )

( )

( )

( )

= ω ω ∝

= ω ω ∝

ω = ω ∝ ω

−β

−β

−β

  (3.22)

where the right-hand side equalities are consequences of assuming space–
time scaling; the exponents can in principle all be different. Figure 3.1c 
shows the result: it is evident that the east–west, north–south, and temporal 
spectra are nearly identical up to ≈(5–10 days)−1 and are nearly perfect power 
laws (most of the deviations from linearity in the �gure can be accounted for 
by the �nite resolution and �nite data “window”; see the black line that theo-
retically takes these limits into account). The main exceptions are the two 
small spectral “bumps” at (1 day)−1, (12 hours)−1. The fact that the 1D spectral 
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FIGURE 3.18 (Continued)
(c) Contours of log P(ky, ω), the meridional wave number/frequency subspace. There is very 
little if any “tilting” of structures because the mean meridional wind was small: 1.1 m/s. Black 
represents empirical contours; colored lines are from the �t using Equation 3.32. (Reproduced 
from Pinel, J., et al. Atmos. Resear., 140–141, 95–114, 2014. With permission.)
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85Scaling Geocomplexity and Remote Sensing

densities are nearly identical shows that βx = βy = βt = β and that the spectrum 
satis�es the isotropic scaling symmetry:

 Pst(λK) = λ−s Pst (K); s = β + 2  (3.23)

where empirically, s = β + 2 ≈ 3.4. Note that at any given scale Ps will gen-
erally display anisotropy; Equation 3.22 simply implies that the anisotropy 
doesn't change with scale (see Pinel et al. 2014, for the full analysis).

By necessity, the scale symmetry (Equation 3.22) can only hold up to plan-
etary scales (Le = Lref = 20,000 km); this implies a breakdown in the time 
domain at scales τ, which is interpreted as the lifetime of planetary scale 
structures. In Figure 3.1c, we �nd τ ≈ 5–10 days; Lovejoy and Schertzer (2010a) 
describe how this is determined by the turbulent energy �ux ε (power/mass): 

1/3 2/3Leτ = ε− , where ε itself is determined by the solar �ux. This theory well 
describes the spectrum of the many atmospheric variables—ocean tempera-
tures as well as the Martian weather and macroweather (Lovejoy et al. 2014), 
see also Chen et al. 2016.

In order to solve the functional Equation 3.22 expressing the scaling symme-
try on P, it is convenient to introduce real and Fourier space–time scale func-
tions � � � �,R K F∆ . The scale functions are generalizations of the usual notion of 
vector norm (distance). They generally satisfy a scale function equation (for this 
GSI, see Chapter 7 in Lovejoy and Schertzer 2013). In the general case (needed, 
for example, to deal with vertical strati�cation), we have the following:

 � ���� ���K KG

F Fλ = λ   (3.24)

where G is the generator of the anisotropy (in the basic linear case, G is a matrix 
so that the anisotropy depends on scale, but not position). In the special isotro-
pic case in Equation 3.23, we simply have G = 1 = the identity we have:

 � � � �K KF Fλ = λ   (3.25)

With this, the empirical spectra (Figure 3.18, Equation 3.22) can be written 
as follows:

 � �0P K P Kst
s( ) ≈ −  (3.26)

where P0 is a constant. A basic result (a corollary of the Wiener–Khinchin 
theorem) relates the second-order structure function and the spectral den-
sity: it states that I2∆  and 2(1−P) are Fourier transform pairs. With this, we 
obtain the following:

 ( ) ( )∆ ∆ = ∆ ≈( )ξ −
I R R P K Kst F

s�� �� �� ��;2 2
  (3.27)

with s = 2 + β as before.
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Theoretical considerations based on turbulence theory (Lovejoy and 
Schertzer 2010a; Pinel et al. 2014) lead to the convenient result for the nondi-
mensional scale functions:

 �
��
�
��

�� ��;
2 2 1R R B R K K B KT

F
T∆ = ∆ ∆ = −   (3.28)

with the matrices B, B−1 given by

 

1 0

0

1

;

1
1

1

1 /

1

2 2

2

1
2 2 2

2 2

2 2

B a a
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B
a

a

a

x

y

x y

x y

y y x x

y x x y

x y

( )

=
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− µ
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




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


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

















−   (3.29)

μx and μy are the components of the nondimensional average advection velocity:

 , / ; 2 2 2v v V V v a vx y w w x y( )( )µ = = +   (3.30)

where Vw is the large-scale turbulent velocity and a is the north–south/east–
west aspect ratio (taking into account the fact that the large-scale gradients 
are typically a times larger in the north–south direction than in the east–
west direction). If we now introduce the modi�ed nondimensional speeds 
and frequency:

 
1

;
1

;
12 2 2 2 2 2 2 2 2a a a

x
x

x y

y
x

x y x y( ) ( ) ( )
′µ = µ

− µ + µ
′µ = µ

− µ + µ
′ω = ′ω

− µ + µ
  (3.31)

we �nd:

 � �K K B K k k k aF
T

x y+ /2 1 2 2 2 2( )= = ′ω ⋅µ + +−   (3.32)

The corresponding spectral density is as follows:

 , , + /0
2 2 2 2

/2

P k k P k k k ax y x y

s( )( )( )ω = ′ω ⋅µ + +
−

 (3.33)

Equation 3.32 has the interpretation as a mean advection by μ′ with a spa-
tial squashing by factor a in the east–west (x) direction.
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In order to test this in detail, Pinel et al. (2014) considered the spectral den-
sities in the three 2D subspaces (kx, ω), (ky, ω), and (kx, ky) obtained by inte-
grating out the (single) conjugate variables from Pst(kx, ky, ω) (Figure 3.18a 
through c). This enabled the theory to be tested and the parameters to be esti-
mated. A further analysis (Pinel and Lovejoy 2014) showed that the (small) 
residuals could be interpreted in terms of multiplicative wave-like pertur-
bations to Pst. This analysis is theoretically motived by improvement of the 
well-known “turbulence background” of space–time IR radiances analyzed 
in the traditional wave context by Wheeler and Kiladis (1999) and Hendon 
and Wheeler (2008).

Finally, Pinel et al. (2014) showed how to use the real space structure func-
tion (based on the quadratic form determined by the matrix B) as a theo-
retical justi�cation for a series of essentially ad hoc techniques starting with 
Hubert and Whitney (1971) for measuring “satellite winds,” now more accu-
rately called AMVs (Atmospheric Motion Vectors). Using the real space parts 
of Equations 3.27 through 3.29, we obtain an equation for the (second-order) 
structure function (Equation 3.26) in terms of the winds. The structure func-
tion is linearly related to the autocorrelation function and hence gives useful 
formulae for relating the maximum correlation (which turns out to be the 
minimum structure function) and the winds. Although there are variants, 
this maximum cross-correlation method is currently used operationally 
with MTSAT and GOES geostationary IR, visible satellite imagery (see, e.g., 
Szantai and Sèze [2008] for an overview and comparison).

Conclusions

As resolutions improve, remote sensing allows us to take a veritable voy-
age through scales, effectively zooming further and further into complex 
geo�elds. The journey potentially takes us over 10 orders of magnitude in 
scale—from planetary to submillimetric. In order to understand, charac-
terize, and model such geocomplexity, we need an appropriate theoretical 
framework. The traditional framework is scale bound; it assumes a priori that 
as we change scales we uncover qualitatively different processes and phe-
nomena. It postulates simple, usually deterministic models, at best explain-
ing the variability over a narrow range of space–time scales. It is usually 
justi�ed by an appeal to phenomenology, to the fact that structures at differ-
ent scales often look different.

In this paper, we argued that on the contrary most of the geovariability 
(for example, most of the spectral variance) is in the wide-range scaling 
background processes. With the help of numerical multifractal simula-
tions, we pointed out the phenomenological fallacy: that scaling is gener-
ally anisotropic, in which case structures do change appearance with scale, 
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even though the underlying mechanism simply repeats scale after scale—it 
is scale invariant. If in these cases, the morphologies (rather than statistics) 
were used to infer the dynamics, then several distinct mechanisms might be 
invoked, whereas there was in fact only one—hence the fallacy. Although 
it is true that we have discussed natural geosystems, which often respect a 
scale-invariance symmetry, it is possible that the same considerations might 
also apply to at least some human-created morphologies such as the spatial 
distribution of urban areas.

This paper is an update of Pecknold et al. (1997), which concentrated 
on developing the basic framework of multifractal processes and GSI 
needed for handling extremely intermittent scaling variability and aniso-
tropic scaling, respectively. We discussed some striking new global scale 
examples: visible, infrared, passive, and active microwave sensing of the 
atmosphere; meteorological reanalyses (meteorological state variables) of 
ocean color, soil moisture, and vegetation indices; topography (Earth and 
Mars). We focused on improvements in (real space) �uctuation analysis 
methods (especially the Haar �uctuations), as well as on trace moment 
analysis, which can now be routinely used to estimate the external scale 
of the process and to directly test the multiplicative nature of the intermit-
tency. Finally—re�ecting the increasing availability of regular temporal 
series of images—we reviewed some recent work on space–time analyses 
from geostationary infrared satellite data. It showed, remarkably, that the 
(horizontal) space–time scaling has an isotropic exponent, while at the same 
time having “trivial” anisotropy that re�ects the advection and turbulent 
velocities and can be used as theoretical bases for AMV determinations.
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