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The Fokker—Planck equation has been very useful for studying dynamic behavior
of stochastic differential equations driven by Gaussian noises. However, there are
both theoretical and empirical reasons to consider similar equations driven by
strongly non-Gaussian noises. In particular, they vyield strongly non-Gaussian
anomalous diffusion which seems to be relevant in different domains of Physics. In
this paper, we therefore derive a fractional Fokker—Planck equation for the prob-
ability distribution of particles whose motion is governed byaalinearLangevin-

type equation, which is driven by a g stable noise rather than a Gaussian. We
obtain in fact a general result for a Markovian forcing. We also discuss the exis-
tence and uniqueness of the solution of the fractional Fokker—Planck equation.
© 2001 American Institute of Physic§DOI: 10.1063/1.1318734

I. INTRODUCTION AND MOTIVATION

The Fokker—Planck equation is one of the most celebrated equations in Physics, since it has
been very useful for studyifnghe dynamic behavior of stochastic differential equations driven by
Gaussian noises. However, it turns out that many physical phenomena are outside of this frame-
work. For instance, it has been argued that diffusion by geophysical turbétémeresponds,
loosely speaking, to a series of stickifigauses when the particle is trapped by a coherent
structure, andfasy flights, when the particle moves in the jet flow. A similar phenomenology is
observed for zoo plankton grazifig.

Although there have been some atterfiptsanalyze and quantify this behavior with the help
of the classical Fokker—Planck equation, i.e., assuming finite moments of all orders, some labo-
ratory experimenfs® or numerical simulations of geostrophic turbulelfcshow that this phe-
nomenology could be rather a consequence of the presence of heayidailsower law falloff
for the probability distribution and a strong anisotropy with a clearly preferred direction of diffu-
sion. One can concludthat if the processes are additive, the corresponding walks arg Le
motions.
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Let us recall that indeed stable\nemotionsL (t) generalize the Brownian motids(t) in the
sense that first they are also motiafesg., Refs. 12 and 13vhose incrementdL (t,At)=L(t
+At)—L(t) are stationarythereforeAL has no statistical dependencetpand independent for
any nonoverlapping time lagst. Therefore,L(t) corresponds to the sum of independent, iden-
tically distributed Leyy stable variables* 28 The second common property is that these incre-
ments satisfy a “stability property:” up to a rescaling and recentring, the sum of different steps
has the same probability distribution as one of the stepsy Istable variables are precisely
defined by this property. The stability property implies in both cases a property of attraction: under
rather general conditions a renormalized sum of independent identically distributed variables
converge to a stable law. Furthermore, there are no other attractive laws. This explains why the
stable property is so important. The attraction property corresponds to a broad generalization of
the central limit theorem, with the important difference that whereas the classical théeaeiss-
ian casgis satisfied with the condition that the variance is finite, the convergence towardga Le
law is obtained with the condition thait onlythe variance of the summanis is infinite, but
also that all their moments of ordegrequal to or larger than a critical order (0<a<2) are
infinite. This critical orderx is called the Ley stability index and corresponds to the exponent of
the power law of probability distribution tails:

any s>1: PI(|AL|>s)~s “=any q=a: E(|X|%) =0, 1)

where Pr denotes the probabilitif( ) is the mathematical expectation, asds a given(large
non-negative threshold. This statistical divergence of wylLmotion is due to jumps, whereas a
Brownian motion is almost surely continuous.

This index is the most important of the four parameters defining \ay Istable law. The
second one is the skewne8q —1=<pB=<1) which defines the degree of asymmetry of the law,
which is maximal for8=—1 or 8=+1, and the law is symmetric whef=0. In spite of its
name and some common propertiBs)evertheless does not correspond to the classical skewness
of a quasi-Gaussian law. The latter is indeed undefined for a stablelaw due to the above-
mentioned statistical divergences. The centeorresponds to the statistical mean when defined
(i.e., @>1) and/or to the median when symmetfice., 8=0). The scale parametdd(D=0)
corresponds to a generalization of the variance of the Gaussian case. More precisely, as discussed
below, it corresponds to the intensity scale of the cumularipo§sibly noninteggrorder a. It
yields an anomalod8 generalization of the classical Einstein relation: V() — X(to)]=2D(t
—ty), where Var() denotes the variance. Finally, let us emphasize that the Gaussian case corre-
sponds to the limit case= 2, which also implies3=0, i.e., no asymmetry.

Further comments are now in order on the relevance oflmaotions in Physics. On the one
hand, claims in favor of the relevance of \emotions have been made on many physical
phenomena ranging from subrecoil laser codiirfgto diffusion by flows in porous med@;?
including finance fluctuatior;?® see Refs. 26 and 27 for other examples. Many systems indeed
display a phenomenology rather similar to that we reported above on geostrophic turbulence.

On the other hand, important questions have been raised. In particular, Ref. 28 questioned the
resulting infinite variance of the advecting field for porous media. Indeed, it turns out that recent
estimate®’ of the power law of the probability distributions of the hydraulic conductivity yields an
exponenta~3.5. The question of finite variance might apply to other examples, in particular for
atmospheric turbulence where different stutflgseld a critical exponent~7 for the wind field.
Therefore, in spite of their clear phenomenological interest, the relevance of puyariations
could be questioned.

The main goal of this paper is to clarify and define a framework adequate for handling
motions more general than puréwyemotions and which are nevertheless generated by the latter.
We will do it by building upon a series of rather recent wdtké’***which show that the
probability density of particles moving with a {zg motion satisfies a generalized Fokker—Planck
equation involving fractional orders of differentiation. Indeed, it could be first argued in a “very
formal and phenomenological” manrérthat a fractional power of the Laplacian yields an
anomalous scaling for the corresponding diffusion.
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A fractional Fokker—Planck equation was obtained in a less formal manner by Refs. 32 and 35
in the framework of the continuous time random walkd RWs model of anomalous diffusiof.
However, this method does not involve directly a stablgyprocess, but a walk sharing some
behavior common with the latter, without being equivalent to it. A different fractional Fokker—
Planck equation was introducEdvith the help of a phenomenological and interesting transfor-
mation of the classical Fick law into a fractional Fick law. However, it is not clear that its solution
corresponds to éon-negativg probability distribution. A rather distinct approach was followed
by Refs. 34 and 19 since it starts witHimear Langevin-type equation with random forces which
are exactstable Lery processes, which can be symmetric as well as asymmetric, and with no
limitation on the possible values of the \neindex . The fundamental mathematical tool which
is used is the second characterigtic cumulant generatindunction of the motion defined by this
Langevin-type equation. The particular case of symmetric processes correspond to what was
previously inferred by Refs. 31, 32, 35, and 37. However, it was shown that in the more general
case of asymmetric processes, a new nontrivial advective—diffusive term appears. This is con-
firmed with the help of a reinterpretation of the characteristic function of\gy Ineotion®

We already discussed that theoretically and empirically the nonfiniteness of the variance could
be questioned. There are two more general questions: the inhomogeneities of the medium, which
are first emphasized for the introduction of thevizemotions, are finally reduced to (homoge-
neous distribution of times when the particle is strongly kicked. As soon as this representation is
granted, the mediurand its propertiesdoes not intervene any longer. This is very restrictive and
for instance incompatible with the multifractality of the meditifi(or of the diffusion when
observed. The second reason is that the underlying processes are thought to be strongly nonlinear,
whereas the transport is modeled with the help ¢$tachastit linear equation.

Both the successes and limitations of the previous results plead in favor of investigating a
local and nonlinear modeling with the help of\yemotions. This is the reason that we investigate
the properties ohonlinearLangevin-type equation forced by awestable motion.

IIl. STATEMENT OF THE PROBLEM

Further to our above discussion, we consider the followiaglinearLangevin-type equation
for a stochasti¢real) quantity X(t) (e.g., location of a partic)e

dX(t)=m(X(t),t)dt+ o(X(t),t)dL, 2

where the driving source is a log stable motiorL (t) instead of Brownian motioB(t). The latter
case corresponds to the basis of stochastic caldelgs, Ref. 4D and the corresponding differ-
ential equation is often called the Ito—Skorokhod equation. The extensiorviostable motion
L(t) is rather natural and straightforwafel.g., Ref. 41 due to the common properties oft) and
B(t) that we discussed in Sec. |, i.e., their infinitesimal increments are independent identically
distributed and furthermore stable.

More precisely the Ito stochastic calculus corresponds to consider thdt tise similarly to
dB, a forward increment in timéit should be understood a$l(t,dt)=L(t+dt)—L(t)]. This
means that the value ofat timet is determined by events prior to the application of the stochastic
force dL(t), which acts only from time to t+dt.

The Eq.(2) can also be understood under its integral form

X(t)=X(t0)+f m(X(t),t)dH—f o(X(t),tH)dL, (3

where the last term corresponds to a stochastic integration of a stochastic process. The integration
of a stochastic procesB(t) [in the case of Eq(2): ®(t)=a(X(t),t)] with respect to the ey
motion L, is rather straightforward in the case of step proce$ses:

N—1

d(t)=P,, for te(ty,thr), n=0,1,...N—1;j<I>(t)dL=go D, (L(the)—L(ty) (4
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and this rather suggestive definition is naturally extended to functional spaces in which the step
processes are dense.

In order to establish local properties, for instance the time evolution of the probability of the
particles, we will use the differential forfEq. (2)], whereas Refs. 34 and 19 rather used the
integral form[Eq. (4)] which becomes cumbersome in the nonlinear case and is in fact useful only
to establish global propertidSec. 1X).

After having emphasized the similarities betwedit) andB(t), it is important to underline
the nontrivial consequences due to the fact, contrary to the Gaussian case which has all its
moments finite, Ley motions have a finite critical order of divergence of statistical moments
(0<a<?2). These include the fact that the mathematical techniques which could be used can be
rather distinct. For instance, our derivation will rely on the use of the second characteristic
function of the increments, Sec. Ill, instead of probabilities of the increments as done usually for
the derivation of the classical Fokker—Planck equation. An obvious reason is that the former are
relatively simple(see Sec. VI, while the latter are not, with the only exception of the three
following casesa=2, B=0; a=1, 8=0; a=1/2, 3=1. The fundamental reason is that both the
stability property and the divergence of moments are related to the presence of a cumulant of
noninteger ordet. In relation to this problem, the convenielnt Hilbert structure of Gaussian
processes is reduced tol&® Banach structure for stable g processes. This is particularly
important for the integral equatio), when defining functional spaces where step processes are
dense.

The linear case, which is the hitherto studied case, corresponds to

m(X(t),t)=m=const; o(X(t),t)=co=const. (5)

X(t)—X(to) is also a Ley motion which has the same \ae stability indexa as its increments,
but with a different center or trend and scale or amplitude.

In the nonlinear casen(X(t),t) ando(X(t),t) are(possibly nonlinearfunctions ofX(t) and
t, which satisfy certain regularity constraints to be discussed (&&t. 1X). They correspond to
inhomogeneities of the medium, which were ignored in the linear case. As a possibly important,
but simple example, let us mention theé weextension of the so-called geometric Brownian
motion, which is rather ubiquitous and for instance is at the core of the Black—Scholes model for
option pricing:m(X(t),t)=mX(t) anda(X(t),t) = X(t), wherec is the votality constant of the
price X(t) of a given stock share.

We will demonstrate the following proposition:

Proposition 1: The transition probability density:

Vi=to: p(X,t[Xg,to)=PrX(t)=x|X(tg) =Xq) (6)

corresponding to the nonlinear stochastic differential equation (2), with\gy lfercing of param-
etersa#1 or =0, y, D=0, is solution of the following fractional FokkePlanck equation

J Jd
7t P(X,t|Xg,to) = — &(?’U(X,t) +m(x,1))p(X,t[Xg,to)

—D| (= A)Y(|o(x,1)|*p(X,t]|Xg,t0))

J
+ Bo(a) (= 0) 2| (x,0)]" o (x D P(xXtxo o)) @)
with the initial condition

P(X,to[Xg,to) = 8(X—Xo), (8)

where §(x—Xg) is the degenerate Dirac measure ig and w(«) is defined by
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Ta
a#1: w(a)=tan7 (9

and where the fractional powers of the Laplaciawill be discussed in Sec. VI. Proposition 1 and

Eq. (7) are for scalar processéise., A=9°/9x?) and their extension to vector processes will be
discussed and presented in Sec. VIII. One may note that the fractional diffusive isotropic operator
—(—A)*? applies via a fractional diffusivityo(x,t)|%, whereas the advective—diffusive term
corresponds to a conjugate action of a fractional diffusive terta- A)(*~ D2 g (x,t)|* " and a
convective term {/9x) o(x,t) on the transition probability.

This fractional Fokker—Planck equation will be established with the help of the much more
general proposition.

Proposition 2: The inverse Fourier transform of the second characteristic function or cumu-
lant generating function of the increments of a Markov proced$ ¥enerates by convolution the
Fokker-Planck equation of evolution of its transition probabilityxgt|xg,to).

We will demonstrate this proposition in a straightforward, yet rigorous way. More precisely,
we will establish the following:

ap aK
2 oo = [ ay 2 - yly0p(y.theonto), (10

whereK is the inverse Fourier transform of the cumulant generating function of the increments.
The K arguments will become explicit in Sec. Il.

Equation(10) not only holds for processes with stationary and independent increments, as in
the linear casg¢Eq. (5)] but also for any Markov process, including those defined by the nonlinear
Langevin-type equatiofEqg. (2) with m# const,o # consi. As a consequence of EGL0), we will
demonstrate the following.

Proposition 3: When the increment’s cumulant generating function of a Markov pro¢éss X
is defined by its expansion in cumulants,Gts FokkerPlanck equation is

(_ 1)n an
2 [Cn(X P tXo,t0)]. 1D

ap
7t othxoito)= 2 —

An obviously sufficient condition of convergence is obtained when thd séthe orders of
differentiationn is finite. This is true in particular for Gaussian forcin={1,2}. It corresponds
to the classical Fokker—Planck equation. On the other h&ady would correspond to an analytic
expansion of cumulants. In spite of its interest, we will not discuss the latter case in this paper, nor
its relationship to the classical Kramers—Moyal expangmg., Ref. 43

Below, we concentrate on the case of a finite, but nonanalytic exparkioft,«} (noninte-
ger a, 0<a<?2), since it corresponds to the e extension(Sec. VII and yields Proposition 1
with the help of fractional derivatives, as discussed in Sec. VI.

[ll. THE CUMULANT GENERATING FUNCTION OF THE INCREMENTS

The first and secon¢tonditiona) characteristic functions are, respectively, the moment gen-
erating functionZy(k,t—tg|Xq,to) and the cumulant generating functisy(k,t—to|Xg,to), as-
sociated with the transition probabilify(x,t|xq,to) of a processX(t). These are defined by the
Fourier transform of the latter, witk being the conjugate variable &f-X,:

FLp(X,t|X0,to) 1=Zx(k,t—to|Xo,to) 12
=exp(Kx(K,t=tg|Xo,to)) (13

=E[explik (X(t) = X(to))[X(to) =Xo], 14
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where E[-|-] denote the conditional mathematical expectatiBnand F~1, respectively, the
Fourier transform and its inverse:

F[f]=f(k)=fldxexp(ikx)f(x), (15)

o)

s dk o
F [f]zf(x)zf_ 5 exp— k0T (k). (16)

The corresponding quantities for incremed¥(ot) = X(t+ 6t) — X(t), corresponding to a
given time lagét>0, are defined in a similar way:

FIp(x+ 6x,t+ 8t|x,t) 1= 6Zx(k, 6t|x,t) 17
=exp sKx(k, ot|x,t)) (19
— E[explik(X(t+ 8t) — X(1))|X(t) =x], (19

wherek is the conjugate variable afx. The cumulants of the incremen®, are the coefficients
of the Taylor expansion oKy :

(ik)"

Tcn(x,t)+0(5t). (20

SKy (K, 8t|x,t) =t Y,
neld

As already mentioned, the classical case corresponds to an analytic expanskg,ofe.,
JCN, whereas we will be interested by a finite but nonanalytic exparkiofl,«} (noninteger,
0<a<?).

IV. PROCESSES WITH STATIONARY AND INDEPENDENT INCREMENTS

Let us first consider the simple subcase of a process with stationary and independent incre-
ments. It corresponds t8,(x,t)=C,,=const in Eqs(11) and (20) and as already discussed in
Sec. |, it includes the linear ca$Eq. (5)] of the Langevin-type equatiof®).

However, we believe that the following derivation is not only somewhat pedagogical on the
role of the characteristic functions for the nonlinear case, but also terser than derivations previ-
ously presented for the linear case.

The stationarity of the increments implies that the transition probability depends only on the
time and space lags, i.e.,

P(X,t[Xg,to) =P(X—Xg,t—tg) (21

and similarly, the characteristic functions of the increments are no longer conditioned, for in-
stance,

Zy(k,t—to[Xg,to)=Zx(k,t—tp), (22
Kx(k,t—to|Xg,to) =Kx(k,t—to). (23

On the other hand, the independence of the increments implies that the transition probabilities
satisfy a convolutio{over any possible intermediate positignfor any given time lagst:

V6t>0: p(x—xo,t+5t—t0)=f dy p(x—y,dt)(y—Xq,t—tg) (29



206 J. Math. Phys., Vol. 42, No. 1, January 2001 Schertzer et al.

and the corresponding characteristic functions merely fagaspectively, add Therefore, we
have,

Zy(k,t+ ot—tg) — Zy(K,t—tg) =Zx(K,t—to) (5Zx(k,ot) —1). (25
This in turn leads to
Zy (K, t+ 0t —tg) — Zy(k,t—tg) = Zx(k,t —tg) SK(k, 6t) +0( ot). (26)

Its inverse Fourier transform yields

p(x,t+ é‘tle,to)—p(x,tle,to)=f dy F [ 8Kx(k,8t)Ip(y—Xo,t—tg) +0(dt).  (27)

This demonstrateén the limit 5t—0) Proposition 2 and Eq10), as well as Proposition 3,
since Eq.(27) corresponds, with the help of E¢O), to

(—=n"
n!

POX,t+ 0o, to) = POX,tXo,t) = 3t X, Cn f dy 8", p(y,t|Xo.to) |[+0(81), (28)

where &} denotes theth derivative of the Dirac function. Therefore, we obtain

(- "

d
i Pt to) = X Cri POXtXo,to) (29

neld n!
which corresponds to the linear case of Etf).

V. MORE GENERAL MARKOV PROCESSES

In the case of a Markov process which does not have stationary and independent increments,
there is no longer a simple convolution equat[&y. (24)] of the transition probabilities, nor a
simple factorization of characteristic functioftsq. (25)]. However, the former satisfies a gener-
alized convolution equation which corresponds to the Chapman—Kolmogorov idémtitid for
any Markov proces¥(t):

V 5t>0: p(x,t+6t|xo,t0))=de p(x,t+ Stly,t)p(y,t|Xg,to) (30

which indeed reduces to a mere convolutj&uq. (24)] in the case of processes with stationary and
independent increments. This identity can be written under the equivalent form:

p(X,t+5t|Xo,to)=f dyf%(e”‘“‘SKX“"‘“'y'”p(y,tlxo,to). (31)
Noting that we have
pxthiauto)= [ dy py.thx to) [ e, @
we obtain
p(X,H&IXo,to)—p(X,tIXo,toF&f dy F~[8Kx(k, t]y,t)Ip(y,t|xo,to) +0(t). (33

In the limit 5t— 0, this corresponds to Proposition 2 and Edf)). WhenJCN, it yields with
the help of Eq.(20):
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—1)"
Sp(X,t|Xg,tg) = &gj dy éf(“)y[(TCn(y,t)p(y,t

Xo,tg) [+ 0(6t). (34)

The limit st—0 corresponds to Eq11) and demonstrates Proposition 3 for a Markow
process.

VI. EXTENSION TO FRACTIONAL ORDERS

In the two preceding sectionSecs. IV and V, the fact that the indiceae J should be
integers intervened at best only in the correspondence betwetger order differentiation
" ox" [in Eq. (11)] and powers of the conjugate variatd&[in Eq. (20)]. However, by the very
definition of fractional differentiatiorie.g., Ref. 44, this correspondence holds also for noninteger
orders. However, there is not a unique definition of fractional differentiation and therefore, as
discussed in some details in Ref. 19, we cannot expect to have a unique expression of the
fractional Fokker—Planck equation.

Since in the following it will be sufficient to consider an expansion of the characteristic
function involving fractional powers of only the wave numbkl it is interesting to consider
Riesz’s definition of a fractional differentiation. Indeed, the latter corresponds to consider frac-
tional powers of the Laplacian:

—(—A)*2f(x)=F Y|k *f (k)] (35

which has furthermore the advantage of being valid for the vector cases. However, we will see in
Sec. VIII that in general it does not apply in a straightforward manner for vector stabie Le
motions. Indeed the latter introduces ratli@ne-dimensionaldirectional Laplacians, i.e(one-
dimensional Laplacians along a given directiar(|u|=1):

— (=AY (x)=F Y |(k,u)|*F(k)], (36)

where(.,.) denotes the scalar product. On the other hand, it will be useful to consider the fractional
power of the contraction of the Laplacian tengar

_d J 3
0 ax, a%, (37)
by a tensorg (g* denotes its transpogewith the following definition:
—(—A:g.g*)*=F |(k,g.g* K“*]=F [|g* K|*]. (39)

VII. LEVY CASE

The second characteristic function of the incremefitsof the (scalay Lévy forcing is the
following:

k
5KL(k,5t)=é‘t[iky—D|k|“(l—i[3m)w(k,a) +0(6t), (39
wherew(k, @) is defined by
Ta T
a#1: w(k,a)Ew(a)=tan7, a=1: w(k,a)=§|og|k|. (40

Considering an lto-type forward integration of E@®), the incrementsSL generates the
following (first) characteristic function for the incremen#X of the motionX(t):
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6Zy(k, 6t|x— 6x,t) =E(e*kM*V) 57 . (K, 8t|x,t)+0(t) (41)
which yields the following elementary cumulant generating functétry :

. . _ ka(x,t)
SKx(k, 8t|x,t) = ot| ikm(x,t) +ik yo(x,t) — D|K|*| o(x,t)|* 1—|Bmw(k,a)) +o0(6t)

(42

and which is of the same type as E80), with J={1,a}. Therefore, as discussed in Sec. VI, we
have fractional differentiations in the corresponding Ed.), which will precisely correspond to
Eq. (7), and therefore establishes Proposition 1.

VIIl. EXTENSION TO VECTOR PROCESSES

With but one important exception, the extension of the previous results to higher dimensions
is rather straightforward. The starting point of this extension is the following nonlinear stochastic
equation K(t) e RY):

dX(t)=m(X(t),t)dt+g(X(t),t).dL, (43

wherem is the naturald-dimensional vector extension of the deterministic-like trepds thed
X d’-dimensional tensor extension of the modulation of the random driving forceLaisda
d’-dimensional Ley stable motion. As discussed below, the expression of the characteristic
function of the latter corresponds to the source of the difficulty in extending the scalar results to
higher dimensions. On the contrary, it is straightforward to check that Propositions 2 and 3 are
valid in the vector case, with the following extensions=(RY) for Eq. (10):

ap aK

E(x,tlm,tohf dy—+ (X=yly,p(Y,tXo,to) (44)

and for Eq.(11) (neJCNY,|n|=32%_,n)):

s [Co(X, 1) P(X,t[X0,t0) ]- (45)
d

ap (— 1)l lnl
— (X,t|Xg,tp) =
ot (%000 = 2 T T T 2 o

On the other hand, Eq43) yields the following extension to Eq41):
8Zy(k, ot|x,t)=e'kMxV 57 (k,dt[x,t) (46)
and therefore we have
SKx(k, at[x,t) =i k.m(x,t) + K (g* .k, ot|x,t) + 0(Jt). (47)

Let us recall that a stable” kg vector in the classical sen$é®*(see Ref. 47 for a discussion
on a rather straightforward generalization, or Refs. 48, 49, and 50 for a more abstract generaliza-
tion) corresponds to the limit of a sum of jumps, with a power-law distribution, along random
directionsu € B, B; being the unit ball, distributed according ta(@ositive measured, (u).
The latter, which generalizes the scale paramietef the scalar case, is the source of the difficulty
since in general the probability distribution of a stablery @ector depends on this measure, and
therefore is a nonparametric distribution. However, as discussed below, there is at least a trivial
exception: the case of isotropic stablevisevectors.

Corresponding to our previous remarks(ciassical stable Lery vector has the following
(Fourien cumulant generating function:
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KL(L()=5+(|_<.}/)—JU (ik,u)*dX(u) | +o(at) (48)

€dBy

which yields with the help of Eq47):

0~
SRy =—dvimt gy —F | | gtk asw)| (49)
gt~ - uedB;
The scalar casfEq. (39)] corresponds to
T
Osp=<1l: B=2p—1, dX(u)=Dco > [POu-1)+(1—pP) S+ (50

For any dimensiord, the second term on the right-hand side of E&) corresponds to a
fractional differentiation operator of order. This operator can be slightly rearranged. With the
help of the odddX ~(u) and everdX *(u) parts of the measurés, (u):

2d3 7 (u)=d3(u)+d3(—u), 2d37(u)=dZ(u)—d(—u) (51)
and the identity(# being the Heaviside function
(ik)a: | k|a[ 9(k)ei(a77/2)+ (9( _ k)e—i(aw/Z)] (52)

one can write the extension of E(f) under the following form:

Jd
21 PO tXo0,to) = —divim(x,t) + g (x,1). )] P(X,t[Xo, to)

“[{((=4:g.¢*))s+—((V.g*).(—A:g.c*)* 5]
X p()_(vt|)_(01t0)a (53)

where the symmetric fractional diffusive and, respectively, the antisymmetric advective—diffusive
terms are defined, similarly to E¢38), in the following manner:

(800 |

ue

. dX " (WF (g% (x,0) k)] (54

(Vg (~aig0) B |

uedl

dX " (WF T (=ig*(x,0).kw|(g* (x.t).kw[* .
By
(59

In general, each term corresponds to a rather complex integr@tinich is indicated by the
symbol(.)s) by the measureX of directional fractional LaplaciangEg. (36)]. However, the
symmetric term becomes simpler as soon as the everdpdrtof the measure?, is isotropic.
Indeed, the integration over directions yields only a prefabtor

(~(84:¢.¢") s =D(-dig.0) 0= [ dxtwlwwl” (56)
l_JEt?B]_

and for =2 this corresponds to the classical terth:§.¢*) of the standardd-dimensional
Fokker—Planck equation. &%, itself is rotation invariant, then the asymmetric operator vanishes,
sincedX ™ =0. If furthermore,g is scalar, i.e.g= o1, then one obtains the following Fractional
Fokker—Planck equation:
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J
21 POtX0,to) = —div[ g y(x,t) + m(x, ) Ip(x,t|x0, to) (57)

—D[(—2)*[a(x,)]*P(X,t|%o, o) (58)

Therefore, as one might expect the rotation symmetries yield a rather trivial extension of the
standard Gaussian case: a fractional powef the d-dimensional Laplacian, as in the pure scalar
case[Eq. (7)]. Obviously, the integration performed in E&J) is also greatly simplified as soon
asdX (u) is discrete, i.e. its support corresponds to a discrete set of direatjons

On the other hand, let us note that the framework of generalized stabie veetors?’~>°
allows one to introduce a much stronger anisotropy than the mead&urallows for classical
stable Lery vectors. This therefore diminishes the importance of the asymmetry of the latter.
Indeed, the components of a generalized stablg vector do not necessarily have the sameylLe
stability index, the latter being generalized into a second rank tensor. Similarly, the differential
operators involved in the corresponding fractional Fokker—Planck equation no longer have a
unique order of differentiation. This is rather easy to check in case of a discrete mdagure
and we will explore the general case elsewhere.

IX. EXISTENCE AND UNIQUENESS OF THE SOLUTION

The preceding sections established a generalization of the Fokker—Planck equation for the
evolution of the probability distribution of nonlinear stochastic differential equations driven by
Levy stable noises. This is the main goal of this paper. Naturally, one would also like to have if
possible a theorem of existence and uniqueness of the solution of this equation. Due to its origin,
such a theorem will also imply that the solution will remain positive and normalized, as required
for a transition probability. In this section we argue that the general results obtainethe
classical Gaussian case£2) are also relevant for the kg extension, whereas up until now
existence and uniqueness conditions of partial fractional differential equations have been scarcely
explored(see however Refs. 52 and)58nd therefore we cannot rely on general results.

The classical Fokker—Planck equation belongs to the well-explored domain of parabolic equa-
tions. Existence and uniqueness of the solution fundamentally ¥egoln the fact that the linear
operatorA=—A is a (self-adjoin} positive generator of a semigroup of contraction operators
T(t)=e ™, t=0. In the case of constant coefficierilinear Langevin equationthe solution is
directly obtained with the help of(t) and this ensures its existence, uniqueness, and positiveness.
Note that in our case, the semigroup action corresponds to the equation of conv(datio24)].

Similar results hold for a Lipschitz variation of the coefficients, i.e.,

Im(x,t) =m(y,t)| +[o(x,t) = o(y,) | <D[x—y| (59
as well as a condition of slow growth in time of the coefficiemt&X(t),t) ando(X(t),t), e.g.,
Im(x,t)|+]o(x,t)|<C|1+X], (60)

whereD and C are given positive constants.

These conditions have been extensively used for the classical Fokker—Planck equation with
non constant coefficient®.g., Ref. 43 Considering now the fractional generalization, it is im-
portant to note that the fractional power of the Laplaciac— A)*”2 remains positive, since its
definition Eq.(35) corresponds to replacing the eigenvalédy eigenvalues having as real part
|k|*. Therefore, we remain inside of the previous framework of contraction semigroup and the
previous results should hold.

This could also be seen from the integral form of the differential equation. Indeed, in the
classical case, the Lipschitz condition is classical for the Brownian forGificas well as for the
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more general case of martingale and semimartingale for€ift§The latest case is relevant for the
stable Ley forcing. The Lipschitz condition can be rather understood as a condition of conver-
gence of the Picard iteration method towards a fixed point:

X”+1(t)=X(t0)+f m(xn(t),t)dt+f a(X"(1),1)dL; XO(t) = X(to). (61)

On the other hand, the condition of slow grow@?) in time prevents a finite explosion time,
i.e., X(t) remains finite for any given finite time this condition is rather general, since it is
already required by the deterministic part of the Langevin-type equation.

X. CONCLUSION

We have derived a fractional Fokker—Planck equation, i.e., a kinetic equation which involves
fractional derivatives, for the evolution of the probability distribution of nonlinear stochastic
differential equations driven by non-Gaussiarvyetable noises. We first established this equa-
tion in the scalar case, where it has a rather compact expression with the help of fractional powers
of the Laplacian, and then discussed and presented its extension to the vector case. This fractional
Fokker—Planck equation generalizes broadly previous results obtained for a linear Langevin-type
equation with a Ley forcing, as well as the standard Fokker—Planck equation for a nonlinear
Langevin equation with a Gaussian forcing. As suggested in Ref. 36 and in the comments of Ref.
19 on Refs. 32 and 35, we will show elsewhere, that the present results could be extended to
include fractional time derivative in the Langevin equation and in the corresponding Fokker—
Planck equation. This is particularly important for multifractal modeling, since the generators of
dynamic universal multifractal$ are defined by this type of equations.
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