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F. Schmitt, D. Lavallée, @ and D. Schertzer
Centre Nationale de Recherche Météorologique, Mététorologie Nationale, 2 Avenue Rapp, Paris 75007, France

S. Lovejoy

Department of Physics, McGill University, 3600 University Street, Montreéal, Quebec, Canada H3A 2T8
(Received 14 June 1991)

It is now apparent that the two principal models of turbulence (the “beta” and “lognormal” models)
are the extremes of a continuous family of (stable, attractive, hence “universal”) multifractals charac-
terized by Levy indices a=0 and 2, respectively. Using a technique called double trace moment
analysis, and turbulent velocity data, we empirically obtain a= 1.3+ 0.1: As has long been suspected,
turbulence really is “in between’ the S and lognormal models. This describes the entire hierarchy of

singularities of the Navier-Stokes equations.

PACS numbers: 47.25.—c

In three-dimensional hydrodynamic turbulence, cas-
cade processes have long been believed to provide the pri-
mary mechanism of injection of energy flux from large to
small scales. Since the 1960’s specific models [1-3] of
cascades have been developed. They model the nonlinear
dynamical processes by concentrating various conserved
fluxes (e.g., the energy flux) from large to smaller and
smaller volumes, leading to highly intermittent fields.
Such models are (deceptively) simple; they generically
give rise to singular multiscaling-multifractal measures.

In spite of the generality of this theoretical result, not
enough effort has been made to empirically determine the
infinite hierarchy of dimensions (we will compare our re-
sults to Ref. [3]). With the recognition that cascade pro-
cesses [4] have stable and attractive universality classes
[5,6] specified by only two parameters (three for noncon-
servative processes), the problem can be attacked with
more powerful tools: Only a few rather than an infinite
number of parameters need to be determined. The most
basic of these [7] (a) interpolates between the two oldest
and best studied cascade models, the “f model” [1]
(a=0), and the “lognormal model” [8,9]1 (a=2). In-
deed, we shall see that the empirical value found below
(a = 1.3) corresponds exactly to the common observation
that turbulence is “in between” (e.g., Refs. [10] and
[11]). Here we apply the first technique, double trace
moments (DTM) [12], specifically designed to exploit
this universality, yielding robust parameter estimates; we
apply it to turbulent wind fields.

When a cascade has proceeded over a scale ratio
A =L/l (the ratio of the largest scale of interest to the
smallest scale) the density of the conserved energy flux
[13] (&) has the singular behavior [5,14,15]

=", A>1. 1)

Where A— o (or /— 0), y> 0 is the order of the singu-
larity, and y <0 is the “order of the regularity.” The
probability distribution of singularities whose order ex-
ceeds y and the related statistical moments will have the

following scaling behavior [5]:
Pr(g = ky)zlﬁ"(y)'=’(sf>zlk(q), )

where c(y) is the codimension function of the singulari-
ties ({) indicates ensemble averaging). It is related by a
Legendre transform [14] to the scaling exponent [16]
K (g) associated with statistical moments. The function
c(y) is a codimension since the probability measures the
fraction of the (infinite-dimensional) probability space
occupied by the singularities exceeding the order 7.
When individual realizations are studied on spaces with
dimension D (i.e., D-dimensional cuts of the infinite-
dimensional stochastic process), and when c(y) < D, this
statistical exponent has a simple geometrical [14,17] in-
terpretation: It is the scaling exponent of the fraction of
the D volume occupied by singular values greater than y.
The relations between the turbulence notation [18] used
here and the strange attractor fp(ap) and 7,(g) nota-
tion [15] (the subscript D explicitly emphasizes the
dependence of a, f, and 7 on the dimension of the observ-
ing space D) are fp(ap) =D —c(y) and tp(q) =K(q)
—(g—1)D, with ap=D—7y. The turbulence notation
used is necessary when dealing with stochastic processes
because 7, ¢, and K are intrinsic, contrary to ap, fp, and
7p which diverge with D — oo; it also avoids introducing
negative (““latent””) dimensions [19] when c¢(y) > D.

The basic idea of the DTM technique is to generalize
the application of statistical methods to the quantity g
This is done by taking the nth power of & at the scale ra-
tio ' (the outer or largest scale of interest to the smallest
scale of homogeneity), and then studying the scaling be-
havior of the various gth moments at decreasing values of
the scale ratio A <A'. The ¢g,n double trace moment at
resolution A’ and A has the following multiple scaling be-
havior:

l'l,f"’k)' (B) = fo &dPx ,

(3)
Trx(sfr)“=<2(ﬂ;fﬂ)r)”> A K==,
A
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The sum over A is done at resolution A, i.e., on a (more or
less optimal) covering of the (D-dimensional) balls B;’s.
The integration over B, rescales the fields and corre-
sponds then to the “dressed” quantities discussed in Refs.
[51, [12], and [18]. When n=1 the right-hand side of
Eq. (3) reduces to the usual trace moments [5] (which
are themselves simply ensemble averages of the usual
partition function).

The scaling exponent K(g,n) is related to K(q,1)
=K(g) by

K(g,n)=K(gn,1) —qgK(n,1). 4)

Using the universality classes for K(g,1) gives the ex-
pression for K(q,n):

Cy
a—1
Cingln(g), a=1,

“(g*—q), a#l,
K(g.n) =n"K(g.1) = g
q,n n q 5)

with 0<a =<2, and ¢ >0 for a#2. By keeping g fixed
(but different from the special values 0 or 1) the slope of
|K(g,n)| as a function of 1 on a log-log graph gives the
value of the parameter a, which with the help of the in-
tercept yields C;. Varying g then allows for a systematic
verification of Eq. (5), and hence the universality hy-
pothesis.

For sufficiently large g, Eq. (5) breaks down. Two crit-
ical values must be considered. The first is the maximum
moment g, that can be estimated by a finite number N of
samples. Defining the “sampling dimension™ [6,20] D,
=logN/logh, we have g, =[(D+D,)/C,1"%. The second
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FIG. 1. The velocity spectrum averaged over 190 samples
each of length 2'* times the finest resolution (which corresponds
to 10 kHz). The spectrum E(w) = o ~? (w is the frequency)
with g==1.65 is shown for comparison.
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critical value gp [the solution of K(gp,1)=(qp—1)D]
arises when multifractals are averaged over sets of dimen-
sion D with scales much larger than the inner scale of
homogeneity (here, the dissipation scale). For ¢ = g the
empirical moments will diverge and empirical estimates
will be subject to spurious (or “pseudo™) scaling [5].
Whenever max(q,qn) = min(g,.qp), K(g,1) becomes a
linear function of ¢ and Eq. (4) indicates then that
K(g.n) becomes independent of n. Reference [12] con-
tains considerable theoretical and numerical investigation
of the DTM technique, as well as error estimates. An im-
portant advantage of the DTM over other analysis tech-
niques is that the determination of « is invariant under
the general transformation y— ay+b, e.g., to arbitrary
powers of non-normalized processes.

We now discuss the application of the DTM method to
turbulent velocity measurements made by Gagne at the
ONERA wind tunnel, Modane, with a high-resolution
hot wire anemometer sampling at 10 kHz. We analyzed
N =190 samples each of scale ratio = 2'% in the inertial
(scaling) regime (hence D, =0.63), and = 27 in the dissi-
pation region; this corresponds to the smallest scale = 8§
mm. The energy spectrum of the time series is shown in
Fig. 1. The velocity amplitude signal is then passed
through a filter that weights its Fourier components by

o' (wis a frequency). This removes the A ™' Kolmo-
gorov scaling yielding the conservative quantity &' relat-
ed to the velocity by [21]

Ay == 6V ©)

Figures 2 and 3 show the results when the DTM tech-
nique is applied to various values of ¢g,n. As long as n
and gn are below g, = 4-5, the plots of log|K(g,n)| vs
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FIG. 2. Log of the double trace moment as a function of logi
for various values of ¢,n, showing that the scaling is well
respected. The extreme four octaves which are part of the dissi-
pation range were not used.
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FIG. 3. Curves of logio| K (g.n)| vs logion, for g =2.5, 2, and
1.5 (top to bottom). The curves are nearly parallel and for
nq <qs =5 have slopes a= 1.3 £0.1. Furthermore, the values
of logiol K (h,1)| give C1.=~0.25+0.05.

logn (Fig. 3) are very straight, as expected for universal
multifractals, with slopes and intercepts yielding
a=13%0.1 and C,=0.25+0.05. For comparison
with other empirical results [22], we may calculate the
standard intermittency parameter u which is the auto-
correlation exponent for & pu=K(2,1). For the lognor-
mal model (@=2), we have u=2C),, whereas for the
model (@=0), u=C,. Here, with a=1.3, we obtain
u=1.55C,=0.35=0.1, which is exactly in the middle of
the accepted range [10] 0.2-0.5 [11]. Finally, we may
calculate g, = 4.2, which is in excellent agreement with
the breakdown of Eq. (5) for large ¢ found in Fig. 3.

Because a= 1, turbulence is an unconditionally hard
multifractal process, i.e., high enough order statistical
moments will diverge when energy fluxes are averaged
over spaces with arbitrary dimensions (as long as the
average is over scales much larger than the dissipation
scale). This is in accord with empirical evidence from at-
mospheric data [23].

Leray [24], Von Neuman [25], and many others (e.g.,
Refs. [5], [14], and [26]) have pointed out the impor-
tance of characterizing the singularities of the Navier-
Stokes equations. This experimental confirmation of
universal multifractals in turbulence has fundamental im-
plications for the high-Reynolds-number limit, since with
the help of three fundamental exponents it characterizes
the possible class of solutions, in particular the entire
hierarchy of singularities.

We acknowledge A. Davis, C. Hooge, P. Ladoy, J. P.
Kahane, K. Pflug, G. Sarma, Y. Tessier, R. Viswanathan,
B. Watson, and J. Wilson. We are grateful to Y. Gagne
and E. Hopfinger, U. Frisch, and the DRET for providing
the wind velocity data, and the Atmospheric Radiation

Measurement Program Contract No. DE-FGO03-90ER-
61062 for partial financial support.

@Now at University of California, 5276 Hollister Ave.,
Suite 260, Santa Barbara, CA 93111.

[1] E. Novikov and A. R. Stewart, Izv. Akad. Nauk SSSR
Ser. Geofiz. 3, 408 (1964); B. Mandelbrot, J. Fluid Mech.
62, 331 (1974); U. Frisch, P. L. Sulem, and M. Nelkin, J.
Fluid Mech. 87, 719 (1978).

[2] D. Schertzer and S. Lovejoy, in Proceedings of the Fourth
Symposium on Turbulent Shear Flows, Karlsruhe, West
Germany, 1983 (unpublished), 11.1-11.8.

[3] C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59,
1424 (1987); J. Fluid Mech. 224, 429-484 (1991).

[4] This is true for the general canonical cascades which in-
volve conservation on ensembles, but not for restrictive
microcanonical models.

[5] D. Schertzer and S. Lovejoy, J. Geophys. Res. 92, 9693
(1987).

[6] D. Schertzer and S. Lovejoy, in Fractals: Physical Ori-
gins and Properties, edited by L. Pietronero (Plenum,
New York, 1989).

[7] Do not confuse the Lévy index a with the f(a) notation.

[8] A. B. Kolmogorov, J. Fluid Mech. 13, 82 (1962); A. Obu-
khov, J. Geophys. Res. 67, 3011, (1962).

[9] The p model (Ref. [3]) is as close for nonextreme singu-
larities to the lognormal model as the a model (Ref. [2]),
since the unrealistic microcanonical constraint (critical
discussion in Ref. [5]) is not so important for these singu-
larities.

[10] The intermittency parameter u is also in the usual range.
Values estimated by dissipation spectra (3v/8t)? typically
yield u = 0.5, whereas more recently sixth-order velocity
structure functions have tended to give values closer to
11=0.2. Reference [3] obtains u ==0.25, and we obtain
u=0.35.

[11] F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. An-
tonia, J. Fluid Mech. 140, 63-89 (1984).

[12] D. Lavallée Ph.D. thesis, McGill University, 1991 (un-
published), p. 139; D. Lavallée, D. Schertzer, and S.
Lovejoy, C.R. Acad. Sci. Paris (to be published); D.
Lavallée, S. Lovejoy, D. Schertzer, and P. Ladoy, in
“Fractals in Geography,” edited by L. DeCola and N.
Lam (Prentice Hall, Englewood Cliffs, NJ, to be pub-
lished).

[13] & is the density of rate of energy flowing from scale
I=L/r to smaller scales; it is usually estimated as
== Av(/)?/1, where Av(/) is a characteristic velocity shear
at scale /.

[14] G. Parisi and U. Frisch, in Turbulence and Predictability
in Geophysical Fluid Dynamics and Climate Dynamics,
edited by M. Ghil, R. Benzi, and G. Parisi (North-
Holland, Amsterdam, 1985).

[15] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, 1. Procaccia,
and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).

[16] The earlier notation K (k) [introduced in D. Schertzer
and S. Lovejoy, Turbulence and Chaotic Phenomena in
Fluids, IUTAM Symposium 1983 (North-Holland, Am-

307



VOLUME 68, NUMBER 3

PHYSICAL REVIEW LETTERS

20 JANUARY 1992

sterdam, 1983), pp. 141-144] is dropped in favor of K(q)
which shares the *“q” with the prevailing notation (see
f18D.

[17] Parisi and Frisch [14] start from the geometric interpre-
tation of this restrictive case.

[18] More detailed comparisons between turbulent and strange
attractor notation, as well as the classification of mul-
tifractals (according to their highest-order singularities),
may be found in D. Schertzer, S. Lovejoy, D. Lavallée,
and F. Schmitt, in Nonlinear Dynamics of Structures,
edited by R. Z. Sagdeev, U. Frisch, S. Moiseev, and N.
Erokhin (World Scientific, Singapore, 1991); D.
Schertzer and S. Lovejoy, Physica (Amsterdam) A (to be
published).

[19] B. Mandelbrot, J. Stat. Phys. 34, 895 (1984); A. B.
Chhabra and K. R. Sreenivasan, Phys. Rev. A 43, 1114
(1991).

[20] D. Lavallée, D. Schertzer, and S. Lovejoy, in Non-Linear
Variability in Geophysics, Scaling and Fractals, edited
by D. Schertzer and S. Lovejoy (Kluwer, Dordrecht, Bos-
ton, 1991).

308

[21] We use the usual Taylor hypothesis of frozen turbulence
to convert time to space (v =20 m/s), which should not
pose any fundamental problems in this wind tunnel exper-
iment.

[22] These values are close to those obtained in other turbulent
fields; F. Schmitt, D. Schertzer, and S. Lovejoy, Annales
Geophysicale, Supplement to Vol. 9 (Springer, Berlin,
1991), report a==1.2 in the atmospheric temperature
field, and Y. Tessier, S. Lovejoy, and D. Schertzer report
@ = 1.35 in cloud radiance field in the infrared and visible
as well as for microwave reflectivity of rain (to be pub-
lished).

[23] D. Schertzer and S. Lovejoy, Turbulent Shear Flow 4,
edited by L. J. Bradbury and F. Durst (Springer, New
York, 1985).

[24] J. Leray, Acta Math. 63, 193-248 (1934).

[251J. Von Neuman, Collected Works (Pergamon, New
York, 1963), Vol. 6, pp. 437-450.

[26] K. R. Sreenivasan and C. Meneveau, Phys. Rev. A 38,
6287-6295 (1988).



