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ABSTRACT 

This paper amplifies upon earlier theories and observations by the authors. advances a 
probabilistic model of rain fields, and exhibits realistic simulations, which the reader is advised to 
scan before continuing with the text. The model is also compared with other approaches. The 
theory of fractals has been in part motivated by the Hurst effect. which is an empirical 
observation in hydrology and climatology. A fractal is an unsmooth shape that is scaling, that is. 
where shape appears unchanged when examined by varying magnifications. The study of fractals 
is characterized by the prevalence of hyperbolically distributed random variables, for which Pr( Li 
> u )  cc u “, where Pr is the probability that the value of the variable exceeds u, and a is a 
positive exponent. Lovejoy established the applicability of fractals in meteorology. by showing 
that cloud and rain areas project on the Earth along shapes whose boundaries are fractal curves, 
and that the temporal and spatial structure of rain is rife with hyperbolically distributed features. 
These observations, as amplified in this paper. set up the challenge of constructing fractal models 
with the observed properties. The models presented here belong to a very versatile family of 
random processes devised in Mandelbrot: fractal sums of (simple) pulses. or FSP processes. 
The simulations to be presented reveal that these processes involve a scaling heirarchy of 
“bands“. “fronts”. and “clusters”, as well as other complex shapes, none of which had been 
deliberately incorporated in the process. This very rich morphology and the related statistical 
distributions exemplify the power of simple fractal models to generate complex structures, and 
are in accord with the wide diversity of actual rainfall shapes. It is argued that this model already 
provides a useful context in which the basic statistical properties of the rainfield. including the 
relationship between the temporal and spatial structure. may be studied. 

1. Introduction 

A striking feature of rainfall is its extreme spatial 
and temporal variability. Over a wide range of time 
and space scales, sudden changes occur so fre- 
quently that rainfall is often intuitively described as 
“erratic”. In fluid mechanics, the analogous 
phenomenon of abrupt transitions is called “inter- 
mittency”, which is the terminology we use here. 
Mandelbrot’s systematic studies of intermittency 
have revealed its profound links with scaling and 
with hyperbolic distributions. 

A phenomenon is called scaling when it involves 
no characteristic scale of length or time. In 
particular (Mandelbrot and Van Ness, 1968), a 
random function X ( t )  is called scaling at  the origin. 
if X ( 0 )  = 0 and X ( 1 f )  2! A H X ( f )  for all ratios 1 > 0. 

Here 2 denotes identity in statistical distribution 
and His a scaling exponent. 

More generally. X ( t )  is scaling for all times if, for 
arbitrary f, ,  and t , .  the symbolic relation AX(1At) 
4 1”AX(At)  holds between the quantities At = t ,  
-t,,, AX = X ( t , )  - X ( t o ) .  t ,  = to + 1(t,  - to) and 
AX(1At) = X ( t , )  - A’([,,). When 1 is large, this is a 
relation between large-scale variation over the long 
time lag LAt, and small scale variation over the 
short time lag At. The notation At, A X  is meant to 
emphasize that scaling refers to diflerences. The 
graphs of scaling functions, and other related 
geometric shapes are “fractal sets” (Mandelbrot 
1975, 1977, 1982) characterized by a “fractal 
dimension” that is a noninteger quantity related to 
H .  

A random variable U is called hyperbolic if the 

Tellus 37A (1985), 3 



210 I I * * + t * r u + * + t a x * t t t r x * x a * * * * x * * *  ............... 3 .................... x x * r t x x x t t * x x x t x * t t * * ~  ********** 
2 8 ~ r ~ ~ t r ~ ~ * t * x * x * * * x * + * r * * * * t * .  ... 3.... ....... 3. ........................ x x a a x x ~ x x a x r x x x x x x x x ~ ~ 8 8 x x x x ~  
3 ** ~ ~ ~ ~ 8 ~ 8 + + 8 * % + x * 8 8 + * x x * l l x  .... 36 . . . . . . . . . . . .  5 ........................... a a x x a x x t x x * x x r r i * x * * r * r * r r x  
4 **+******* t*x~xx**x*****x . . . . . .  77 .......................................... x*X”*x*x***Xxx**xxXxx**x* 

79ABBB . .  A3 . . . . .  A9... 
7BBBAC.38 . . . . . .  5 . . . . . .  89 ................................ ................................... 

69A93.. I ....... 688eAB7689BCCCCD88.66I.l . .  9D B3.. 13 . .  13...  . . .  .............................. 
8863 ......... l.LBBBB988ABCCBDD ~ . .  17 . .  XX376C ............................................. 

55 ........ 
................................. 

58 . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  
64 6.97.7A9 . . . . . .  

. . . . . . . . . . . .  67CC6 . . . . . . .  593 . .  CB77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  X 

............................ xx 

........................... x*x  

. . . . . . .  7..... 

...... 38..687..6 
88 ~ + r * x r x x * x  . . . . . . . . . .  58A.l ..****+****** 
88 ....................................... I.. ......................................... ************ 
g9 ************* r. .......................... 5863 ......................................... ************* x 
9e #r*u***t*+***..... ..................... 396 ......................... *******U****** 
91 ** L***U********... ................. 19..361.... ...................... ******x*****L** 
92 *** xr*xrrr*x*xx*x. . . . . . . . . . . . . . . . . . . .  17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxxxxaxx*x*r+*+*  
93 ***** x*x*x*xxxxxxx*.. ............... 96 . . . . . . . . . . .  * x x x x x a x x x x ~ * * * * * * *  
94 ~ r ~ x r r * x * x ~ ~ * r ~ * x x x x  . . . . . . . .  63 ..... 5AB . . . . . . . . . .  **** X * X X X * * X * * * L * * * *  
95 urr*++xx+rx*xxx****xxx . . . . . .  376 . . . .  8A7 . . . . . . . .  *** X * * X * X X X X I X * X X + * * * .  
96 8 * 8 8 x * ~ x x x ~ x x x x X x x * x X x *  ..... 68 . . . . .  8A5 . . . . . . .  XxXx*:*xX**x*** * * *XI *XXI  

97 *XX**+X***X*****x**X*+**z .... 3 . . . . .  63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  X X X X * * * * X X * * * * * * * r * Y * . X X *  
98 rx*xxxxxxxx*xxxxxxxxxxx*x**  . . . .  3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xx*xxxx***x*x..*xxxx*****x*x 
99 r * x r r r x x * x x + X X X X X X X X X X X 8 X 8 X * 8  . .  76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x x x X ~ x x x x r * * * ~ x * x * ~ * * r * x r * * ~ X X X  

188 X ~ X X + X * ~ X X ~ X * * * X X X * X X * X X X X X X X X ~ X ~ ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * X X a X * X x X X X * x * * * X u X * X 1 * * I X * ’ ~ ~ * * ~ ~ * * X  

Tellus 37A (1985), 3 



FRACTAL PROPERTIES OF RAM, A N D  A FRACTAL MODEL 21 1 

tail probability Pr(U > u)  takes the form Pr(U > u) 
cc u-“ .  (The custom is to denote a random variable 
by a capital letter, and its value by the corres- 
ponding lower case letter.) Mandelbrot ( 1  974, 
1984a) showed that a broad family of inter- 
mittent fluctuations, now called “multiplicative 
chaos”, leads to such a distribution for the 
intermittent quantity. On the r6le of hyperbolic 
distributions in meteorology, see also Schemer and 
Lovejoy (1984b). 

The smaller the value of a, the larger are the 
extreme values of U; in fact, the moment ( U h )  is 
finite for h < a but diverges for h 2 a. This last 
property requires comment. Since sample moments 
are always finite, divergent theoretical moments 
used to be viewed as strange and abnormal, and as 
sufficient to make hyperbolic random variables 
“improper” for modeling nature. In fact, a diver- 
gent theoretical moment merely expresses that the 
sample moment does not converge to any limit and 
can become arbitrarily large. Mandelbrot (1963a, b) 
was the first to show that such is indeed the case 
in important natural fluctuations: not only do 
hyperbolic random variables fit a broad variety of 
data, but samples constructed with such variables 
turn out to contain a variety of “configurations” 
that often seem so clear-cut as to make it difficult 
after the fact to believe that they are due to “mere 
chance”. On a broader scene (Mandelbrot, 1975, 
1977, 1982). very simple fractal mechanisms prove 
to have the ability to generate seemingly complex 
samples. In any event. the hyperbolic distribution’s 
properties differ sharply from those of the cus- 
tomary Gaussian distribution and from those of its 
elementary transforms such as the lognormal 
distribution. 

Lovejoy tested the applicability of scaling, 
fractals and of the hyperbolic distributions to the 
study of the rainfield. In particular, Lovejoy (1982) 
established the absence of fundamental length 
scales and hence the fractal nature of the perimeters 
of rain and cloud fields (at least from 1 km2 to 1.2 
x loh km’), and Lovejoy (1981) established the 
existence of hyperbolic fluctuations in rain rate 
from many areas of the world. One purpose of this 
paper is to record these experimental results in 
more complete and more accessible form. 

This paper’s second purpose is to construct a 
stochastic fractal model which produces scaling 
and hyperbolically intermittent fields. This new 
family of fractals, introduced in Mandelbrot 
(1984b), involves fractal sums of simple pulses. The 
specific model used here involves only 3 parameters 
and seems rather structureless. Yet a glance at the 
simulations reported later in this paper shows that 
they are true to what one should expect of fractals, 
and reproduce many of the characteristics known 
(Fig. I )  to be present in rainfields: (i) scaling, (ii) 
intermittency, (iii) complexity of forms, (iv) the 
hierarchy of line-like structures, (v) the distribution 
of rain areas, (vi) clustering of “cells” at all scales. 

Section 2 examines the empirical evidence for the 
scaling and hyperbolic intermittency. Section 3 
decribes a scaling stochastic model. Section 4 fits 
this model to various rainfall statistics. Section 5 
compares this scaling model to earlier models based 
upon specified hierarchies and discusses some 
general arguments in favor of scaling and of 
fractals. Finally, Section 6 is devoted to 
conclusions. 

2. Empirical evidence for scaling and 
hyperbolic intermittency in the rain 
field 

2.1.  Eridence f o r  hyperbolic temporal 

It is natural to observe the fluctuations in the flux 
of rain from an isolated rain area. This was done 
with radar data in Montreal, Spain and the tropical 
Atlantic with 4 x 4 km spatial, and 5 min temporal 
resolution. By their nature, rain areas frequently 
split apart or merge together: it is therefore 
necessary to establish a criterion for their definition 
and selection. 

In a first study. reported in Fig. 2a. b, c. Lovejoy 
picked those areas that had maintained their 
identity for at least 100 min, with only minor 
splits. Rain areas were followed until a major split 
or merger occurred, after which the area was 
considered “dead” (see Tsonis and Austin (1981) 
for details). Less than 10% of all areas satisfied 
these criteria. Minor splitting is allowed, but 

intermittenq~ 

Fig. 1.  Radar rain map at 3 km altitude taken by H.M.S. Quadru in the tropical Atlantic. Symbols, first in numerical 
and then in alphabetic order, indicate rain rates on a log scale. 8 symbols per decade in rain rate. Resolution is 4 x 4 
km. Asterisks indicate sea clutter noise (center only). and the maximum radar range (220 km). Note the prevalence of 
straight lines. commonly referred to as “bands” or “fronts”. 
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merging is forbidden; decreases in flux outnumber 
therefore increases by about 20%. 

The data concerning cumulative tail frequencies 
were plotted on double logarithmic paper. The 
resulting Figs. 2a, b, c are strikingly straight over a 
broad range, with an absolute slope of a -4, more 
precisely, with a = 1.66 ? 0.05. The estimation of a 
by this method of plotting is routine in statistical 
physics, but has been abused on occasion, and 
hence has become suspect. In fact (Mandelbrot 
1963a), the straight line behavior evident on the 
log-log plot is a sensitive indicator of hyperbolic 
distributions, particularly for a < 2. Furthermore, 
when the distributions from Spain, Montreal, and 

Fig. 2. The probability Pr( I AR I > Ar) that the absolute 
value of a negative change in rain flux IARI exceeds a 
given Ar. The intervals between measurements are as 
follows: white circles: 5 min; black circles: 10 min; white 
triangles: 20 min; black triangles: 40 min. Straight lines 
have slopes -1.65. Data from (a) two afternoons in 
Spain, and 21 different rain areas selected as described in 
the text, (b) 29 storms in the tropical Atlantic (GATE 
experiment) over 4 different days, and (c) 7 storms in 
Montreal over I afternoon. 
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the tropical Atlantic are normalized so as to yield 
the same mean flux, the distributions of AR cannot 
be statistically distinguished by Komolgorov- 
Smirnov tests. If the positive and negative Ar‘s are 
normalized separately, they are also distributed 
similarly. 

Additional support for hyperbolic behavior with 
a - 3 comes from Fig. 3, where a different rain area 
selection criterion was used. All areas that neither 
split nor merged on two consecutive scans were 
used-about 50% of the areas present. During the 
3 h during which data were collected, the total flux 
of all storms increased by 40%. However, positive 
and negative AJs  were almost equal in number 
(238 and 213 respectively). Most of the increase is 
therefore due to the fact that in absolute value, the 
large positive Ar‘s exceed by -50% the large 
negative Ar’s (Fig. 3) .  Subintervals exhibiting R 
and decreasing flux yielded similar distributions, 
except that the relative magnitude of the distri- 
butions of large positive and large negative Ar‘s 

loon, 

10 10’ 
A r  (rn’s-’) 

Fig. 3. The probability Pr(IARI > Ar) of the absolute 
change in rain flux over 5 min. IARI exceeding a fixed 
Ar; positive changes, black circles; negative changes, 
white circles. Data are from the tropical Atlantic; rain 
areas were selected as described in the text. 

was different. In all cases, the (Ar) . - ’ ,6’  asymptotic 
behavior was unaffected. 

It should be noted that these results are unlikely 
to be artifacts of the radar data processing. Indeed 
(Mandelbrot, 1963a), the hyperbolic tail of the 
distribution is in general insensitive to the presence 
of both additive and multiplicative types of noise. 
In the case of rainfall, these may be the radar 
reflectivity fluctuations due to incoherent scatter- 
ing. (The only exception, which is not of concern 
here, is when the noise is itself hyperbolic with a 
lower a value). This insensitivity is supported by the 
agreement found here in the value of a for different 
radars in different parts of the world. 

2.2. Evidence for  temporal scaling 
If we write the distributions shown in Fig. 2 as: 

Pr(AR > Ar) - (Ar/A*r)-“,  

the quantity A*r measures the “width” or am- 
plitude of the AR.  If the rainfield is scaling in time, 
then A*r K ( A t ) H ~  (naturally, the coefficient of 
proportionality depends on the units of r and t) .  
The subscript “L” is used here to indicate that H ,  is 
a “Lagrangian” parameter, relative to fluctuations 
following the flow. Doubling At implies (as ob- 
served in Fig. 2), that the “width” increases by the 
constant distance H ,  log 2 on a log-log plot. The 
parameter H ,  was estimated in two ways. (A) 
Sampling the intercurve distance in Fig. 2 four times 
every decade (starting for Pr < 0.1) yielded H ,  = 
0.69 f 0.06. (B) The best straight-line asymptote 
was fitted on the assumption that a = 4, thus deter- 
mining A*r(At), and H ,  was determined by a 
regression of log (A*r) against log At. This yielded 
H ,  = 0.59. We conclude that H ,  = 0.64 5 0.05. 

In nature, scaling rules tend to hold over a finite 
scale range between a positive “inner cutoff’ and a 
finite “outer cutoff”. The value of the outer cutoff is 
a very important characteristic of a problem. Very 
long time scales, which are usually associated with 
the climate, have been studied by Hurst (1951), 
who discovered a remarkable empirical rule that 
applies for example to river discharges and rain 
data (as well as to other geophysical variables). 
Mandelbrot (1965) argued that the puzzling “Hurst 
phenomenon” should be viewed as a symptom of 
scaling. Mandelbrot and Wallis (1968, 1969) 
broadened the scope of this explanation. Very short 
time scales, which are usually associated with 
turbulence, are also known to be scaling down to a 
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very short inner cutoff ruled by viscosity. A 
coherent picture of the entire spectrum from 
seconds to hundreds of thousands of years (similar 
to the study of temperature in Lovejoy and 
Schertzer (1983), see Subsection 4.4) would be 
illuminating. 

2.3. Euidence for horizontal scaling 
Using individual radar maps, we may evaluate 

Pr(AR > Ar) for different spatial separations Ax. 
Two examples taken from GATE data are shown 
in Fig. 4. Note that they only differ in the width 
A*r. This was also found to be true in all other 
cases analyzed, namely in a total of 23 randomly 
chosen radar PPI’s. From the separation between 
the curves, we estimate that H, - 0.50. The 
subscript “E” is used here to indicate that H ,  is 
relative to a “Eulerian” reference frame-fixed 
relative to the flow. When using radar data to 
evaluate these distributions, care must be taken not 
to introduce any range-dependent radar data 
processing effects. Here, AR was determined 
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cross-range in a narrow band, so as to compare 
equal-sized sampling volumes. 

Note that in the diagram in Fig. 4, the asymptote 
is curved, meaning that the distribution is not 
hyperbolic, contrary to Figs. 2 and 3. We think this 
feature is associated with a certain degree of spatial 
smoothing of the extreme rainfall gradients. This 
effect is relatively easy to model and is discussed in 
Section 3. We note that the mean square ( A R 2 )  is 
finite when taken in space, while it is infinite when 
taken in time because a - f .  

It is possible to estimate HE by a statistical 
method called R / S  analysis. The letters R / S  denote 
a quantity called “rescaled range”, which was 
originally introduced by Hurst (195 1) and subse- 
quently used by Mandelbrot and Wallis (1969) and 
Mandelbrot (1972) as the basis of a new procedure 
for studying long-run dependence in empirical time 
series. This statistic is robust, in the sense that its 
behavior is only influenced by long-run depen- 
dence, and is insensitive to large fluctuations 
around the long-term trend. R / S  analysis has the 
disadvantage that it is biased for short series of 
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Fig. 4.  The distribution Pr(AR > Ar) of the rain rate gradient, AR for gradients over 0.25,0.5. 1.0 km distances. (a) is 
from a single radar map and (b) shows the distributions for the 24 different randomly chosen radar scans studied, 
which differed only in their “width” (amplitude) and not in their shape or scaling. Data are from the tropical Atlantic 
GATE experiment, Canadian ship Quadra. Gradients were measured cross-range so as to avoid range-dependent 
radar-measurement biases. As the separation is doubled, the distributions are multiplied by the factor 2“’ with H ,  - 
0.50. 
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data. We applied it separately for data at ranges of 
50, 100, 150 km from the radar. Applying R / S  
analysis cross-range for separations of 20° to SOo 
(radar resolution of lo) showed that H ,  = 0.48 & 
0.02 for 5 km < AX < 13 km, 10 km < AX < 26 
km, 15 km < AX < 39 km. 

Either the probability distribution method or 
RIS analysis may be used to estimate H , ,  but both 
are limited in the scales over which they may 
exhibit scaling because of the limited range of radar 
data, and because of the necessity of avoiding 
range-dependent biasing effects with the radar. 

The true limit of horizontal scaling is a basic 
meteorological problem, since all meteorological 
fields are strongly interrelated and the existence of 
a length scale in one may be expected to be 
reflected in the others. Furthermore, in the last 10 
years, many experiments have attempted to detect 
length scales-particularly in the velocity field. 
These experiments have found no clear evidence of 
any basic length scale between the turbulence 
dissipation scale, of the order of centimeters, and 
planetary scales. Readers are referred to Schertzer 
and Lovejoy (1984a, b) for a reivew of the relevant 
empirical and theoretical arguments in favor of the 
scaling hypothesis. 

Direct support for the scaling of the rain and 
cloud fields is found in Lovejoy (1982). Here, the 
fractal relation between the area A and the 
perimeter P, as derived in Mandelbrot (1977, 
1982), is used to show that P cc fit’ with D - 
1.35, for rain and cloud areas between 1 km2 and 
1.2 x lo6 km2. The coefficient of proportionality 
necessarily depends on the unit of length. This 
result has recently been extended down to 2.6 x lo-* 
km2 with LANDSAT imagery (private communi- 
cation, Cahalan et al. (1984). The exponent D is 
the fractal dimension of the perimeter and is a 
measure of the perimeter’s “complexity”. Smooth 
perimeters are well-known to satisfy P a fi; 
hence D - 1, and maximally complicated 
perimeters that literally fill the plane satisfy P cc A, 
and hence D - 2. The fact that no deviations from 
D - 1.35 are found for lengths in the region from 
0.16 km to 1000 km is direct evidence for scaling. 

It would have been tempting to use the fractal 
area-perimeter relation to estimate H , ,  since 
Mandelbrot (1977, 1982) shows that Gaussian 
fluctuations satisfy H + D = 2. However, the 
empirical value of this sum is H ,  + D - 1.85 < 2. 
This discrepancy is not completely understood, but 
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may indicate that the rain field is definitely 
non-Gaussian. 

3. Description of the fractal rain model 

3.1 Mandelbrot’s stable-Levy model of the Noah 

Before turning to our one-, two- and three- 
dimensional FSP models, it is instructive to 
translate in terms of rainfall time series a very 
simple model that has proven useful in economics 
and elsewhere (Mandelbrot 1963b, 1982). This 
model is not applicable to rain areas, but it already 
demonstrates the basic features of intermittency 
exploited in the more realistic FSP models. Fig. 5 
shows the result of adding independent identically 
distributed hyperbolic random variables with a - f; 
the number of variables added is labeled as time 
and varies from 1 to 1300. Positive and negative 
increments were chosen with equal probability, and 
the sum is interpreted as a model of the time series 
of total rain flux from an isolated storm. For a < 2, 
a generalized central limit theorem (see e.g. Feller 
(1971)) shows that the sum of independent iden- 
tically distributed hyperbolic random variables 
converges to a stable-Livy variable. This limit’s 
probability density is complicated, being only 
asymptotically hyperbolic, but with the same 
exponent a. Therefore, if the rule Pr(AR > Ar) cc 

is extended down to Ar --* 0, the result is 

effect, and storm time series 

time 

Fig. 5. Monte-Carlo simulation of a rainfall time series 
R(r)  constructed by adding 1300 consecutive indepen- 
dent random variables from the distribution 
Positive and negative changes were equally likely. Note 
that in any interval, most of the change in R ( t )  is due to 
one large “jump”, hence the term “erratic”. 
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scaling. In particular, independent increments yield 
H = I/a - 5 = 0.60. This model therefore has 
stable-Levy increments. Fig. 5 is drawn with values 
of a and H close to those of actual rainfall data 
analyzed in Figs. 2 and 3. Since successive 
fluctuations are independent in Fig. 5, the best 
prediction concerning future values of R ( t )  is that 
there will be no persistence, that is, no change on 
the average. This conclusion agrees with the results 
of Tsonis and Austin (1981) and Tsonis et al. 
(1984), but may not hold for all processes with 
similar a and H. It would be interesting to examine 
the question of predictability in the model presented 
below. 

Fig. 5 illustrates a basic property of random 
functions whose increments are hyperbolically 
distributed with a < 2 .  A priori, these increments 
are identically distributed. A posteriori, however. 
the largest increment is most unusual: it is of the 
same order as the sum of all the others, and thus 
dominates this sum. In Fig. 5, this effect may be 
seen by inspecting any interval: a large fraction of 
the total change in R ( t )  comes from a single large 
“jump”. Mandelbrot and Wallis (1968) called this 
feature the “Noah effect” after the extreme 40 day, 
40 night fluctuation responsible for the biblical 
flood. The fact that a single large fluctuation may 
dominate the others is quite different from the 
situation made familiar by the Gaussian or quasi- 
Gaussian cases, where individual fluctuations 
rarely exceed several standard deviations, and even 
the largest fluctuation is negligible compared to the 
sum-this being a criterion for the sum’s con- 
vergence to the Gaussian. We show below that the 
counterparts of this fact in more refined models 
permit a much greater richness in structure, 
including a scaling hierarchy of clusters and 
line-like shapes. 

3.2. Mandelbrot ’s fractal sums of pulses ( F S P )  in  

Consider (Fig. 6) a function R ( I )  that is the 
sum of rectangular pulses of random heights, 
representing a rainfall intensity increment AR,  
random widths, representing the rainfall duration p. 
and random centers, distributed according to a 
Poisson process with a constant rate v. In the 
framework of the usual stochastic models, one 
assumes (without even saying so) that the expec- 
tations relative to the pulses, ( p )  and ( A R ) ,  are 
both finite and are taken to constitute two 

one dimension 

time 

Fig. 6.  Schematic view of the “rectangular pulse” rain 
model showing three elementary “pulses”. The process 
used in the text results when the duration and intensity 
are related in the manner described in the text, and the 
duration is distributed as p - I .  

characteristic scales. An implementation of these 
assumptions is found in Rodriguez-lturbe (1983). 
Under these assumptions, however, the sum of the 
pulses is a strongly scale-dependent process. whose 
properties for T 9 ( p )  are completely different 
from its properties for T < ( p ) .  

Mandelbrot (1984~)  advances several ways of 
insuring that the sum is scaling. The simplest is to 
choose Pr(p’ > p) cc p-’ as the probability of a 
random duration p’ exceeding p and to let AR = 
kp’”a. This means that, for a given duration p’, the 
pulse intensity A R  is of fixed absolute value and of 
random sign. (Here, the letter p’ is used to denote 
the random variable whose values are p, because 
the Greek “capital rho” is identical to P.) Note that 
this model makes the radical assumption that ( p )  
= co: this is necessary in order for the sum to be 
scaling. In one dimension, Mandelbrot (1984b) 
refers to this simplest rectangular pulse as a 
“cancelling echo”, since the initial impulse AR is 
“echoed” at a distance p’ by an equal and opposite 
“cancelling” impulse. 

This model is scaling, with the exponent H = 
I / &  because increasing length scales by the factor 
L only changes the intensity of the echoes by the 
factor i]”‘. This may be understood by noting that 
the number of echoes over an interval of length I ,  
whose length exceeds p, is lPr(p’ > p) = Ip-’,  and 
hence is invariant under the scale transformations I 
--t 11. p --* i p .  By construction, the increments of the 
process are hyperbolic of exponent a. 

As to the increment over the interval I, it is the 
sum of hyperbolic increments and its tail distri- 
bution is hyperbolic. However, it does not follow a 
stable-Levy distribution. The distribution it follows 
is a new one introduced in Mandelbrot (l984b), for 
which the condition a < 2 is not necessary. The 
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discrepancies are very interesting, but they are 
minor for a - 3. and need not concern us here. 

The scaling argument (although not the hyper- 
bolicity argument) also works when the pulses are 
no longer rectangular, but smooth or continuous, 
as long as their length scales as 1 and their intensity 
as 1””. A convenient pulse shape used in later 
sections is A R  exp { - Iu/p12s},  where u is the 
distance from the center of the echo. This shape is 
somewhat arbitrary, but is convenient: by varying 
s, the echo can be made as smooth or as 
discontinuous as desired. In the limit s + K, the 
pulses are rectangular. 

It is important to note that, although smoothing 
doesn’t affect the scaling. it does considerably alter 
the probability distributions of the (Eulerian) 
gradients. Only in the case of sharply rectangular 
pulses (s = 00) does one obtain hyperbolic gradients 
(aF = a). In  the smooth echo case, the Eulerian 
gradients are rarely large (rapid fall-off in the 
probability distributions). Fortunately, as we show 
below, the Lagrangian gradients remain hyperbolic, 
aL = a. 

Mandelbrot (1 984b) also studies more general 
FSP processes, and other “cancelling echo” pro- 
cesses, and derives expressions for their charac- 
teristic functions. showing in particular that incre- 
ments of the above process are hyperbolic, with a 
as parameter for all a < 2. He also studies a model 
in which A R  and p’ are chosen independently, 
allowing H < I/a. 

3.3. Computer simulations of the FSP process in 

The implementation is straightforward. We seek 
a simulation whose minimum resolution pi (the 
“inner scale”) is taken as I pixel, and whose “outer 
scale” is p,,. We model this process by placing pulse 
centers uniformly at random over the interval 
(0, L),  v per unit length, with pulse lengths 
distributed as Pr@’ > p) = p-l for p > 1. The 
amplitudes are simply A R  = It p’”n. Such samples 
exhibit “edge” effects due to the fact that the 
probability of finding a large jump is smaller near 
the edges than in the center, because large jumps’ 
centers are far away. However, the sample’s 
center of length I 6 L will be scaling, with the 
parameter H = I/a up to the outer scale po = VL 
(because on average, this will be the longest pulse). 
In practice, L/I = 6 was usually used although LII - 3 would probably suffice. Fig. 7 shows an 

one dimension 

time 

Fig. 7. The FSP process R ( t )  produced with I = 10.000. 
L = 20.000. v =  2.5, a = {, ( H  := <). p, - 1, p,) = 50.000. 

example of the FSP process with 50,000 pulses, a 
= 3. 

3.4, Two- dimensional FS P processes 
We encounter a considerably richer structure in 

the x,y plane than in the linear cross sections 
described above. In this case. the horizontal cross 
section can take any desired shape. In the follow- 
ing. we only treat the isotropic case, and we follow 
closely the procedures that Mandelbrot (1984b) 
derived from the very different problem of the 
texture of the distribution of galaxies studied in 
Chapter 35 of Mandelbrot (1982). 

In 2-D, the simplest pulse is a straight cylinder 
whose base is a circle. In  this case. the distribution 
of the pulse areas should be Pr(A > a )  = u-l, for u 
> 1. Furthermore, A R  = ? A ’  ‘ I .  I t  is not hard to 
show that random I-D sections will be FSP 
processes with pulse lengths distributed as p- I ,  as 
before. The centers of the circles are now placed 
uniformly at random in a square L x L and only 
the central part I x I (with 1 < L as before) is used. 
The result is shown in Fig. 8a. 

The field R ( x , y )  cannot be immediately in- 
terpreted in terms of a rain rate because the value 
of R ( x , y )  is almost surely negative at some points. 
In practice, a threshold R ,  is set, the rain rate is 
measured as the difference R - R,. and negative 
values are reset to zero like in the fractal mountain 
of Mandelbrot (1982). The model rain rate is then 
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I 

Fig. 8. The pulse process in 2-D on a 400 x 400 grid; 160,000 echoes are used, the smallest value of the radius pis 3 
units. Going down to circles p = 1 requires significantly more computer time but barely changes the result. This 
simulation corresponds to v = 0.025, po = 1200 and L/I = 6. Here, s = cc was used (a sharp echo edge) which 
accounts for the clearly visible circle edges. The log rain-rate is on a grey scale, and R ,  was determined such that 30% 
of the simulation is “raining”. Using s = 8, the discontinuous sharp “edges” would disappear. 

R’ = R - R ,  for R > R,, and R’ = 0 for R < R,. 
Finally, in order to accommodate the large range of 
rain rates, and to simulate a radar PPI scope, the 
log of the resulting field is displayed on a grey scale. 
In practice, it was convenient to determine R ,  by 
the condition that rain covers a given fraction of the 
area; it is usually taken, somewhat arbitrarily, as 
equal to 30%. 

From Fig. 8a, it is obvious that the R-x  and R-y 
cross sections of the pulse are too sharply 
discontinuous-they correspond to the 1 -D case 
shown in Fig. 7. Such pulse edges are far too 
clearly visible to be realistic. As in the 1-D case, we 
may alleviate this difficulty by using a continuous 
pulse, in this case A R  exp [ - ( ~ / p ) ~ ~ j  for circles 
of radius p with u the distance from the circle 

center. When s = 8, we obtain the much more 
realistic looking simulation, shown in Fig. 8b. 
However, the probability distributions are no 
longer hyperbolic-Fig. 9. 

Note that in Fig. 9, the rectangular (s = a) case 
shows a hyperbolic regime (a = 3) as expected, but 
that a rapid fall-off occurs at very large Ar. This 
behavior is entirely due to thresholding. If R ,  is 
set sufficiently low such that 100% of the model 
area is covered by rain, no truncation occurs, and 
the probability distribution is (Ar)-O, as expected. 
Qualitatively, this may be understood as a conse- 
quence of the Noah effect. 

Also evident in Fig. 9 is the fact that for the 
smooth pulse with s = 8, the distributions’ fall-off is 
far more rapid in the model than in the data. This 
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Fig. 9.  The distribution of model rain-rate gradients 
Pr(AR > Ar). The discontinuous (s = a) case in Fig. 7a 
is shown as triangles, the continuous (s = 8) case in Fig. 
7b is represented by open circles, and the data for 0.25 
km (from Fig. 4a) is shown by closed circles. The model 
curves are in arbitrary units and have been separated by 
half an order of magnitude for clarity of presentation. 
The straight line indicates a function of the form (Ar)-5’3. 
The s = a curve deviates from this at large A r  because 
the thresholding of low rain rates systematically trunc- 
ates the very large Ar values. 

defect must be corrected in future more realistic 
models, possibly by relaxing the condition of rigid 
dependence between p’ and AR.  

The “circular base” model has at least two 
defects. First, the number of separate rain areas is 
too small to be realistic: it tends to produce one or 
two very large areas and few small ones. Using a 
notion introduced in Chapter 34 of Mandelbrot 
( 1  982), this model is called “excessively lacuna?’. 
It is desirable to introduce a new procedure with a 
new parameter to control the lacunarity by break- 
ing all the areas into smaller ones. A second defect 
is that, although the model can produce line-like 
structures (the edges of enormous circles), and thus 
model rain “fronts”, it does not in general produce 
the bands that are also characteristic of real rain 
shapes. The simplest method of eliminating both 
defects is to choose a different pulse basis: to 
replace the circles by annuli of equivalent area with 

pulses having a smooth cross section as in Fig 8b 
(see Fig. 10 for an intermediate stage of construc- 
tion of an annulus model). 

If we take a unit annulus with an outer radius of 
A, area r, then 

(A2 - A*2) = I ,  hence A* - F l .  

Furthermore, the mean radius 6 and the annulus 
width u satisfy 

6 = f(A* + A), u = ;(A - A*). 

Increasing A causes the annuli to become thinner (6 
-+ 0). The areas of annuli are chosen as before, with 
Pr(A > a) K u-I. Fig. 11 shows the effect of 
varying A (white on black background to simulate 
the appearance of clouds). As A increases from A 
= 1 (circles) to A = 1.4 (thin annuli), the large 
structures become increasingly fragmented and 
banded and other new structures appear. Large 
rain-free regions (lacunas) become rare, and the 
number of small rain areas increases. The value A 
= 1.2 yields fairly realistic looking fields. Fig. 12 
shows an example (white on black background to 
simulate the appearance of clouds) showing the 
effect of varying v, a for A = 1.2. Note the 
appearance of bands and other line-like structures. 
To facilitate computation, the pulse shape used here 
is AR exp 1-[ ( u ~ / P ’ ~ )  - 621/a2}2s, which yields a 
smooth annulus of “size” p‘. 

As a final example of what can be achieved by 
varying the basic pulse shape, the circles can be 
replaced by ellipses with varying eccentricities. Fig. 
13 shows a case with high eccentricity. As with the 
circular base model, the ellipses can be made into 
elliptical annuli. Fig. 14 shows the effect of 
increasing the analogous elliptical lacunarity from 
A = 1 to A = 1.25. 

3.5. Three-dimensional FSP processes used to 

We have shown how to use a FSP process with 
continuous pulses to simulate the 2-D rain field, 
including the gradient probability distributions 
(with H E  = 0.60 instead of the measured value of 
0.50). We how show that this model also 
reproduces the basic hyperbolic distribution of 
fluctuations in total rain flux from isolated storms. 
In order to proceed, we clearly need to produce a 
time series of 2-D rain fields. The simplest way to 
do this is to assume that the time coordinate has the 
same properties as the x,y  coordinates. This 

simulate temporal evolution 
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F 

t -  

Fig. 10. An intermediate stage of construction of an annulus model with v = 0.06, s = 12, A = I, p o  = 2400, drawn on 
an 800 x 800 grid. If v is increased to Y - 0.25 as in Fig. 9, the annuli are no longer visible. 

assumption is the Taylor hypothesis of “frozen” 
turbulence. The exact limits of its validity in the 
atmosphere are not clear, but Zawadzki (1973) has 
verified it directly from at least 5 to 40 min with 
radar rain data, and Brown and Robinson (1979) 
have shown that it holds up to at least lo00 km for 
wind fluctuations. This large range of applicability 
of this hypothesis is directly related to the fact that 
for atmospheric dynamics, the Kolmogorov - 3 
power law spectrum probably holds out to thou- 
sands of kilometers in the horizontal, and up to at 

least 50 h in time (Larsen et al., 1982). Therefore, 
over this range at least, the first-order statistics of 
temporal and spectral correlations are the same. In 
any case, the comparison of a model based on this 
hypothesis with actual rain data should be 
illuminating. 

Fig. 15 shows a time series made by generalizing 
the 2-D annular pulses into 3-D spherical shells in 
the space of coordinates x, y and t, and then 
making a series of cross-sectional cuts at different 
values of t .  Here the volume V must have the 
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Fig. 11. The effect of changing A on a 400 x 400 grid. 
Here, the log rain intensity is shown as  a “white” scale on 
a black background. The resemblance to cloud shapes is 
not accidental, since cloud shapes are similar to rain 
shapes in several ways (see Lovejoy (1982), Lovejoy et 
al. (1983) for some empirical comparisons). In these 
illustrations, s = 4, L/I = 3, po = 1200, Y = 10, and A = 
I ;  (a), A = 1.2; (b), A = 1.7 (c). 

distribution Pr( V > u)  K u-I and AR = V””. 
Note that in this model, as in real rainfall, the 
largest rain areas have, (i) the longest characteristic 
time, and, (ii) the largest mean rain rate. 

To verify that fluctuations from the fractal 
storms have hyperbolic fluctuations, we evaluated 

these fluctuations in exactly the same way as 
described for the rainfall data (Subsection 2.1). The 
result is shown in Fig. 16. This shows that the 
smoothing used to make the rainfield visually and 
statistically more realistic in 2-D has not altered the 
basic hyperbolic intermittency. The value a = 4 is 
recovered for all the different values of s, v, and A 
that we have tested. This helps explain how a = 3 is 
compatible with rainfall from many regions of the 
world with different phenomenologies: the basic 
echo shape is apparently irrelevant as far as the 
temporal intermittency is concerned. Note that H ,  
is also close to the observed value, which is 0.72 & 
0.5-see Section 4. However, as shown in Section 
2, other aspects of the rainfield geometry are quite 
dependent on the echo shape. A much more 
exhaustive study of rainfield geometry is obviously 
necessary to determine which shapes are the most 
realistic under different meteorological conditions. 

4. Further aspects of fractal meteorology 
4.1.  The fractal dimension of FSP rainfall 

To see whether or not the shapes are as  complex 
in the model as in real rain, it is of interest to 
determine the fractal dimension D of the model’s 
rain perimeters. The theoretical determination of 
this D is related to the notoriously difficult 
“zero-crossing’’ problems of probability theory. 
Under certain conditions (e.g. see Mandelbrot 

perimeters 
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Fig. 12. The effect of changing v and a on a 300 x 300 grid. The first two model parameters are s = 2, pe = 900, A = 
1.2, and the other parameters are as follows: (a) a = 4, v = 0.25; (b) a = 3. v = 1: (c) a = 4; v = 2.5; (d) a = 5. I’ = 0.25. 

(1982)), one finds that H + D = 2. Although we 
advocate caution in applying this rule, we have 
numerically confirmed that it holds for FSP 
processes. Thus, for a = 4 and H = i, it predicts D 
= $ = 1.40. Hetschel and Procaccia (1984) have 
used H + D = 2 to estimate the dimension of cloud 
perimeters as D = 1.38. 

4.2. The distribution of FSP rain areas 
A general property of fractal fields (Mandelbrot, 

1977, 1982) is that Pr(A > a) cc aPB for the 

distribution of the areas a bounded by fractal 
curves, with a positive parameter B.  Any other 
form of the probability distribution would involve 
the introduction of a length scale and would break 
the scaling. In the quasi-Gaussian case (e.g. for 
islands in the ocean) one finds theoretically that B 
= tD. Here, we did not attempt to derive the value 
of B theoretically but evaluated it numerically, 
obtaining B = 0.5 0.5. This value is somewhat 
lower than that found empirically: Fig. 17 shows 
rain area distributions obtained from near instan- 
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Fig. 13. A series showing the elliptical model on a 400 x 400 grid, a = 3. s = 2, v = 0.25. A = 1, po = 1200. and a high 
average eccentricity. Fig. 14a shows an intermediate case in the same series. 

taneous radar pictures showing B - 0.75. More 
realistic models, with lower values of H,,  t o  be 
studied elsewhere, may lead to an increase in B .  

The area distribution provides a convenient way 
to study the interaction of space and time scales- 
in particular, the effect of “pooling” rain areas over 
many consecutive radar maps-as is usually the 
practice when calculating empirical rain area 
distributions (e.g. Lopez, 1977). In the model, the 
effect of pooling data from consecutive x, y slices is 
relatively easy to understand because of the 
complete equivalence of space and time (1 model 
unit of time = 1 model unit of space). Pooling 
simulated areas over model time T clearly intro- 
duces a length scale L = T. 

Fig. 18 shows the effect of pooling rain areas 
from a 120 x 120 simulation every AT = 4 time 
units for a total of 80 units (i.e. N = 20 consecutive 
2-D simulations). The behavior extends to 

areas of -200 (pixel)* after which a rapid fall-off 
occurs. Simulations show that the exact point of 
transition depends on AT, N as well as the initial 
conditions, for example, the fraction of area 
covered by rain at the beginning of the sequence, 
and even on the initial random “seed”. Extremely 
long sample time series are necessary to  remove 
this pooling effect. In real data, the situation is 
complicated because the space-time relationship is 
undoubtedly less simple than in the model, and the 
spacehime conversion factor is not known and 
may vary. The empirical distributions almost 
always involve pooling to increase the data base; 
hence their interpretation, is not straightforward. 
Also shown in Fig. 16 is the empirical GATE 
distribution replotted from Houze and Cheng 
(1977) obtained from one scan per day over the 
entire 90 day GATE experiment. Note that the 

behavior extends out to a - lo4 km2. The 
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a 

Fig. I4a. 
Fig. 14. A series showing the effect of changing the lacunarity parameter A from A = 1 (a) to A = 1.2 (b), on a 400 x 
400 grid: I’ = 0.25. s = 2, po = 1200. 

truncation for a larger probability indicates that the 
sampling was over an insufficiently long time 
period, although the limited area of reliable radar 
coverage (-50,OOO km2) could also account for the 
observed fall-off. 

4.3. The elliptical dimension of atmospheric 

At small scales, atmospheric motions appear 
three-dimensional and at large scales they appear 
two-dimensional. It has often been conjectured that 
a “dimensional transition” separates the small and 
large scale motions. However, Schertzer and 
Lovejoy (1984a, b) propose a model in which the 
atmosphere is neither two- nor three-dimensional, 
in scaling, but anisotropic. 

In this model, the horizontal motions are 
governed primarily by energy transfer, yielding H 
= 4 in the horizontal, and the vertical motions 
primarily by the buoyancy force variance transfer, 

motions 

yielding H = 3 in the vertical. These very different 
scaling exponents lead to the phenomenon of 
“stochastic stratification”, i.e., to fields that appear 
increasingly stratified at larger and larger scales 
according to a well-defined scaling mechanism 
characterized by an “elliptical dimension” 
(Schertzer and Lovejoy (1985)) D,, = 2 + (+)/(# = 
9 = 2.555 ... Using this effective dimension to 
express anisotropy yields plausible vertical cross 
sections of rain fields (see, Schertzer and Lovejoy 
( 1984a)). 

4.4. The transition from meteorology to 

Lovejoy and Schertzer (1983, 1984) examine 
temperature and paleotemperature series and find 
(ignoring the diurnal cycle and its harmonics) that 
local temperatures are scaling up to  periods of - 1 
month (the “synoptic maximum”), after which they 
become stationary. The average hemispheric tem- 

climatology 
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Fig. 14b. 

peratures also appear to be scaling from -40,000 
years down to at least 5 years with almost exactly 
the same value of H (-0.4). To model this 
behavior, the authors assume that the fundamental 
differences between meteorological and climato- 
logical temperatures are the length and time scales 
over which they are averaged. They speculate that 
the break in the scaling for local temperatures at 
-1 month would disappear in true globally- 
averaged temperatures. Although these results are 
preliminary, it would be interesting to determine 
whether averaging over larger and larger areas 
affects the spectrum of rainfall fluctuations in the 
same way. 

5. Discussion. Comparison of the fractal 
models, including FSP, with earlier 
models of rainfall 

The literature contains a variety of stochastic 
models of rainfall based upon the assumption that 

not only the physics but also the geometry of 
rainfall take different forms over different scale 
ranges. For reviews of this general approach, see 
especially Waymire and Gupta (1981), Rodriguez- 
Iturbe et al. (1984) or Rodriguez-Iturbe (1983). 

This approach subdivides difficult problems into 
portions expected to be more manageable. Thus, 
the geometry of rainfall is subdivided into “synop- 
tic”, “large meso-scale”, and “small meso-scale’’ 
areas and “cells”. It is assumed that, within each of 
these ranges, the autocorrelation function is expon- 
ential, like a Markov process so that many 
standard methods of analysis become available. 
Unfortunately, in order to achieve the clustering 
that is observed in rain “events”, it becomes 
necessary to subordinate the small-scale processes 
to the large-scale processes. This subordination 
raises profound difficulties, however, and it is 
widely recognized by practitioners that actual 
implementations are artificial. In particular, imple- 
mentation involves large numbers of parameters. 
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Fig. ISa. Starts a series showing parallel 800 x 800 sections of a 3-D spherical shell model, A = 1.1, u = 0.33 (density 
of shell centers per unit volume), s = 2, po = 2400. These sections may be interpreted as showing the temporal 
evolution of a rain field when the Taylor hypothesis of “frozen turbulence” holds. (b) Same as Fig. 15a, except at a 
later “time” (40 pixels later). (c) Same as Fig. 15b, except at a later “time” (40 pixels later). (d) Same as Fig. 15c, 
except at a later “time” (40 pixels later). 

They are to be determined by using rainfall data at 
specific time and space scales, and none of them 
appears to reflect in any direct fashion the basic 
physics of the rainfall process. Moreover, when the 
resulting process is used to generate synthetic 
storms (e.g., in hydrological modeling), the results 
of extrapolation are poor except for the range of 
scales for which the model had been calibrated. 

Thus, the most persuasive argument for distinguish- 
ing several ranges of scaling in the atmosphere 
resides in the smallness of the scale height in the 
atmospheric mean pressure field (-10 km) com- 
pared with its width. Nevertheless, the vertical 
fluctuations do not appear to have a scale height, 
and (Subsection 4.3) the differences between the 
horizontal and vertical scaling laws can be accoun- 
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Fig. 156. 

ted in a different fashion, by an anisotropic fractal 
model of dimension 2 .555 .  

To attack numerous analogous problems that 
occur in other areas of science, the theory of 
fractals forsakes subdivision. This approach had at 
one time seemed doomed to failure, yet it has 
repeatedly turned out to be successful on the 
following major grounds. (1) Fractals provide a 
successful phenomenological description of a broad 
class of phenomena using a very small number of 
parameters. (2) These parameters can be estimated 
consistently and with high precision, and can be 
related to other-more familiar-quantities of 
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interest. (3)  Furthermore, the availability of a 
fractal description has invariably soon triggered 
theoretical investigations that have justified the 
fractal assumptions and led to substantial overall 
progress. 

Most relevant from the viewpoint of meteorology 
is turbulence, which is ruled by the same equations, 
those of Navier-Stokes. Since the Navier-Stokes 
equations involve no scale above a very small inner 
cutoff associated with viscosity, Mandelbrot had 
recourse to the so-called “principle of symmetry”: 
when a problem is “symmetric” (that is, is invariant 
under a class of transformations which need not be 



228 S. LOVEJOY AND B. B. MANDELBROT 

Fig. 1Sc. 

left and right symmetry), the problem’s solution 
should also be expected to be symmetric. Excep- 
tions d o  occur, when a symmetric solution would be 
against other laws of nature, in which case a 
“symmetry breakdown” occurs. As applied to  the 
Navier-Stokes equation. (most explicitly in Chap- 
ter 1 1  of Mandelbrot (1982)), this argument led 
Mandelbrot to the hypothesis that the phenomenon 
of turbulence is a reflection of scaling singularities 
of the Navier-Stokes equations and of their Euler 
limit for zero viscosity. This hypothesis has proven 
very fruitful, and many writers believe it is in the 
process of being confirmed. While skeptics may still 

consider that such a bold conjecture needs further 
confirmation. there is no question that the fractal 
approach has brought in a fresh perspective and 
new activity in the study of Navier-Stokes 
equations. 

Our  hope is that the same will be the case to  
some extent with the models presented in this 
paper. Further encouraging features reside in the 
fact that the boundary conditions of weather 
include many fractals: such as the shape of the 
mountains and coastlines (Mandelbrot, 1975, 1977, 
1982), and atmospheric forcing (solar insolation), 
(private communication from C .  Gauthier, 1984). 
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Fig. 15d 

6. Conclusions 

We have proposed a fractal model for the static 
structure and the temporal evolution of the horizon- 
tal rain field based on three basic parameters: the 
scaling parameter H , ,  the intermittency parameter 
a, and the lacunarity parameter A. Two other 
parameters-the smoothness parameter s, and the 
pulse density parameter v, were also introduced but 
could not be determined very accurately: within a 
wide range, their influence seems limited to higher- 
order statistical properties of the model. 

The scaling parameter H ,  relates the large- and 

small-scale structure of a fractal field, and was 
determined from tropical radar rainfall data to have 
a value H ,  - 0.50. The intermittency parameter a 
is the hyperbolic exponent of the distribution of 
rainfall fluctuations from isolated storms. In Mon- 
treal, in Spain, and in the tropical Atlantic, it was 
found to have a value -3. 

In 2-D, the fractal sum of pulses model of 
Mandelbrot ( 1 9 8 4 ~ )  consists of a hierarchy of 
annular shaped unit fluctuations. It was used to 
produce a scaling fractal rain model with a = 3 and 
HE = l/a (= 0.60). By making the annuli pro- 
gressively thinner (increasing A) the model’s struc- 
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Fig. 16. A comparison of the empirical distribution of 
change of rainflux AR from isolated storms (open circles 
are from Fig. 3a, AI = 5 min), and from the model with 
v = 2, po = 180, s = 2, A = 1.2 on a 60 x 60 grid using 
5 0  consecutive sections, At = 1 units apart (shown as 
closed circles, arbitrary units). The straight lines indicate 
(Ar)-5’3 behavior. This shows that using smooth echoes 
(s = 2) doesn’t alter the “Lagrangian” statistic a. 

10-1. 

1 0’ 103 

Fig. 17. The probability distribution of rain areas 
Pr(A > a) from four (near instantaneous) radar scans 
during the GATE experiment (at intervals of several 
hours), showing B - 0.75, from Warner and Austin 
(1978). The different symbols are for different scans. 
There were about 50 rain areas per radar scan. 

a(km’) 

1 1  \ 

tures become increasingly banded and simul- 
taneously more fragmented. A value A = 1.2 
seemed visually realistic. The model is easily 
generalized to 3 dimensions (x, y, t)  by replacing 
the annuli by spherical shells. The application of 
this model to the evolution of rain fields relies upon 
Taylor’s hypothesis of frozen turbulence. Com- 
puter simulations showed that the model correctly 
simulated the hyperbolic temporal intermittency of 
rain flux fluctuations from isolated storms. 

The model shapes had fairly realistic fractal 
dimension (“complexity”), and distribution of areas, 
although the boundaries were not quite smooth 
enough (D too large) and the large areas were found 
to be slightly too frequent compared to  the small 
areas ( B  too small). The relationship between tem- 
poral and spatial fluctuations was investigated by 
studying the effect of pooling empirical area distri- 
butions over different time periods. To sample 
correctly the distribution of large areas, data must 
be pooled over very long periods. Further studies 
are required to fully understand this phenomenon. 

Table 1 summarizes various model parameters 
and those measured by actual experiments. We 
believe that the agreement is good, considering the 
simplicity of the present fractal model. Other 
realistic features include the clustering of “cells” 
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Table 1. Various fractal parameters estimated from the data, and the corresponding values in the 
simulation based upon the estimated a and h 

~~~~ ~~~ ~~~~ ~ ~ 

a H E  H ,  B D 

Data I .66 0.05 0.50 ? 0.02’ 0.64 0.05’ 0.75 f 0.053 1.354 
Model’ f + 0.72 0.056 0.50 f 0.05 I f 5 l  

I GATE data yield 0.48 & 0.02, and Montreal data yield 0.50 & 0.05. 
Putting together data for GATE, Montreal and for Spain. 
GATE data only. 
GATE and Indian Ocean data yield D = 1.35 (Lovejoy, 1982), data over France yield D = 1.38 (Lovejoy et at. 

1983), and data over the Mediterranean yield D = 1.345 (Cahalan, private communication). 
The row marked “model” was obtained with a = 4 ,  HE = 4, A = 1.2, v = 1, s = 2, po/ l  = 3, except where 

indicated under or “. Over a considerable range, the parameters were insensitive to the values of v and of s 
(e.g. 1 > v > 0.1, 12 > s > l),  and, with the exception of D, were insensitive to changes in A. The value of A does 
affect the lacunarity, but a quantitative investigation of this parameter is outside the scope of this paper. All of 
these parameters are expected to be independent of RT-i.e., the % coverage, although this, for certain high-order 
statistics, may not be true. 

6This value was estimated from the fluctuations in model rain from the evolution of I-D connected sections 
with s = co (the 1-D analog of the 2-D “Lagrangian” H ,  described in Subsection 2.2). This I-D estimate of H ,  
is far easier to calculate than the true 2-D value. s = 03 was chosen rather than s = 2 because the former was 
hyperbolic (a = f), while the latter was not. 

D = 2 - l/a, as described in Subsection 4.1. 

and the existence of “fronts” and “bands” at 
all scales. The model is very flexible in that it 
apparently yields scaling and the correct hyperbolic 
temporal intermittency irrespective of the basic 
shape. The constraint H = l / a  can be lifted to 
allow H < l/a, but this requires a generalization of 
the FSP process, which cannot be dealt with here. 

Other possibilities for extending and improving 
the model include modeling the vertical structure by 
using the notion of ‘stochastic stratification” and 
taking the Coriolis force into account (“stochastic 
zonality”), as in Schertzer and Lovejoy (1984a). It 
will also be interesting to relate the model para- 
meters to those of other meteorological fields. 
Finally, this model may prove useful in the 
modeling of other hyperbolically intermittent scal- 

ing fields, as Schertzer and Lovejoy (1984a, b) 
argue for the case of the wind, temperature, buoy- 
ancy force and energy flux fields. 
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