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ABSTRACT

The standard model of atmospheric motions divides the atmosphere into distinct two- and three-dimensional
isotropic turbulent regimes separated by a dimensional transition, the “mesoscale gap.” It is argued that the
“gap” is fictional and that the atmosphere is scaling but anisotropic at all scales. According to this alternative
unified scaling model, the dynamics are governed by anisotropic (differentially stratified and rotating) cascade
processes yielding highly variable multifractal fields. Just as Gaussian random variables are associated with
(linear) sums of random variables, these (nonlinear) multiplicative processes are generically associated with
(special) universal multifractals in which many of the details of the dynamics are irrelevant. Although an
attempt is made to outline these arguments in a widely accessible form, they are not new to this paper; they
provide its context and motivation. The principal purpose of this paper is to test these ideas empirically. This
is done using Landsat, NOAA-9, and Meteosat cloud radiances at visible, near-infrared, and thermal infrared
wavelengths with length scales spanning the range 166 m-4000 km, radar reflectivities of rain (in the horizontal,
vertical, and time), and global daily rainfall accumulations. Spectral analysis, as well as the new double trace
moment data-analysis technique, is applied. In each case, rather than the sharp dimensional transition predicted
by the standard model, the scaling is found to be relatively well respected right through the mesoscale. The
three fundamental universal multifractal exponents are then estimated and one can go on to outline how these
exponents ( with the help of appropriate space-time transformations) can be used to make dynamic multifractal
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models.

1. Introduction

a. The standard model in doubt and the alternative
unified scaling model

The standard model of atmospheric dynamics (e.g.,
Monin 1972) divides the atmosphere into two fun-
damentally distinct regimes: a small-scale three-di-
mensional turbulent regime and a large-scale two-di-
mensional turbulent regime. Both regimes are scaling
(scale invariant, power-law spectra) and both are con-
sidered self-similar (the combination of scaling with
statistical isotropy). Unlike turbulence in three di-
mensions, in two dimensions, vortex stretching is in-
hibited and vorticity is conserved. This leads to qual-
itatively distinct two-dimensional and three-dimen-
sional behavior: the standard model assumes that these
different regimes are separated by a “mesoscale gap”
whose scale is expected to be of the order of the scale
height of the atmosphere (approximately 10 km).
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The existence of the gap has been periodically ques-
tioned on empirical grounds since the late 1960s.
However, we believe that an equally significant source
of doubt concerns its theoretical underpinnings, which
now appear to be quite ad hoc. This change in percep-
tion is possible due to the remarkable progress in scaling
ideas that occurred during the 1980s. During that pe-
riod, scaling ideas were extended beyond the restrictive
bounds of the fractal geometry of sets to directly deal
with the multifractal statistics (and dynamics) of fields.
Multifractals are increasingly understood as providing
the natural framework for scale-invariant nonlinear
dynamics. Furthermore, due to the existence of stable
attractive multifractal generators (Schertzer and
Lovejoy 1987b, 1989a,b, 1991a; Schertzer et al. 1988;
Fan 1989; Gupta and Waymire 1990; Brax and Pe-
schanski 1991), they provide attractive physical mod-
els. This implies that many of the details of the dy-
namics are irrelevant and leads to new and powerful
multifractal simulation and analysis techniques (some
of which will be described below).

Scaling ideas have also been enriched by extensions
in quite a different direction: scaling anisotropy. Recall
that a scaling system is one in which small- and large-
scale (statistical) properties are related by a scale-
changing operation involving only the scale ratio: there



224

is no characteristic size. Until recently, this scale change
was restricted to ordinary “zooms” or magnifications.
This is the isotropic self-similar scaling that provides
the theoretical basis of the standard model referred to
above. The only generalization of scaling beyond self-
similarity was a slight variation called self-affinity,
which combined the zoom with a (differential)
“squashing” along certain fixed directions (e.g., coor-
dinate axes). While this extension is in fact important
in accounting for atmospheric stratification (associated
with the existence of different spectral exponents in the
horizontal and vertical directions) (Schertzer and
Lovejoy 1983, 1985a,b), it is still very special. In par-
ticular, it was realized that geophysical applications
generally involve not only differential stratification but
also differential rotation (e.g., due to the Coriolis force).
The need to extend scaling ideas to account for this
observed geophysical anisotropy lead to the formalism
of generalized scale invariance' (GSI, Schertzer and
Lovejoy 1985b, 1987a,b, 1989a,b, 1991a; Lovejoy and
Schertzer 1985). GSI goes beyond self-affinity: not only
does it involve both differential rotation and stratifi-
cation, but both effects can vary from place to place
in either deterministic or even random manners. In-
deed, GSI is such a general symmetry that the ad hoc
nature of the standard picture (which arbitrarily pos-
tulates first isotropy and only then scaling) is quite
obvious, It is far more natural to simply postulate scal-
ing but without any a priori restrictions about isotropy.

b. The role of satellite radiances and radar
reflectivities

Even before the theoretical basis of the standard
model was brought into question, a series of in situ
velocity-measurement campaigns { Vinnechenko 1969;
Gage 1979; Lilly 1983; Nastrom and Gage 1983; for
discussions and references see Schertzer and Lovejoy
1985a; Lovejoy and Schertzer 1986) failed to find ev-
idence for the mesoscale gap anywhere near the des-
ignated 1-100-km range. Even though these campaigns
did measure velocity fluctuations over various ranges
(several meters to thousands of kilometers) with suf-
ficient statistical reliability to eliminate the possibility
of a significant gap, the extreme intermittency of the
atmosphere and various experimental difficulties has
hindered the emergence of a clear overall (large to small
scale) statistical picture of the wind field. One way of
attempting to overcome the limitation of in situ wind
measurements—which we explore later—is to exploit
the burgeoning masses of remotely sensed satellite and

! A related formalism is currently being developed for dealing with
scale invariance in astrophysics (see Carter and Henrickson 1991).
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radar data. Because of the strong (nonlinear) couplir. gs
between the various atmospheric fields, any funca-
mental break in the scaling symmetry in the dynamical
(wind) field will be reflected in the latter. Conversely,
if the latter are scaling over the observed ranges, we
may infer that the symmetry is not broken in the
former. The symmetry will be respected unless speciiic
(and strong enough) mechanisms exist to break it. This
result follows from the consideration of scale invariance
as a symmetry principle. A scaling break in one field
would constitute a sufficient mechanism to cause a
break in any other strongly dynamically coupled field.
The cloud, radiance, and velocity are strongly coupled.

In any case, satellite cloud radiances and radar rain
reflectivities are interesting in their own right, and, as
argued elsewhere (Lovejoy and Schertzer 1990a;
Lovejoy et al. 1992), provide unique datasets for testing
new ideas in scaling and multifractals.? Indeed, the
specific problem of taming the extremely variable &t-
mospheric scaling has already motivated the devel-
opment of several new data-analysis techniques [e.g;.,
functional box counting (Lovejoy et al. 1987), pro)>-
ability distribution multiple scaling technique (Lavallie
etal. 1991a), and the double trace moment technique
(Lavallée et al. 1991b; Lavallée 1991]. ,

In this paper, we focus on the scaling properties pf
various fields related to the liquid water field. The dis-
tribution of cloud and rain liquid water is important
for our understanding of atmospheric dynamics: it is
a fundamental part of the water cycle and (when it
reaches the ground) is the basic hydrological field. Sei-
tion 2 outlines some basic elements of scaling and
multifractals. Section 3 then describes the new double
trace moment analysis technique, which (in section 4.)
we apply to remotely sensed atmospheric data for the
first time. [ Schmitt et al. (1992a) have already applied
it to in situ atmospheric temperature measurements; ]
The datasets used include Landsat, NOAA-9, and Mé-
teosat cloud radiances in the visible, thermal infrarec|,
and near-infrared wavelength bands (from approxi-
mately 166 m to 4000 km overall). In section 5, we
analyze radar reflectivities of rain in both time anil
space and include a comparison of the latter with globél
in situ raingage measurements. On all of these datasets,
we not only test the scaling (which is generally found
to hold quite well), but we also estimate the funda-
mental universal multifractal exponents characterizing
the fields. Finally, in section 6, we briefly indicate hov/
knowledge of these exponents can be used to create
(both static and dynamic) multifractal models of the
corresponding fields.

2 It is significant that the first empirical dataset (in meteorology o
elsewhere) whose multifractal dimensions were estimated was the:
radar reflectivity field of rain (Schertzer and Lovejoy 1985b).
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2. Multifractal phenomenology of atmospheric
turbulence

a. Multifractal processes

The multifractal processes discussed here were first
developed as phenomenological models of turbulent
cascades. In hydrodynamic turbulence, the governing
nonlinear dynamical (Navier-Stokes) equations have
three properties that lead to the cascade phenomenol-
ogy: 1) scaling symmetry [invariance under dilations
(zooms)], 2) a quantity conserved by the cascade (en-
ergy fluxes from large to small scale), and 3) localness
in Fourier space (this means that the dynamics are
most effective between neighboring scales; direct trans-
fer of energy from large- to small-scale structures is
inefficient). Cascade models are relevant in the at-
mosphere, in general, and in rain and hydrology, in
particular, since [as argued in Schertzer and Lovejoy
(1987b)], although the full nonlinear partial differ-
ential equations governing the atmosphere will be more
complex than those of hydrodynamic turbulence, they
are nonetheless still likely to respect properties 1-3. To
understand this, consider the simplest strongly nonlin-
ear model of rain, the passive-scalar model, which ig-
nores the effect of rain on the dynamics. Virtually the
same assumptions are used in numerical weather pre-
diction models. In these models of passive advection
of water by a velocity field v, the dynamical equations
conserve the flux of energy and of scalar variance (with
respective densities ¢ and X). The injection of these
quantities at large scale is assumed to be constant (or
at least to be a stationary random process) and then
there is the transfer of these to smaller scales (hence
the cascade). By considering statistically stationary
fields of these quantities, dimensional arguments lead
to the laws of Kolmogorov (1941), Obukhov (1949),
and Corrsin (1951):

E (k) ~ 3513
E, (k) ~ £¥3K513, (2.1)

where £ =~ X*/%¢"'/2and E, (k) and E,(k) are the power
spectra for the velocity and passive-scalar fields, re-
spectively, and k is a wavenumber (k ~ 1//). Here £
is the flux resulting from the nonlinear interactions of
the velocity and the passive scalar. In real space, the
equavalent relations are

Av(]) ~ 313
Ap(l) = £'721'3, (2.2)

where Av(/) and Ap(/) are the characteristic fluctua-
tions of the fields v and p at the scale /. These equations
should be understood statistically. A straightforward
interpretation useful in modeling is to view the scaling
['/3 as a power-law filter (k='/3) of ¢!/3 (Schertzer and
Lovejoy 1987b; Wilson et al. 1991; see section 6).
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These equations are the result of treating passive-scalar
advection as a nonlinearly coupled cascade process (for
X and ¢). As more and more coupled equations are
added to account for other interacting fields (such as
radiation or water in its various phases), more and
more coupled cascades will be obtained. The turbulent
and multifractal results presented here are expected to
continue to be valid.

There is now a whole series of such phenomenolog-
ical models: the “pulse-in-pulse” model (Novikov and
Stewart 1964), the lognormal model (Kolmogorov
1962; Obukhov 1962; Yaglom 1966), the weighted-
curdling model (Mandelbrot 1974), the § model
(Frisch et al. 1978), the @ model (Schertzer and
Lovejoy 1983), the random 8 model (Benzi et al.
1984), the p model (Meneveau and Sreenivasan 1987),
and the continuous and universal cascade models
(Schertzer and Lovejoy 1987b). It is now clear that
scale-invariant multiplicative processes generically give
rise to multifractals and—due to the existence of stable
and attractive multifractal generators—to univeral
multifractals in which many of the details of the dy-
namics are unimportant. These results are important
in hydrology and geophysics since they show that while
geometrical fractals are sufficient to study many aspects
of scaling sets, that multifractals (with their statistical
exponents) provide the general framework for scaling
fields (measures).

In contrast to the well-studied case of hydrodynamic
turbulence, the dynamical equations responsible for
the distribution of rain and cloud radiances are un-
known (the essentially ad hoc parameterizations em-
ployed by numerical cloud and weather models are
excluded here); the best that can be done at present is
to speculate on the appropriate fundamental dynamical
quantities analogous to ¢, £. Since a priori there is no
obvious reason why the rain rate or cloud radiance
fields themselves should be conservative, in analogy
with turbulence, we introduce a fundamental field ¢,
that has the conservation property {¢,» = constant
(independent of scale). The observable (nonconserved)
rainfall (or cloud radiance) fluctuations (AR, ) are then
given by

AR, ~ @4\7H, (2.3)
Since we have as yet no proper dynamical theory
for rain or cloud radiances, we do not know the ap-
propriate fields ¢, nor the corresponding values of a.
In the following discussion, therefore, the simplifying
assumption is made that a = 1 (changing the value of
a corresponds essentially to changing the parameter ¢ ;
see below). With this in mind, the scaling parameter
H has a straightforward interpretation: it specifies how
far the measured field R is from the conserved field
@ : {|AR\|) =~ N7¥. Therefore, H specifies the expo-
nent of the power-law filter (the order of fractional
integration ) required to obtain R from ¢.
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FIG. la. A schematic diagram showing a two-dimensional cascade process at different levels of its con-
struction to smaller scales. Each eddy is broken up into four subeddies, transferring a part or all its energy
flux to the subeddies. In this process, the flux of the field at large scales multiplicatively modulates the
various fluxes at smaller scales; the mechanism of flux redistribution is repeated at each cascade step (self-

similarity ).

b. Some properties of ¢,

We now focus our attention on the conserved quan-
tity ¢,. Early scaling ideas were associated with additive
(linear) processes and unique scaling exponents H
(which, only in these special cases, were related to
unique fractal dimensions by simple formulas). The
properties of ¢, were quite straightforward and were
usually understood implicitly. For example, a com-
monly used (monofractal) process is simple scaling?,
in which ¢, is simply a scale-invariant random variable;
(2.3) then specifies the scaling of the probability dis-

3 This type of scaling was first introduced by Lamperti (1962)
under the name “‘semistable.” It was called self-similarity by Man-
delbrot and Van Ness ( 1968). This name turned out to be a misnomer,
however, since the actual functions were not self-similar but self-
affine, and self-similarity is a much wider concept anyway. We use
the expression “simple scaling,” which contrasts it with the more
general and interesting multiple scaling discussed below (see also
Lovejoy and Schertzer 1989).

tributions of the fluctuations AR,. When the latter are
Gaussian, the resulting process is called fractional
Brownian motion. [The notion was introduced by

Kolmogorov (1940), the expression was coined by

Mandelbrot and Van Ness (1968); these are the very
special processes used to make the now familiar mono-
fractal mountains.] For meteorological and hydrolag-
ical applications of simple scaling ( especially when the
distributions are “long-tailed,” involving extreme fluc-
tuations), see Lovejoy (1981) (he wused both
“R/S> analysis and analysis of probability distribu-
tions to estimate H ~ 0.5 in radar-estimated rain rates
in the horizontal direction), Lovejoy and Mandelbrot
(1985), Waymire (1985), Keddem and Chiu (1989),
Lovejoy and Schertzer (1989), and Gupta and Way-
mire (1991).

Turning our attention to (nonlinear) multiplicativve
processes, some of the properties of ¢, can be consiil-
ered that will generically result from cascades. Figurszs
l1a,b illustrate such a discrete multiplicative process for
@ a large structure of characteristic length /, with @n
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FIG. 1b. A discrete (« model) cascade in one dimension. At each step, the unit intérval is broken up into
intervals half the size of the previous step and the energy flux density (vertical axis) is multiplied by a
random factor. In the a model, there are only two possibilities—a boost or a decrease—with probabilities

chosen to respect ensemble conservation (¢ = 1.

initial uniform density ¢, is broken up (via nonlinear
interactions with other structures or through internal
instability ) into smaller substructures of characteristic
length /; = ly/ Ao (Ao = 2 is the scale ratio between two
construction steps in this particular example ), multi-
plicatively modulating by a (random) factor the flux
on each substructure. When the process is repeated
(the overall ratio X is increased; after » iterations, A
= A3, I, = ly/ A\§) larger and larger values of ¢, appear,
concentrated on smaller and smaller volumes. In the
small-scale limit, the result is a highly intermittent
multifractal measure with singularities of all orders v
distributed on fractal sets with codimension c¢(7v)

[Schertzer and Lovejoy (1987b), see the schematic il-
lustration, Fig. 2]. In the range of scales A between the
injection and dissipation of energy (i.e., the scaling re-
gime), the measures on ¢, have the property

Pr(gy = \?) = A~ (2.4)
(equality is to within slowly varying functions of A such
as logs). Therefore, ¢(v) is the scaling exponent of the
probability distribution. When the process is observed
on a low-dimensional cut of dimension D (such as the
D = 1 dimensional simulation shown in Fig. 2), it can
often be given a simple geometric interpretation. When



FIG. 2. A schematic diagram showing a multifractal energy flux
density ¢, with smallest resolution A ! and indicating the exceedance
sets corresponding to two orders of singularities v,, v,.

D > ¢(v), we may introduce the (positive ) dimension
function D(y) = D — ¢(v) which is then the fractal
dimension of the set with singularities v.

This geometric interpretation can be useful in data
analysis. For example, consider a dataset consisting of
N; satellite photographs (assumed to be statistically in-
dependent realizations from the same statistical en-
semble). A single D-dimensional picture (D = 2 in this
example) will enable us to explore structures with di-
mension D > D(v) = 0; structures with c(y) > D
[which would correspond to impossible negative values
of D(v)] will be too sparse to be observed (they will
almost surely not be present on a given realization).
This restriction on the accessible values of c(v) is
shown in Fig. 3; to explore more of the probability
space, many photographs will be required. With N,
photographs, the accessible range of singularities can
readily be estimated. If each photograph has a range
of scales A (equal to the ratio of the size of the picture
to the smallest resolution—the number of pixels on a
side), then the sampling dimension is introduced
(Schertzer and Lovejoy 1989a; Lavallée et al. 1991):
D = logN,/logA; it is not hard to see (Fig. 3) that the
accessible range will be v < v, with ¢(v,) = D + D;.

Codimension ¢(v) has many other properties that
are readily illustrated graphically. A fundamental
property that is derived by considering statistical mo-
ments ( below) is that it must be convex. It must also
be tangent to the line x = y (the bisectrix). This is
because {¢,) ~ A"~ = constant, hence the singu-
larity corresponding to the mean of the process, v
= (), satisfies the fixed point relation C; = ¢(C,), as
indicated in Fig. 4. Thus, C| is the codimension of the
mean process; if the process is observed on a space of
dimension D, it must satisfy D = C|, otherwise, fol-
lowing the above, the mean will be so sparse that the
process will (almost surely ) be zero everywhere; it will
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FI1G. 3. A schematic diagram showing a typical codimension fuiic-
tion for a conserved process (H = 0). The lines c(y) =D,y =D
indicate the limits of the accessible range of singularities for a sinzle
realization, dimension D. The corresponding lines for D + D,, whi:re

= log N,/log\ is the sampling dimension, are also shown. As more
and more samples are analyzed, a larger and larger fraction of {he
probability space of the process is explored, hence revealing more
and more extreme (are rare) singularities, up to the value ¢(v,) = D
+ D;.

be “degenerate.” Also consider the (nonconserved)
AR,; it is obtained from ¢, by multiplication by A%,
Wherever ¢, = A7, we have AR, = \""¥; that is, jy
the translation of singularities by — H (see Fig. 5). Fi-
nally, since ¢(7v) is convex with fixed point C|, it is
possible (see Fig. 6) to define the degree of multifrac-
tality (a) by the (local) rate of change of slope at ( 1y
its radlus of curvature R.(C)):

R(C)) =2%*3aC,. (2.5)
rare [ c(y)
events
i
C1
i
Cy —>
extreme
events

FIG. 4. The same as in Fig. 3 but showing the fixed point C,
= ¢(C)), the singularity corresponding to the mean of the process.
The diagonal line is the bisectrix [y = ¢(v)].
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FiG. 5. Same as Fig. 4 but for a nonconserved process.
All the singularities are shifted by — H.

In universal multifractals, this local description ob-
tained by a Taylor expansion gives all the relevant pa-
rameters for a global description of the ¢(+y ) function,
and we find an upper bound (maximum degree of
multifractality) o = 2, yielding a parabola. The a = 0
case is the monofractal extreme [called the 8 model,
Frisch et al. (1978)] whose singularities all have the
same fractal dimension (see Fig. 6).

Rather than specifying the statistical properties via
the scaling of probabilities ¢(+ ), it can (equivalently)
be specified by the scaling of the statistical moments.
Consider the gth order statistical moments {¢{). We
can now define the multiple-scaling exponent
K(q):

() =~ NP > 1. (2.6)

In parallel to this turbulent multifractal formalism,
Henichel and Procaccia (1983), Grassberger (1983),
Halsey et al. (1986), and others elaborated a strange
attractor formalism for dealing with multifractal prob-
ability measures in low-dimensional phase spaces. They
were primarily interested in the fractal dimensions of
geometric sets associated with singularities of measures
(rather than densities of measures). This strange at-
tractor notation is related to the turbulence notation
as follows:

Jolap) =D — c(v);

In turbulence, interest lies in stochastic processes de-
fined on (infinite-dimensional) probability spaces,
hence the intrinsic (D independent) notation.
Parameters K(g) and c(+y) are related by the follow-
ing Legendre transformations (Parisi and Frisch 1985):

(]{D:D_’Y. (27)

K(g) = max,[qy — c(¥)],

c(v) = maxfgy — K(q)], (2.8)
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which relate points on the ¢(+) function to tangencies
on the K(g) function and vice versa; v = K'(q), ¢
= ¢/(v). For example, a quantity that will be useful
below in estimating the multifractal parameters of ra-
diances and reflectivities is the sampling moment g,
which is the maximum-order moment that can be ac-
curately estimated with a finite sample. Recalling that
the maximum accessible order of singularity was v,
=c¢ Y (D + Dy), g, = c'(,) is obtained. Figure 7 shows
a schematic of K(g); for conserved fields, C, = K'(1)
is given (i.e., ¢ = 1 corresponds to v = (), the
corresponding radius of curvature is Rx(1l) = (1
+ C%)?/3(Cya)~!. The functions for the corresponding
nonconserved fields (H # 0) are obtained by vy — v
— H, K(q) = K(q) — Hq.

In summary, this local characterization of the be-
havior of multifractals near the mean involves the three
parameters (H, C,, «), respectively, characterizing the
deviation of the observed field from the conserved field
¢, the sparseness of the latter, and the degree of mul-
tifractality.

Finally, a distinction must be made between the
“bare” and “dressed”” multifractal properties (Schertzer
and Lovejoy 1987). The bare properties are those that
have been discussed above, they correspond to the
construction of the process over a finite range of scales
A. In contrast, the dressed quantities are obtained by
integrating (averaging) a completed cascade over the
corresponding scale. Experimentally measured quan-
tities are generally dressed since geophysical sensors
typically have resolutions that are much lower than the
scale below which the fields they are measuring become
homogeneous (in the atmosphere, the latter is usually
of the order of 1 mm or less). The dressed quantities

c(y)

a=2
4
rare a=0
events B—model
-]
C
=~
C1 —_—

exireme

events

FIG. 6. Same as Fig. 4 but showing the radius of curvature
(=2%3C,a) at the fixed point that locally defines «. For comparison,
the two extreme universal multifractals are also shown, corresponding
to a = 0 (the 8 model), o = 2 (the lognormal model).
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K(@) K(a)
* slope v

q,

FIG. 7. The K(g) curves corresponding to the c(y) curves in Fig.
6 are shown. Also shown is a typical tangent whose slope K'(g)
= v, provides the one-to-one correspondence between orders of sin-
gularities and moments.

generally display an extreme, “hard” behavior involv-
ing divergence of high-order statistical moments (see
in particular Schertzer and Lovejoy 1992). Specifically,
for averages over obseiving sets with dimension D,
there is a critical-order moment ¢p, [and corresponding
order of singularity yp = K'(gp)] such that

(¢%) = o,
where gp is given by the following equation:
 K(gp)=(gp—1)D.

q > 4p, (2.9)

(2.10)

¢. Universal multifractals

The above discussion is quite general and at this
level, it has the unpleasant consequence that an infinite
number of scaling parameters [the entire ¢(v), K(g)
functions] will be required to fully specify the multiple
scaling of our field. Fortunately, real physical processes
will typically involve both nonlinear “mixing”*
(Schertzer et al. 1991) of different multifractal pro-
cesses, as well as a “densification”® (Schertzér and
Lovejoy 1987) of the process leading to a continuum
of scales (rather than just the discrete scales indicated
in Figs. 1a,b. Either of these mechanisms is sufficient
so that the above H, C,, «a description becomes global,

4 By keeping the total range of scale A fixed and finite, we may
mix (by muluplymg them) independent processes of the-same type,
preserving certain characteristics (e.g., the vanance of the resulting
processes).

5 Introducing more and more intermediate scales in a given mul-
tiplicative process.
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the following universal multifractal functlons are ob-

tained:
1\«
C](—‘l‘ ) N a# 1
Cla
c(y—H)= (2.11)
C ——1 =1
leXp(Cl ): 22
— 1 (¢°—q), a#l
K(q)+qH ={“
Clqlog(q), a=1
(for0<a<2,¢g=0). (2.12)

The multifractality parameter « is the Levy index
and indicates the class to which the probability distii-
bution belongs. There are actually five qualitatively dif-
ferent cases. The case a = 2 corresponds to lognormal6
multifractals, the case | < a < 2 corresponds to (loiz)
Levy processes with unbounded singularities, and o

= 1 corresponds to log-Cauchy multifractals. These
three cases all are “unconditionally hard’ mulnfractal S,
since for any D, divergence of moments will occur for
large enough g (gp is always finite). When 0 < a <'l,
(log) Levy processes are given with bounded singular-
ities. By integrating (smoothing) such multifractals
over an observing set with large enough dimension D
it is possible to tame all the divergences yielding ¢ soft
behavior, these multifractals are only conditlonally
“hard.” Finally, a« = 0 corresponds to the most popular
and well-known monofractal 8, model (Novikov and
Stewart 1964; Mandelbrot 1974; Frisch et al. 1978).
A more detailed discussion about these five cases and
in particular about the generators of the Levy variablzs
can be found in Schertzer et al. (1988), Fan (1989),
and Schertzer and Lovejoy ( 1989b) [see also Lovejoy
and Schertzer (1990b, 1991 ) for some applications and
review }. Universal multifractals have been empirically
found in both turbulent temperature and wind data
(Schmitt et al. 1992a,b). They have also recently found
applications in high-energy physics (Brax and Pe-
schanski 1991), as well as qceanography (Tessier et al.
1992a), earthquakes (Beltrami et al. 1991), and land-
scape topography (Lavallee etal. 1991b). The first era-
pirical estimates of C}, « in cloud radiances are dis-
cussed in Lovejoy and Schertzer ( 1990b) (see also Ga-
briel et al. 1988) and for rain reflectivities (Seed 1989).

Using the universal multifractal formulas above,
some of the results discussed earlier may be express¢d
in simpler form. Formulas that will prove useful belgw
are for g; (the maximum-order moment that can be

¢ This is nearly the same as the lognormal multiscaling model of
turbulence proposed by Kolmogorov (1962) and Obukhov (1962),
except that the latter missed the essential point about the divergence
of high-order moments, thinking in terms of pointwise processes.
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reliably estimated with a finite sample), and gp, the
critical order for divergence [obtained by solving
(2.13b) for gp]:

D + D\
s = 2.13
q ( C, ) (2.13a)
C > R
_‘_q_D___q_D_zp_ (2.13b)
Ol_qu_l

Equation (2.13a) is valid only for ¢, < ¢p.

Both of these critical moments are associated with
“multifractal phase transitions” (Schertzer et al.
1992b), and algebraic probabilities ( finite gp) are con-
sidered a basic characteristic of self-organized criticality
(Bak et al. 1988).

3. The double trace moment technique
a. Basic ideas

We have argued that atmospheric fields are multi-
fractal, involving an infinite number of scaling expo-
nents [the functions ¢(v), K(g)], but that due to uni-
versality, the latter may be characterized by the three
basic parameters ( H, C,, «). In this section, we discuss
a way in which this idea may be tested and the param-
eters estimated.

The physics literature is now replete with different
methods developed for estimating multifractal param-
eters. Unfortunately, the great majority of these have
been designed for the particularly “calm” multifractals
associated with strange attractors, a few for the slightly
less calm “microcanonical” multifractals,’ but virtually
none for the general (“canonical’”’) multifractals in-
volving the occasional “hard” singularities discussed
earlier. When applied to turbulent and /or geophysical
data involving extreme variability, they will have lim-
ited accuracy. A final limitation on their accuracy
comes from the fact that they have attempted to esti-
mate an infinite number of parameters with finite
datasets [the entire ¢(+ ), K(gq) function, each value of
which is a scaling exponent]. Now a simple technique
is described that overcomes these problems by exploit-
ing the universality to estimate C; and « directly; ¢(v),
K(q) are then obtained using (2.11) and (2.12). Then
H is estimated by combining the C, and « estimates
with the scaling exponent of the energy spectrum (sec-
tion 3b).

Consider the conserved (H = 0) multifractal flux
density at (fine) resolution X' [the ratio of the outer
(largest) scale of interest to the smallest scale of ho-
mogeneity ]. [For scales smaller than the scale of ho-

7 This is true for example of approaches bases on partition functions
and moments (Halsey et al. 1986), single-scale histograms ( Atman-
spacher et al. 1989; Paladin and Vulpiani 1987), multipliers (Chhabra
and Sreenivasan 1991), and wavelets (Bacry et al. 1989).
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FIG. 8. A schematic diagram illustrating the different averaging
scales used in the double trace moment technique.

mogeneity the field is homogeneous. Here we take X’
as the smallest scale known (the pixel scale) for the
analyzed field.] The (dressed) flux over an observing
set B, corresponds to a single lower-resolution pixel
with dimension D and resolution A < X' is simply an
integral over the density

(B = fB ondPx. (3.1)

We may now define the gth-order trace moments
(Schertzer and Lovejoy® 1987b) by summing [1 ¢ (B))
over each individual realization—this yields a partition
function—[ each satellite picture, covering the region
A, has \? disjoint covering sets B, that are summed
in (3.2), see the schematic illustration, Fig. 8 with 5
= 1}, and then ensemble averaging over all the real-
izations,

Tra(en)? = (2 TIE(Br)) = AKO76 02, (3.2)

where the sum is over all the { “balls” B,; needed to
cover A. This formula will break down for moments g
> ¢p and (when finite samples are used to estimate the
ensemble average) when g > ¢,. Although it allows the
determination of K(g) (at least for small enough q),
and hence in principle the determination of Cy, « [via
(2.12)], this method will involve ill-conditioned non-
linear regressions [K(g) versus q]. The double trace
moment (DTM) technique (Lavallée et al. 1991b;
Lavallée 1991) avoids this problem by generalizing the

8 Although the formalism above was developed in Schertzer and
Lovejoy (1987a,b), essentially the same method was empirically ap-
plied to rain in Schertzer and Lovejoy (1985).
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trace moment; it introduces a second moment 5 by

transforming the high-resolution field ¢, = ¢}.. This

transforms the flux I] into an “y flux” []‘:

P8y = [ erax. (3.3)

The double trace moment can then be defined as
Tru(ed)? = (2 [(TIP(B)]7) ~ NKam @b,

(3.4)

where we have introduced the (double) exponent K(q,
n), which reduces to the usual exponent when n = 1 :
K(qg, 1) = K(q).

The entire transformation from single to double trace
moments can be summarized in the following formulas
(where the prime indicates transformed, double trace
quantities, not differentiation):

Yy—=>v =9y —K(n) (3.5a)
c(v) = () = e(¥) (3.5b)
g>q=1 (3.5¢)

K(q) = K'(q') = K(q, n) = K(ng') — q'K(n).
(3.5d)

Note the fine point in the above is that due to the
integration, we require dressed rather than bare quan-
tities, hence, the dressed singularities (3.5a) transform
with an extra term [—K(7)], which arises since the
dressing operation enforces conservation of the 7 flux.

The real advantage of the DTM technique becomes
apparent when it is applied to universal multifractals
(Lavallée 1991), since the following transformations
of C) are obtained:

dK dK’
al=2 |->al=%
l( dq q=]) ]( dq,

) =Cm*. (3.6)
q'=1

Therefore, K'(q') = K(q, n) has a particularly simple
dependence on #: :

K(q, 1) = 1°K(q).

Therefore, a can be estimated on a simple plot of
logK(g, n) versus logy for fixed ¢. By varying ¢, our
statistical accuracy is improved. Finally, note that due
to (3.5d), whenever max(gn, ¢) > min(gs, gp), the
above relation will break down; K(g, n) will become
independent ofn. For more details on the double trace
moment, see Lavallée et al. (1991b) and Lavallée
(1991). We shall see that effective exploitation of the
above involves a bootstrap procedure in which the well-
estimated low ¢, # exponents are used to estimate «,
C,, and then (2.13a) and (2.13b) can be used to predict
the range of reliable estimates.

(3.7)
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b. Estimating H

We have seen that in multiplicative processes, it is
convenient to isolate an underlying conserved quantity
that has basic physical significance; in turbulence, it
was the energy flux to smaller scales, in rainfall, it was
denoted by ¢ and related to the rain fluctuations via
(2.2). In terms of the scaling, conservation means {¢. >
= constant (independent of \), hence K(1) = 0. If we
consider the energy spectrum of ¢,, it is of the form
k~#with® 8 = 1 — K(2); that is, the spectrum is alway/s
less steep than a 1/ fnoise. [ The difference is often not
great since K(2) is usually small: = C,(2* — )
X(a—1)'and 0 < a < 2]

The reason for dwelling on this is that it illustrat:s
a basic point common to many geophysical fields,
namely, their spectra have 8 > 1, hence they cannpt
be stationary processes, they must be (fractionally)
differentiated '® by order —H (the spectra must be
power-law filtered by k) to become stationary. Fpr
rain and clouds, this will mean removing the A~ term’
in order to obtain the stationary ¢, from the nonsta-
tionary AR,. The importance of this for analysis hiis
long been realized; for example, standard geophysical
statistics use variograms rather than autocorrelaticn
functions to avoid convergence problems when 8 > 1.
[In time series, we analyze the differences (finite dz-
rivatives) rather than the series itself.] The same coi-
siderations apply to the use of the DTM technique.
Figure 9 (from Lavallée 1991) shows the result whén
a simulated conserved process is fractionally integrated
and differentiated by varying amounts: as long as ve
differentiate (filter by k¥ with H > 0) we obtain stable
and accurate estimates of both C; and a. However,
when we fractionally integrate (H < 0), we only recover
a; C is not accurately determined. [ Note that in marny
geophysical fields, the absolute value of the field may
not be important. It may be sufficient to only considir
fluctuations, hence, we may put the mean equal to 0
by setting the Oth Fourier component equal to 0. In
some cases, this component may be important ard
must be carefully dealt with in real space—see Schertz:r
and Lovejoy (1991, appendix B.2).] This figure aliio
clearly indicates that as long as the spectrum is less
steep than the underlying conserved process [ < 1
— K(2)}], C, can be recovered. From the C;, « esii-
mated this way, we can determine K(2) from (2.10)
and hence the 8 of the conserved process, and infer the
amount of fractional integration required to go from
the underlying conserved process to the observed non-
conserved process. [In the case of turbulence, it is npot

° This formula is a consequence of the fact that the energy spectrum
is the Fourier transform of the autocorrelation function, which is a
second-order moment.

19 See Schertzer and Lovejoy (1991b, appendix B.2) for more dis-
cussion of fractional derivatives and integrals.
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F1G.9. The log[|K(q, n)|] versus log(n) with a = 2 (lognormal ),
C, = 0.15,and D = 2 is given for g = 0.5. The curve of the stationary
processes ( big hollow square) is compared to those of the same pro-
cesses after fractional differentiation (white symbols, H = -2, —1,
and —0.5 from top to bottom). The fractional differentiation and
integration does not affect the estimate of « (all the slopes are parallel),
but fractional integration leads to biased estimates of C; (the curves
with black symbols are all shifted downwards compared with the
theoretical stationary processes shown by the line).

necessary to infer the relation since it is given by di-
mensional analysis from known dynamical quantities.
For rainfall and cloud radiances, the corresponding
dynamical (partial differential) equations are un-
known, as well as their conserved quantities, so that at
present this type of empirical inference is unavoidable.]
Writing S for the spectral slope of the observed process,
the order of fractional integration required to go from
the conserved process to the nonconserved (observed)
process is therefore given by

,8—1+K(2)=ﬁ—1 Ci(2*—2)
2 2 2 —1) ~

As a final comment before turning to the actual data
analysis, a shortcut is described that in many cases en-
ables us to avoid the use of Fourier space. In one di-
mension we have recalled that replacing the time series
by its differences is approximately the same as multi-
plying by k in Fourier space. (This will not be exactly
true at the highest frequencies corresponding to the
resolution the series.) To generalize this to two (or
more) dimensions, one possibility is to use a finite-
difference Laplacian. This multiplies by |k |? in Fourier
space, hence the spectrum by |k|*; although this is
quite drastic, it apparently works fairly well. Differ-
encing the experimental data also removes the problem
of physical quantities that are defined only to within
additive constants. This also has the advantage that it
removes any (unknown) additive constant that would
mask the scaling behavior. Denoting the modulus of

H=

(3.8)
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the gradient of the rain (or radiance) field by |VR],
we have

2 271/2
IVR(x, »)| = [(g”f) + (%) ] , (3.9)

which can be approximated by the finite difference
IVR(i, )| = {[R(i + 1,j) — R(i — 1, ))?
+[R(i,j+ 1) = R(,j~ D]*}'*  (3.10)
with Ax = Ay = 1. The index i and j are, respectively,
the horizontal and vertical coordinates. The finite-dif-
ference operations are affected without privileging any
particular direction; problems related to anisotropy are
neglected. In the same manner the Laplacian,
3’R  9%R

IV2R(x, )| = |7 |’ (3.11)

dx*?

is approximated by

1 .. . .
| V2R(x, y)| =~ l; [4R(i,j)— R(i+ 1,))

—R@-1,j))-R(,j+ 1) R(,j— 1)]‘-
(3.12)

4. Empirical analysis of the spatial structure of
clouds and rain

a. Discussion

The direct estimation of the spatial and/or temporal
distribution of water in any of its phases in the atmo-
sphere 1s difficult and limited to in situ measurements.
Many of the current measurement difficulties could be
overcome if we were able to model the extreme vari-
ability of water in the atmosphere because then we
would be able to infer and simulate what different (both
remote and in situ) sensors would measure. For ex-
ample, one could simulate the estimation of areal rain-
fall from sparse raingage networks, and one could per-
form proper radiative transfer calculations to model
(Davis et al. 1991) what would be seen from a satellite
at various wavelengths or what a weather radar would
measure |see Lovejoy and Schertzer ( 1990b,¢) for dis-
cussion of various fractal and multifractal effects on
radar reflectivities]. A primary goal of multifractal
analysis is precisely to provide the information nec-
essary to calibrate such models. The difficulties asso-
ciated with direct measurement of liquid water have
been mentioned; however, many of the fields dynam-
ically coupled with the latter are relatively easy to mea-
sure. In this spirit, daily rainfall accumulations on a
global network, radar scans during rainstorms, and
satellites images (visible, near infrared, and thermal
infrared ) were all studied. In the following subsections,
analyses of various fields associated with rain and
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TABLE 1. The characteristics of the different satellite images analyzed.

Picture size

Location Satellite Sensor Wavelength (um) Resolution (km)
Tropical Pacific Landsat MSS 0.49-0.61 166 m* 512 X 512
89 km
Atlantic west of Spain Meteosat visible channel 0.4-1.1 8 km** 512X 512
4000 km
Atlantic west of Spain Meteosat infrared channel 10.5-12.5 ‘
Atlantic east of Florida NOAA-9 AVHRR channel 1 0.5-0.7 1.1 km 512X 512
550 km
AVHRR channel 2 0.7-1.0
AVHRR channel 3 3.6-3.9
AVHRR channel 4 10.4-11.1
AVHRR channel 5 11.4-12.2

* The resolution of the sensor is 83 m, but this resolution had to be degraded in order to avoid certain problems discussed in the text.
** The visible-channel data was originally at a slightly higher resolution and was resampled on a 8-km grid.

clouds are compared in an effort to achieve a better
characterization of the fields associated with atmo-
spheric water.

b. The horizontal scaling properties of cloud
radiances

Scale invariance has already been discussed as an
important atmospheric symmetry principle. If over the
range in which most of the interactions with the solar
and blackbody radiation fields occur, it applies to the
distribution of water in the atmosphere, then the ra-
diance fields will also be scale invariant over the cor-
responding range. ( That is, they will not break the scal-
ing symmetry. Formally, this is because the radiative
transfer equations have no characteristic length asso-
ciated with them.) Although the multifractal parame-
ters of the radiation fields will be nontrivially related
to those of the liquid water field, they will still give
valuable information about the limits to scaling and
anisotropic scaling (Pflug et al. 1993; Lovejoy et al.
1992) and the relation between cloud and radiation
fields.

Because of the ready availability of high-quality sat-
ellite data and our desire to obtain a resolution-inde-
pendent characterization of the satellite data, images
emanating from several different satellites and sensors,
which are summarized in Table 1, are analyzed.

The first analysis performed was the estimation of
the (isotropic) energy (power) spectrum, which is the
modulus squared of the Fourier amplitudes integrated
over all angles in Fourier space and ensemble averaged
over all realizations of the process. As usual, the en-
semble averaging was approximated by averaging over
all the available samples with the same wavelength
bands and resolution. Figure 10 shows the results for
the satellite images whose frequency bands are indi-
cated in Table 2. For all the spectra, reasonable scaling
behavior is observed for the entire range accessible to
each satellite. The following results are obtained (from

bottom to top): Landsat (visible) 8 = 1.7; Meteosat
(visible) 8 = 1.4; Meteosat (infrared) 8 = 1.7; NOAA-
9 (channels 1-5) 8 = 1.67, 1.67, 1.49, 1.91, and 1.35.
The variations in the exponents have both statistical
and systematic origins. First, spectral exponents of in-
termittent data are notoriously difficult to estimate, re-
quiring very large sample sizes. Second, the speciral
bands vary from one satellite to another. Even if they
are labeled as being in the same group (visible, n:zar
infrared, thermal infrared), they are not completely
coincident, as can be seen in Table 2. Roughly speiik-
ing, the radiative transfer in the visible is domina‘ed
by scattering, in the near infrared it combines both
scattering with absorption and emission, while in ihe
thermal infrared it is dominated by absorption and
thermal emission. Since these radiative transfer pro-
cesses are quite different, some systematic variation in
the power spectra is expected. These results are good

20
18 1
16 |
14 1
12 1

Log, ikl (m™")

F1G. 10. Average power spectrum for the satelites images grouped
according to the satellite and the frequency range of the images (from
bottom to top): Landsat (visible) 8 = 1.7, Meteosat (visible) 3
= 1.4, Meteosat (infrared) 8 = 1.7, and NOAA-9 (channels 1-5) 8
= 1.67, 1.67, 1.49, 1.91, and 1.85.

Log , E (Arbitrary units)
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evidence that the basic scaling is respected over the
range of approximately 200 m to 2000 km.

The DTM analysis was done on each group of images
considering each scene as a separate realization. In Fig.
11, log[Try(¢3-)9] versus log(\) is shown for several
values of » for the Landsat images. The same plot is
shown in Fig. 12 for Meteosat images in the visible
and infrared channels. The corresponding graph (Fig.
13) is also shown for all the channels of NOAA-9. As
expected from the spectral analysis, these graphs are
nearly linear over all the accessible range. This is an-
other confirmation that scaling is obeyed over the ob-
served range. Therefore, from here on, we will concen-
trate on the determination of the universal parameters.

From these log[ Try(¢3-)?] versus log(\) curves, the
slope, and hence k(g, ), was obtained. We then plot
logK(q, n) versus logn, from whose slope we deduce
the universal parameter « and from whose intercept
with the line logn = 0 we estimate C,. In Fig. 14, a
typical result for our analysis is shown. In this case,
the analysis was performed on the gradient of one image
and the values « = 1.3 and C, = 0.1 were obtained.
The deviation from linear behavior at high values of 5
is due to undersampling problems (2.13a); this prob-
lem should occur for values of max(gn, ) = min(g;,
qp) = q;(qp > 50 for D = 2), which in this case (since
only one image is used) is estimated to be

Dl/a 2 1/1.3
s=(a) =(0—1) ~ 10,  (4.1)

which is close to the value estimated directly on the
graph: the straight-line behavior breaks down at 7
~ 5 (g = 2 here). As expected, this is roughly where
the curve becomes horizontal.
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FIG. 11. The log[Tr\(¢3-)?] versus log(\) for several values of 5
(from top to bottom, n = 3.2, 2.5, 1.2, 0.35, and 0.15) using g = 0.5
for the gradient of three images taken by Landsat.
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FIG. 12. (a) log[ Tr.(¢3-)?] versuslog(\) for several values of 5
(from top to bottom, » = 3.2, 2.5, 1.2, 0.35, and 0.15) using g = 0.5
for the gradient of images taken by Meteosat in the visible. (b) Same
as (a) but for the infrared channel and using g = 2.0.

For the reason given in section 3b (i.e., the possibility
of nonconserved fields), the modulus of the gradient
and the modulus of the Laplacian of the radiance fields
are analyzed. As expected, both methods always gave
similar results, so in order to assure the reader of this
fact, the resulting log(|K(q, n)|) versus log(n) is re-
produced for the modulus of the gradient and the La-
placian of one of the analyzed images (Fig. 15). From
here on, all the analyses will be performed using the
gradient except where stated otherwise.

Figure 16 shows a plot of log[| K (g, n)|] versus logn
for all the images taken in the visible-wavelength chan-
nel. It can be seen that even if the images cover different
scales and have slightly different wavelengths, the dif-
ferent satellites agree well. Here « = 1.2 and C; = 0.0.8
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FIG. 13. The log[Tr\(¢3%-)?] versus log(\) for several values of 5
(from top to bottom, 5 = 3.2, 2.5, 1.2, 0.35, and 0.15) for grad ent
of images of all channels of NOAA4-9 AVHRR using g = 0.5; statittics
were accumulated for 15 images: (a) channel 1, (b) channel 2, (¢)
channel 3, (d) channel 4, and (e) channel 5.
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FiG. 14. The log[|K(g, 1)|] versus log(n) for the gradient of an
image taken by channel 5 of NOAA-9, a value of ¢ = 2.0 is used and
the straight line corresponds to the regression line from which a
= 1.3 and C, = 0.1 are deduced.

is obtained for Landsat, « = 1.12 and C; = 0.12 for
Meteosat, and o = 1.07 and C; = 0.12 for NOAA-9
channel 1. The break in the linear behavior for low
values of % should not be interpreted as a scaling break.
In this range of 75, the analysis is sensitive to extremely
low values of the field being observed. Noise will over-
come the signal from the expected linear behavior. Of
course, different sensors will have different noise levels
and this is why all the curves do not break at the same
place. The next graph (Fig. 17) performs the same ex-
ercise for the thermal infrared sensors [channels 4 and

Log .M

FIG. 15. The log[|K(qg, n)|] versus log(n) for the Laplacian and
the gradient of an image taken by the Landsat satellite. The filled
circles are calculated using the Laplacian, and for the empty squares,
the gradient was used. In both case ¢ = 2.0. The straight line corre-
sponds to « = 1.1 and C; = 0.1.
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FiG. 16. The log[{K(q, n)|] versus log(n) with ¢ = 2.0 for the
gradient of all the images in the visible range. The straight line cor-
responds to & = 1.1 and C) = 0.1. The empty squares are for Landsat,
the empty circles for NOAA-9 channel 1, and the filled circles for
Meteosat visible channel.

5 of NOAA-9 and Meteosat Visible-Infrared Spin Scan
Radiometer (VISSR) infrared channel]. The straight
portions of the curves are nearly parallel and both
channels of NOAA-9 are almost on top of one another.
The estimates for a are still close to one another («
= 1.21 for Meteosat and « = 1.35 for NOAA-9), and
the estimates for C; are also compatible (C; = 0.17 for
Meteosat and C; = 0.09 for NOAA-9). Table 2 sum-
marizes all results for the different satelites and sensors.

All the observed values for « lie between 1 and 2.
Since we always obtained a > 1, the corresponding

- 2 T T —T 1
0.5 1.0

Log 1

FIG. 17. The log[|K(q, n)|] versus log(n) with ¢ = 2.0 for the
gradient of images from the infra red sensors. The diamonds are for
NOAA-9 pictures (empty: channel 4; filled: channel 5) and the filled
squares are for Meteosat pictures. The straight lines corresponds to
linear regression fit on the linear part of the curves.
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TABLE 2. The evaluated universal multifractal parameters for each group of pictures. The accuracy on the vaiues
of « is roughly estimated to be +0.2, on C; it is £0.1, and on H it is £0.2.

Satellite Sensor Wavelength (um) Scaling range - a C F
NOAA-9 AVHRR channel 1 0.5-0.7 1-512 km 1.13 0.09 0.4
NOAA-9 AVHRR channel 2 - 0.7-1.0 1-512 km 1.10 0.09 0.4
NOAA-9 AVHRR channel 3 3.6-3.9 1-512 km 1.11 0.07 0.3
NOAA-9 AVHRR charnel 4 10.4-11.1 1-512 km 1.35 0.10 0.5
NOAA-9 AVHRR channel 5 11.5-12.2 1-512 km 1.35 0.10 0.5
Meteosat VIS 0.4-1.1" 8-4000 km 1.35 0.10 0.3
Meteosat IR 10.5-12.5 8~4000 km 1.21 0.09 0.4
Landsat MSS 0.49-0.61 166 m-83 km 1.23 0.07 0.4

radiance fields will be unconditionally hard multifractal
processes (section 2): that is, sufficiently high-order
moments will diverge when the reflectivity field is av-
eraged over a space of dimension D. The critical order
for divergence is given by (2.11b); taking D = 2, it
gives values of gp > 50, which is sufficiently large to
require enormous sample sizes for its observation. ( The
relevant value of D may be much smaller, in which
case gp will also be much smaller, and hence the di-
vergence detectable. This is becdause research in progress
indicates that the relevant D may be the order of frac-
tional integration.) .

There are many possible explanatlons for the spread
in these values. First one has to remember that these
universal parameters are well defined only for ensem-
ble-average quantities, so that some statistical variation
is certainly to be expected. For example, using nu-
merical simulations with 25 independent one-dimen-
sional samples with 1024 points each, Lavallée et al.
(1991) estimated that « could be es_tirnated' to an ac-
curacy of approximately +0.1, which is a rough indi-
cation of the enormous sample sizes that are theoret-
ically requlred {note that what is most fundamental is
the range of scales and the number of independent
realizations: here A\ = 256 or 512 and 3-5 realizations
were used). Second, different satelhtes have different
problems. For example, Landsat was not designed for
the observation of clouds, so that occasionally (~30%
of the images in these cases) the detector was saturated
by particularly bright cloud regions (with albedo greater
than 0.45). Roughly the effect of this on the multifractal
analysis is to cut off high-order singularities corre-
sponding to the saturation level. Fortunately, our es-
timates of « and C; from the DTM technique mainly
rely on the less extreme values (i.c., the low-order mo-
ments 7, gn ~ 1) near the mean and should not be
badly biased. Some Meteosat images were not com-
pletely over the ocean and it was possible to see land-
masses under the clouds, so the analyzed albedo field
is not purely due to clouds but in some part also to the
land beneath them (which will presumably have dif-
ferent multifractal properties and exponents). Since at
visible wavelengths the land has much lower radiance

than clouds, this will primarily affect the very low ,
qn scaling and K(g, n) estimates, again allowing rei-
sonable C;, « estimates from the DTM technique. |,

Selection bias was avoided as much as possible. All
images in our largest set (NOAA-9) were taken with
the sensor centered at 27.5°N, 70°W. This point is
situated over the Atlantic Ocean east of Florida. Tke
15 scenes were each taken at about 1400 + 20 min
EST during the month of February 1986 (the exait
dates are 10-20, 22; 24,25, and 27 February). The
three Landsat images are part of a bigger (400 kin
X 400 km) picture, which itself was selected to have
90% cloud coverage, and the three Meteosat imaggs
are part of a sequence taken at 0.5-h intervals at the
same location. So within each set, the images are not
as completely independent as one would desire. Clear]y
in the future, massive systematlc analyses must be un-
dertaken.

Another problem that might have contributed to the
spread of values for « is anisotropic scaling. Both the
spectra and the DTM method as 1mp1emented here are
entirely isotropic analysis techniques since the reso-
lution of the fields is degraded isotropically (e.g., by
using square boxes at all scales in the DTM method ).
Asshown by Pflug et al. (1993), however, rotation and

. stratification of structures (due here to the Coriol:s

force) is important, hence more precise analyses should
use generalized scale changes.

Recalling that C, characterizes the sparseness of the
mean, whereas. « characterizes the rate at which the
sparseness ‘varies as we go away from the mean, we
expect C| to be more accurately estimated than a. This
is indeed the case since for C,, the range of valués
observed varies between 0.07 and 0.13. Such low values
of C, are an indication that the conserved multifractal
¢ is not too sparse (a space-filling mean would have
C, = 0). It also explains the relative success of monc-
fractal analyses (e.g., Lovejoy 1982), since near the
mean, the parameter H will provide a reasonable ap-
proximation to the scaling. Since « is fairly large (fer
from the monofractal value of zero), as one moves
away from the mean value, the monofractal approxi-
mation rapidly becomes poorer. For more discussion
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of monofractal cloud analyses, their limitations, and
their biases (due to multifractal effects), see Lovejoy
and Schertzer (1991), especially the appendixes.

¢. The horizontal scaling of rain reflectivities

The relative success of satellite-based rainfall-esti-
mation schemes (such as RAINSAT; Bellon et al.
1980)—which use both radar reflectivities and raingage
measurements for ground truth—proves that there is
indeed an intimate relation between visible and infrared
radiances, rain, and radar reflectivities of rain. There-
fore, our attention is turned from the radiances to
datasets more closely related to rainfall. The first such
dataset studied was obtained using a scanning radar
situated in Montreal. This radar provides information
for 24 elevation angles at a wavelength of 10 cm with
a pulse repetition rate of 300 Hz and a downrange
resolution of 75 m. Scans were analyzed during a con-
vective storm over Montreal that took place at 2200
EST 1 May 1992. From these scans, 256 X 256 square
section images were analyzed (avoiding the center and
the outer limit, which were biased due to ground echo
and the curvature of the earth). In order to avoid
ground-clutter contamination, the smallest elevation
angles were not used. The first analysis done was the
i1sotropic power spectrum, which is shown on Fig. 18.
Scaling is observed on the range of 75 m to 10 km.
From a linear regression, the (negative) spectral slope
is deduced to be 8 =~ 1.45. Figure 19, where
log[ Tr\(¢3-)9]) versus log A is shown for various », con-
firms that there is scaling over the entire range studied.
The log[{|K(q, n)|] versus logn curve, calculated from
the previous graph, is shown in Fig. 20. In this case, «
~ l4and C, =~ 0.12.
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F1G. 18. Isotropic power spectrum for radar PPIs. A line of slope
—1.45 is included so that the scaling behavior is more apparent.

TESSIER ET AL.

239

q

n

Log ,Tr.(®y)

o
-
~N
(2]

Log, , A

FIiG. 19. The log[ Tr\(¢1-)?] versus log( ) for several values of n
(from top to bottom, 7 = 2.7, 1.61, 0.4, 0.2) using g = 2.0 for the
gradient of radar PPlIs.

d. The vertical scaling of rain reflectivities

In the previous section, an estimate of the universal
parameters was obtained for the horizontal radar re-
flectivity field. In order to look at the vertical structure,
our attention was turned to another dataset. The data
studied were obtained using a vertically pointing (3-
cm wavelength) radar with a pulse repetition rate of
0.4 Hz. A dataset lasting for 5 h 41 min 20 s (8192
consecutive pulses), with near range of the 171-m al-
titude above the radar and far range of 6958 m above
(in 325 equally spaced bins, 21.4-m pulse length) was

Log1 o |K(q,n )]

0.0
Log1 oM

0.5

F1G. 20. The log[| K(g, )|] versus log(#) with g = 2.0 (top curve)
and g = 0.5 (bottom curve) for radar PPls. The straight lines cor-
responds to « = 1.4 and C, = 0.12.
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analyzed. The vertical structure of rain reflectivities is
quite different from the horizontal structure due to the
strong stratification caused by gravity (Lovejoy et al.
1987). ,

The meteorological situation involved stratiform
rain ahead of the warm sector of a low. The surface
temperature varted between 8° and 10°C during the
storm. There was a bright band (i.e., melting snow and
ice) between the 1.5- and 2.5-km altitudes. A small
portion of the raw data is shown in Fig. 21. When the
horizontal cloud radiances were analyzed, the (usual)
isotropic energy spectrum obtained by integrating the
Fourier square moduli over angles in Fourier space
(and then estimating the ensemble average by averaging
over the available data) were immediately calculated.
This was natural since in the horizontal plane, the an-
isotropy was not too pronounced. Here the situation
is quite different since, a priori, the vertical and tem-
poral characteristics of rain are very different, the (&,
w) [Fourier space, corresponding to (z, ) real space]
will be quite anisotropic—strongly stratified in the z
direction (as may be seen in Fig. 22). The proper
framework for analyzing this anisotropy is GSI, and
the related space-time transformations are discussed
more in detail in section 5. This section is limited to
more straightforward analyses. First, lines of constant
Fourier amplitudes are calculated in the two-dimen-
sional (k, w) space (Fig. 22). As expected, we roughly

JOURNAL OF APPLIED METEOROLOGY

VOLUME 32

obtain ellipses whose stratification is opposite that of
the real space (z, t) stratification (and increases with
increasing k). The slight overall rotation correspons
to a constant advection velocity. This differential strat-
ification corresponds to the fact that (one-dimensional )
temporal and (one-dimensional) spatial spectra w.ll
have different spectral exponents (3,, 8,). Indeed, the
one-dimensional vertical spectrum for the region below
the bright band (Fig. 23, averaged over all the pulszs
in time) shows 8, ~ 1.4, whereas the corresponding
temporal spectrum (Fig. 24) average over differeat
portions corresponding to different ranges of altitudzs
yields 8, ~ 1.2. The break in the vertical spectrum
occurs at scales of approximately 100 m and roughly
coincides with the horizontal scale of averaging—the
pulse width in the horizontal was 100 m at the 3-km
distance. Figure 22, shows the “spheroscale,” which'is
the scale over which the (near) elliptical contours be-
come (near) circles, indicating approximate isotropy
at the corresponding scale (approximately 1 km here).

“The existence of a bright band limited these analys:zs

in Fig. 23 to a range of only a factor 64. This vertical
scaling confirms that already reported using an entirely
different method: functional box counting [ Lovejoy et
al. (1987) found that reflectivities of ten stratiform ard
ten cumuloform storms were fairly accurately scaling
over the range 1-8 km]. \
For each pulse, trace-moment statistics of 64 levéls

Low dbZ

High dbZ

FIG. 21. A portion of the raw data for the vertically pointing radar reflectivities. A 1024 time steps X 318
vertical bins section is shown. The gray scale is proportional to the dbZ value.
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FIG. 22. Two-dimensional power spectrum isolines for radar re-
flectivities. It can be seen that the isolines are highly elongated in the
temporal frequency direction for high frequencies and in the spatial
direction for low frequencies.

below brightband levels were calculated, as well as the
statistics over the 8192 pulses. Figure 25 shows the log
of the trace moment of order ¢ = 2 against the log of
the scale ratio A for different values of the exponent 1.
It can be seen that we obtained scaling over nearly two
orders of magnitude in A (corresponding to the high-
frequency scaling in-Fig. 24). Figure 26 shows log| K(g,
n)| versus logn for ¢ = 0.5 and ¢ = 2.0, from which
we deduce a =~ 1.35 and C; = 0.1.

e. The horizontal structure of global raingage data

The next rain dataset examined was the daily rainfall
accumulations observed by raingages at synoptic
weather stations covering the earth for 1983 (Fig. 27).
This dataset was archived at the National Meteorolog-
ical Center (NMC) of the National Oceanic and At-
mospheric Administration (NOAA).
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FIG. 23. Power spectrum for the radar reflectivities against
elevation. From the slope of the regression line, 8 = 1.4.

The obvious difficulty with this in situ dataset is that
it is far from uniform; the stations themselves have a
fractal dimension of approximately 1.75 (Lovejoy et
al. 1986), indicating that “holes” do indeed occur at
all scales (at least from global scales down to 150 km).
In fact, as discussed in Tessier et al. (1992b), it is best
to treat the density of stations as a multifractal measure
(rather than the stations themselves as a fractal set)
and then to statistically correct for the multifractal na-
ture of the network.

In what follows, the correction method given in Tes-
sier et al. (1992b) is summarized. Consider that the
measuring stations have a multifractal density p, when
measured at resolution A. This was found to be a rea-
sonable approximation to the density field over the
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F1G. 24. Power spectrum for the radar reflectivities against time.
From the slope of the regression line, 8 = 1.2 is deduced.
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FIG. 25. The log[ Try(¢3-)?] versus log(\) for several values of 7
(from top to bottom, = 1.2, 0.7, 0.3 and 0.1) for radar reflectivities
against elevation and statistics accumulated in time. Here ¢ = 0.5 is
used.

range of approximately 5.0 X 10*to 1.5 X 102 km (the
lower limit arises because there were only about 8000
stations, which is finite). We now indicate how the
DTM method can be applied to the sparse data and
provide a simple and elegant method for statistically
removing the associated measurement bias.

Consider the sum over the ith grid-box (or circle)
scale \ (B, ;) of the raw rainfall accumulations raised
toa power n: 25 RY. The subscript ' is used in the
same sense as (3.1) for the DTM, it is the spatial
scale associated with the (daily) accumulation period

=]
Ooophggno?

'
N

-1 o 1 2
Logwn

FIG. 26. The log[| K(g, 1) |] versus log(n) for the radar reflectivities
against elevation and statistics accumulated in time. The empty
squares are for ¢ = 0.5 and the filled circles are for ¢ = 2.0. From
the regression lines, & = 1.35 and C; = 0.1 are deduced.
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FIG. 27. Position of the stations reporting daily rainfall accurau-
lations in 1983 that have been used in our analysis. The continent
layouts have also been plotted for reference.

(averaging in time will smooth in space at a scale cle-
termined by the corresponding space-time transfor-
mation; see section 5). This sum is an estimate of the
product p,R7 integrated over the ith ball: :

p,\R"dex
By,i '

z R"/’[ ~

By i

~ s fB RYd”x ~ 1P (Bry), (42)
N !

where Hi’r’)(BM) is the n flux corresponding to R in
the ith ball. The sum is over all the J stations in tae
ith ball. Since p, is constant over B, ; and here D =2,
the sets B, ; are two-dimensional boxes or circles. The
following double trace moment is now defined:

<z (> R’?,,j)q> = AKmeas(g.m)~(¢-1)D_ (43)

i jEB;
This double trace moment can be estimated as

(Z [IIPBNY ~ GOATIBY)Y  (44)

~ )\K,,(q,l))\KR(q,n)—(q—l)D’ »

(4.5)

where we have assumed statistical independence of the
network and the rain field (p, and R,). Thus, |

Kmess(a, 1) = Kr(g, m) + Ky(q, 1) (45)

is obtained. The measured multiple-scaling functi¢n
Kineas(g, m) can readily be used to determine Kgr(q, 1)
by exploiting the fact that Kz(g, 0) = 0, hence:

Kineas(q, 0) = K, (g, 1) (4.7)
KR(q: 77) = Kmeas(qa 77) - Kmeas(q: 0) (48)

From such an analysis, the (network corrected ) val-
ues @ = 1.34 +0.09 and C, = 0.16 + 0.03 are obtained,
as may be seen in Fig. 28 where log|K(q, )| versus
logn has been plotted for g = 0.5, 1.5, and 2.0. These
values are, in fact, in excellent agreement with what
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F1G. 28. The log[|K(g, n)|] versus log(#n) for daily rainfall ac-
cumulations on a global network after the needed corrections ex-
plained in the text. From top to bottom, curves for g = 2.0, 1.5, and
0.5 are shown. The regression lines on the different curves give a
value of @ = 1.34 £ 0.09 and C,; = 0.16 + 0.03.

was obtained from radar observations. To understand
the relationship between radar reflectivities and rain
rates, note that the simplest statistical relation between
the two that respects scaling is a power law, that is, Z
= hR“. Indeed, such power laws are frequently invoked
in rain (e.g., the well-known semiempirical Marshall-
Palmer law has exponent @ = 1.6). Writing Z = \*
and R = AR, this is equivalent to the linear transfor-
mation of singularities: v, = ayx, where v, is the sin-
gularity in Z, and vy is the corresponding singularity
in R. It has already been seen [(3.6) with = a] that
under such transformations, « = «, and C; = Ca°.
In fact, o ~ 1.4 for both datasets. We also find C,;
= a~*C|r, which is roughly satisfied with the Marshall-
Palmer value a ~ 1.6, a ~ 1.5, C,z ~ 0.3, and Ciy
~ 0.2. The agreement between the values of « is par-
ticularly significant considering the apparently very dif-
ferent natures of the datasets involved. The consistency
of the C, estimates is less significant since C,z is for
the vertical reflectivities, whereas C,y is for the hori-
zontal rain. The two are expected to differ not only
because of the Z-R relation but also because of the
horizontal-vertical anisotropy.

5. The temporal structure of rain
a. Comparing spatial and temporal scaling

The spatial variability of various fields related to the
distribution of water in the atmosphere has been dis-
cussed, our attention is now turned to the problem of
temporal variability. There are many reasons for
studying this variability. In many applications, knowl-
edge of how the rainfall intensity at a point varies with
time is an important issue all by itself. More funda-
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mentally, the relation between the spatial and the tem-
poral variability of turbulent fields is an outstanding
theoretical problem. An understanding of the space-
time relation is necessary in estimating water budgets,
as well as in making predictions (as is already recog-
nized by various data-assimilation schemes). Probably
the most cited and widely used method of relating time
and space is “Taylor’s hypothesis of frozen turbulence”
(Taylor 1938), which basically states that temporal ¢
and spatial averages / are related by a constant velocity
v in a relation of the form / = vt. Although this hy-
pothesis has been widely used since the 1930s in both
atmospheric and laboratory turbulence, Zawadzki
(1973) was the first to give it a (limited) test in rain
using radar data. Although turbulence in the atmo-
sphere is not “frozen,” a statistical version of the hy-
pothesis might still apply: that is, the statistical prop-
erties in space and time are the same (if appropriately
rescaled using a velocity parameter). If this statistical
version held, then rain would be isotropic in space—
time. Recently, Lovejoy and Schertzer (1991) have
analyzed lidar data of rain, indicating that an aniso-
tropic generalization of Taylor’s hypothesis (discussed
below) based on a turbulent (i.e., scale dependent) ve-
locity is more appropriate than assuming frozen tur-
bulence and space-time isotropy. Below, no specific
relation between time and space is presupposed: the
universal parameters characteristic of the process in
time and in space are determined separately. This will
provide some of the information needed to determine
the space—time transformation operator, an issue that
will be fully developed elsewhere.

The same fixed vertical radar data discussed in sec-
tion 4c is used, and it has already been indicated that
the temporal scaling is well respected (Fig. 24). We
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FiG. 29. The log[ Try(¢3.)?] versus log(A) for several values of
(from top to bottom, 5 = 2.1, 1.1, 0.6, 0.4, and 0.2) for the gradient
of radar reflectivities against time and statistics accumulated for dif-
ferent elevations. Here g = 2.0 was used.
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now discuss applying DTM analysis (on the modulus
of the gradient) of a section of duration 8192 X 2.5 s
(i.e., 5 h 41 min 20 s). We accumulated statistics for
the 256 levels closest to the ground. Figure 29 shows
the log of the trace moment of order g against the log
of the scale ratio A for different values of the exponent
7. Again, it can be seen that scaling is obtained over
the range of three orders of magnitude in' A (60-20 000
s). Figure 30 shows log|K(q, n)| versus logn for g
= 0.5 and ¢ = 2.0, from which o = 0.7 £ 0.2 and C,
~ 0.5 = 0.2 are deduced. The spectral slope for the
radar scans was already found to be 8 ~ 1.2 (Fig. 24),
which gives (using the above values of a and C,) a
value of H ~ 0.4 [this is close to the value H ~ 0.5
found in Lovejoy (1981) for isolated rainstorms evolv-
ing in time estimated using probability distributions;
see also Lovejoy and Mandelbrot (1985)].

These temporal statistics can now be compared with
those obtained for the global dataset discussed in sec-
tion 4d. Figure 31 shows the results of the DTM for
daily rainfall where log| K(q, )| versus logy is plotted
for g = 0.5 and g = 1.5. The period of time studied
was 64 days, and the statistics were accumulated for
4000 stations (only those stations with continuous data
for 64 consecutive days were used). The values ob-
tained were a ~ 0.55, C; ~ 0.6. Details of the analysis
are reported elsewhere (Tessier et al. 1992b). Other
reports also agree with these estimates; Hubert et al.
(1992) used time series of gauge rainfall for Reunion
Island obtaining « = 0.5 and C, = 0.2. Indeed, in the
same paper, these parameters are used to (correctly)
reproduce the behavior of extreme rainfall events in
many locations around the world. Ladoy et al. (1992)
analyzed a 30-yr record of daily rainfall accumulation

[
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Log1°n

FiG. 30. The log[|K(g, n)|] versus log(n) for the gradient of the
radar reflectivities against time and statistics accumulated for different
elevation. The empty squares are for ¢ = 0.5 and the filled circles are
for ¢ = 2.0. From the regression lines, it is deduced that « = 0.7 and
C, =03.
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FiG. 31. The log[{K(q, n)|] versus log(n) for daily rainfall ac-
cumulations on a global network were we have considered the jime
series for each stations and accumulated statistics for 4000 stations.
The regression line gives a value of o £ 0.55and C, = 0.6.

over Nimes, France, and obtained a ~ 0.4 and.C,
~ 0.6 (their logK versus logn curve is reproduced in
Fig. 32). Finally, note that also for the same dataset
(Nimes) Ladoy et al. (1991) obtained 8 ~ 0.3, which
gives H ~ 0. Hence, (unlike the radar scans) the actiial
field for the rainfall accumulations was analyzed here—
we expect no complications due to fractional integra-
tion. As a last comment, we should note that Séed
(1989), using a rather different technique (the “prb-
ability distribution multiple scaling” technique) on :-a-
dar reflectivities of four separate convective storms; in
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F1G. 32. The log{|K(q, n)|] versus log(x) for daily rainfall az-
cumulations recorded in Nimes, France, for a period of 30 years.
The regression line gives a value of « = 0.5 and C, = 0.6. (Reproduced
from Ladoy et al. 1992.)
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Montreal, found « in the range 0.3-0.6 and C, in the
range 0.6-1.0. His results, however, used poorly con-
ditioned nonlinear regressions leading to low accuracy
in the estimates. Although he averaged in space, he
pooled statistics into histograms involving many
(~144) consecutive 5-min PPIs. Given the difference
in « values between time and space found here, his
results can be better understood, since when using his-
tograms the lower value of a will dominate because it
is the o that is important [see (2.9)]; his estimates are
in fact close to the more accurately estimated temporal
parameters found here.

b. The theoretical framework for space-time
transformations.: Generalized scale invariance

If, as argued in this paper, the scaling of cloud ra-
diance, rain reflectivities, and other atmospheric fields
continues from small scales right through the mesoscale
(there is no mesoscale gap), then no large-scale forc-
ing velocity can be appealed to in order to transform
from space to time, and turbulent velocities must be
used instead. At scale A, they will have amplitudes v,
~ (e)*YN71/3, where X7 is the scale of the eddy, ¢,
is the energy flux through the eddy to smaller scales
[(2.2) with / = X ™']. Although (e,) is scale indepen-
dent, {€3*) = AP Since K(¥3) is small compared
with 14, it will be written as §. Rather than being scale
independent, the space—time transformation will thus
have a scale-dependent velocity!! vy, =~ A7 with H
~ Y + 4. The two geophysically relevant Taylor’s
hypotheses therefore correspond to H = 0 or H
= 153 + ¢, depending on the existence (or not) of
the “gap.”

The theoretical arguments mentioned above make
it clear that the turbulent velocity is likely to be relevant
for space-time transformations. The space-time
transformation inferred from the turbulent value of H
(=~'4) can be easily expressed in the formalism of gen-
eralized scale invariance. Considering (x, y, t) space,
the space-time transformation can be simply expressed
by statistical invariance with respect to the following
transformation: x = x/\, y = p/\, ¢t = /A" or
using the notation r = (x, y, t), r» = Ty, with T,
= A"%and

I 0 0
G=|0 1 0 (5.1)
0 0 1—-H

The matrix G could also have off-diagonal elements
to account for stratification and rotation. The elements
of this matrix G could be identified using the Monte
Carlo rotating-ellipse technique. Pflug et al. (1992)
successfully used this technique to classify satellite

"' Each moment of the rain field will require a different 8. For
simplicity, this complication is ignored here.
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cloud images according to the amount of stratification
and rotation present. This formalism, when applied to
the space-time problem in rain, is expected to be quite
complex since « for the velocity field in the atmosphere
is approximately 1.5 (Schmitt et al. 1992c¢), and « was
found to be different in time and space for the rain
field.

¢. Discussion

In our analyses, o ~ 0.6 * 0.2 is obtained for all
the time series of fields related to rainfall that have
been analyzed. In spatial analysis, radar scans and daily
rainfall accumulations both give o =~ 1.4 + 0.1. The
agreement on the values of this fundamental parameter
coming from disparate types and sources of data gives
us considerable confidence in these values, although
the theoretical reason why agreement should be ob-
tained does not stand on completely firm ground. It is
interesting to compare these results to those obtained
for cloud radiances. If we take the mean of all the visible
and near-infrared images, we get a ~ 1.15 = 0.2, If
we take the mean of all the thermal IR images, we get
a = 1.3 = 0.2, which are both (to within statistical
uncertainty ) close to the a = 1.4 value, especially if all
the poorly understood effects that could bias our esti-
mates of « discussed in section 4a are considered. In
this case, there is less a priori reason to expect the ex-
istence of simple statistical relation between rain and
radiance singularities, although if the values of «
were the same, a fairly simple relationship might in-
deed exist.

The finding that the values of « for spatial and tem-
poral processes belong to qualitatively different classes
of probability distribution (unconditionally hard, «
> 1, conditionally soft, a < 1; see section 2c¢) has pro-
found consequences because it means that qualitatively
different multifractal behavior will be observed in space
and in time. Since « < 1, there will be a maximum
order of singularity = C,(1 — «) ™! ~ 1.2 in time [ this
could explain the statistics of extreme rain events (see
Hubert et al. 1992)], whereas in space, v is unbounded
[actually in both cases hard multifractal processes may
be obtained, since even in time C (o — 1) > | implies
a finite gp for D < 1.2. The multifractals in time are
classified as being conditionally soft and those in space
as being unconditionally hard. This distinction may
also have consequences for the interpolation and ex-
trapolation problem (multifractal objective analysis
and multifractal forecasting).

6. Isotropic (self-similar) simulations of rainfall

This section indicates briefly how to exploit the uni-
versality (and the measured H, C,, a parameters) to
perform multifractal simulations. The first multifractal
models of this type were discussed in Schertzer and
Lovejoy (1987), and Wilson et al. (1991). The latter
give a comprehensive discussion including many prac-



246

JOURNAL OF APPLIED METEOROLOGY

VOLUME 32

Fi1G. 33. Two-dimensional simulation using a = 1.35, C; = 0.1, and H = 0.3. The values of the parameters are close
to what has been estimated for cloud-radiance pictures in the visible frequencies range.

tical (numerical) details. In particular, Wilson et al.
describe the numerical simulation of clouds and to-
pography, including how to iteratively “zoom” in, cal-
culating details to arbitrary resolution in selected re-
gions. Although these details will not be repeated here,
enough information has been given in the previous
sections to understand how they work. First, for d'con-
served (stationary) multifractal process ¢, we define
the generator T’y = loge,. To yield a multifractal ¢,,
it must be exactly a 1/f noise, that is, its generalized
spectrum is E(k) =~ k™' (this is necessary to ensure
the multiple scaling of the moments of ¢,). To produce
such a generator, we start with a stationary Gaussian
or Levy “subgenerator.” The subgenerator is a noise
consisting of independent random variables with either
Gaussian (a = 2) or extremal Levy distributions
(characterized by the Levy index «), whose amplitude

(e.g., variance in the Gaussian case) is determined Py
C,. The subgenerator is then fractionally intégrati:d
(power-law filtered in Fourier space) to give a k!
spectrum. This generator is then exponentiated to give
the conserved ¢,, which will thus depend on both
and «. Finally, to obtain a nonconserved process with
spectral slope 8, the result is fractionally integrated by
multiplying the Fourier transform by k™, where H'is
given in (3.8). The entire process involves two frac-
tional intégrations and hence four FFTs. The 512
X 512 fields can easily be modeled on personal com-
puters (they take about 3 min on a Macintosh II), ard
256 X 256 X 256 fields (e.g., space-time simulations
of dynamically evolving multifractal clouds) have been
produced on a Cray 2 (Brenier 1990; Brenier et el.
1990). (Such cloud simulations have been turned into
a video called “multifractal dynamics.”)
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F1G. 34. Two-dimensional simulation using « = 1.35, C; = 0.1, and H = 0.5. The values of the parameters
correspond to what has been evaluated for cloud-radiance pictures in the thermal infrared frequencies range.

Simulations were performed using universal multi-
fractal parameters close to what have been observed
for cloud radiances. They are shown in Figs. 33 and
34. Parameters o = 1.35, C; = 0.1 have been used and
the value of H is varied because this seemed to be the
most important difference between visible and infrared
images. For Fig. 33, H = 0.3 was used and for Fig. 34
H = 0.5 was used. For infrared images, the value of H
is higher, giving it the smoother look that meteorolo-
gists are familiar with.

7. Conclusions

In the 1950s, before the advent of satellites and high-
quality in situ measurement techniques, the mesoscale
was postulated to be a dull, inactive energy sink sep-
arating dynamically distinct small- and large-scale tur-
bulence. Even from a purely empirical perspective, this

standard model now appears to be quite antiquated.
In our opinion (which has been voiced regularly since
the early 1980s), it is also outdated from a theoretical
standpoint: it is predicated on simplistic ideas of iso-
tropic (self-similar) scale invariance. Over the years,
the necessity of fully exploring the possible conse-
quences of scale-invariant nonlinear dynamics has led
to numerous developments that have enriched our un-
derstanding not only of atmospheric dynamics but also
of scale invariance itself. We are no longer restricted
to studying the geometry of fractal sets; we now have
the ability to deal with multifractal statistics and the
dynamics of multifractal processes. The existence of
universal multifractals—the scaling, nonlinear analogs
of the familiar Gaussian variables—makes multifractals
increasingly attractive as dynamical models of the at-
mosphere. Finally, the generalization of scale invari-
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ance from a highly restrictive self-similar or self-affine
notion to a rich and fruitful symmetry principle pro-
vides a challenging new problematic for the geosciences.

In this paper, we have briefly sketched some of these
arguments and attempted to succinctly and—as often
as possible—graphically present some of the multi-
fractal notions upon which they are based. The object
was to motivate the various empirical analyses that
followed, as well as to explain the ideas in sufficient
detail so that the workings of the new double trace
moment (DTM) analysis technique could be grasped.
This technique is the first to be designed to directly
estimate the universal multifractal parameters; it is
considerably more statistically robust than previously
existing analysis methods, and it applies not only to
“calm” multifractals (the sort associated with strange
attractors) but also to the “hard” (extremely variable)
multifractals found in geophysics (indeed, we quanti-
tatively confirm the “hard” nature of the cloud radi-
ances and rain reflectivities).

We applied not only the DTM, but also conventional
energy spectra to analyze satellite cloud radiances from
Landsat, NOAA-9, and Meteosat satellites in the visible,
near-IR, and thermal IR wavelengths. Overall, the
datasets spanned the range 166 m to 4000 km and
were found to be scaling through the entire region, in-
cluding the mesoscale. Although we conclude that the
evidence for horizontal scaling is good, it should be
stressed that enormous, systematically sampled datasets
will be needed to fully characterize the scaling of at-
mospheric fields as well as the corresponding inner and
outer limits. This study only provides an early explo-
ration of what is largely unknown territory.

Moving on from the horizontal scaling of cloud ra-
diances, we analyze data from a vertically pointing ra-
dar measuring reflectivities of rain with a resolution of
2.5 s in time, 21 m in space. Here the corresponding
scale ratios (the largest divided by the smallest scale)
were 2% and 28, respectively. In time, the scaling was
well followed over the range of nearly 20-20 000 s. In
the vertical, the scaling was followed at high frequen-
cies, but we found a spectral bump corresponding in
size (~1 km) to the thickness of the bright band, which
was present throughout the sequence. Since other
studies with larger samples (e.g., 20 cases instead of 1)
found vertical scaling over the corresponding range,
the bump is likely to be consistent with statistical
(sample to sample) fluctuations. This conclusion is
supported by a space-time DTM analysis that yielded
very similar universal multifractal parameters in global
daily rainfall accumulations (for 1983). Specifically,
the degree of multifractality (characterized by o) was
found (within experimental error) to be the same for
the in situ gauge measurements and the radar reflec-
tivities. This is perhaps not surprising since « is in-
variant under the operation of taking powers (such as
in the Marshall-Palmer Z-R relation).
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Finally, we sketched how our empirically determined
multifractal exponents, combined with appropriate
space-time transformations, can enable us to muke
dynamical multifractal simulations. These simulations
will be necessary to further our understanding of the
underlying atmospheric dynamics. They will help us
tame the ubiquitous extreme atmospheric variability,
and may have far reaching implications for remote
sensing, objective analysis, and (stochastic) forecasting.
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