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ABSTRACT

Taking the example of the meteorological measuring network, it is shown how the density of stations can be
characterized by multifractal measures. A series of multifractal analysis techniques are applied (including new
ones designed to take into account the spherical geometry) to systematically test the limits and types of
network multiscaling. These techniques start with a network density defined by grids or circles and proceed to
systematically degrade their resolution (no a priori scaling assumptions are necessary). The multiscaling is
found to hold over roughly the range 20 000 to 200 km (limited by the finite number of stations—here about
8000). Special attention is paid to qualitative changes in the scaling behavior occurring at very low and high
density regions that the authors argue are associated with multifractal phase transitions. It is argued that the
density was produced by a universal multifractal process, and the three corresponding universal multifractal
parameters are estimated. The minimum and maximum orders of singularities present in the network are
estimated, as well as the minimum- and maximum-order statistical moments that can be reliably estimated.
The results are then used to simulate the effects of the finite number of stations on a network with the same
statistical properties, and hence to quantitatively show that the observed breaks in the multiscaling can be
accounted for by the finiteness. A growing number of geophysical fields have been shown to exhibit multiscaling
properties over various ranges, and in this paper it is discussed how the bias introduced by the network clustering
can be removed by new “multifractal objective analysis” procedures.
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1. Introduction

The analysis of surface rainfall accumulations and
other meteorological fields poses a basic geophysical
problem: the inhomogeneity of the measuring networks
that exhibit clustering over wide ranges of scale. Until
recently, the problem was dealt with using geostatistical
analysis techniques that were all predicated on the ex-
istence of well-defined spatial scales for the variability;
that is, that the variability was restricted to a narrow
range of scales. A new approach to the problem was
made by Lovejoy et al. (1986a), who analyzed the dis-
tribution of the 9651 stations reporting to the World
Meteorological Organization. Over the range 1-3000
km, it was found that the clustering occurs at all scales;
the stations formed a geometrical fractal set. At first
sight this result may seem surprising since the place-
ment of the stations is the result of a hierarchy of de-
cisions involving international, national, regional, and
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district agencies. However, these placement decisions
are influenced by the position of landmasses, topog-
raphy, demography, and economics, many of which
have also been shown to respect scaling symmetries.
For example, the earth’s topography (including coast-
lines and distribution of islands) has long been known
to exhibit scaling features [e.g., the algebraic falloff of
the power spectrum, Venig-Meiniz (1951), Bell
(1975), and others], and to be characterized by fractal
structures (e.g., Richardson 1961; Mandelbrot 1967,
1975). The monofractal results reported in Lovejoy et
al. 1986a [ confirmed in studies of other networks, e.g.,
Korvin et al. (1990), Lovejoy and Schertzer (1988),
Salvadori et al. (1994); see Korvin (1992) for a review]
clearly showed that the placement decision-making
process was sufficiently “multiscale” that it did not in-
troduce an empirically detectable length scale in the
range of approximately 1-3000 km. The new multi-
fractal analyses discussed below show that this is also
the case for the station density over the range of ap-
proximately 200-20 000 km.

Perhaps the most compelling reason to search for
scaling regions and their limits is that the notion of
scale invariance has now been developed as a symmetry
principle (Schertzer and Lovejoy 1985; Lovejoy and
Schertzer 1986); a priori, scaling must be our initial
assumption. Only if and when specific scale-breaking
mechanisms acting at well-defined spatial scales can
be shown to exist can one justify the introduction of
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characteristic lengths. For example, due to the finite
number of stations in the network Lovejoy et al. (1986)
showed that the range of approximately 1-3000 km
was roughly the maximum possible. These findings
have already led to several applications: monofractal
corrections to measurements to remove the bias intro-
duced by the clustering (Lovejoy et al. 1986a,b), and
the possibility of exploiting the scaling for “network
optimization™ (Nicolis 1993).

However, during the 1980s other important devel-
opments in scale invariance were made. Of special
concern here was the realization that whereas the ap-
propriate framework for studying scale-invariant geo-
metric sets was fractals, for scale-invariant fields it was
multifractals. Furthermore, “inhomogeneous” fractal
sets (such as those associated with strange attractors)
will generally define a series of fields (the density of
points and its various powers) each of which will be
characterized by a different fractal dimension (Grass-
berger 1983; Hentschel and Procaccia 1983; Schertzer
and Lovejoy 1983, 1984). In the case of the network,
this implies that the density of stations, pairs of stations,
triplets of stations, etc., all had different fractal dimen-
sions, a fact that was empirically substantiated (for the
WMO network) in a report by Montariol and Giraud
(1986). Since then, over various ranges of scale, many
geophysical fields have been shown to be multifractal
rather than monofractal, notably the topography
(Lovejoy and Schertzer 1990; Lavallée et al. 1993),
rain (Schertzer and Lovejoy 1985; Lovejoy et al. 1987;
Lovejoy and Schertzer 1990, 1991; Gupta and Way-
mire 1990), cloud radiances (Gabriel et al. 1988; Tes-
sier et al. 1993a), temperatures (Schmitt et al. 1992a),
the wind field (Meneveau and Sreenivasan 1987; Chi-
rigirinskaya et al. 1994; Schmitt et al. 1992b, 1994),
sea ice (Francis et al. 1994 ), the ocean surface ( Tessier
et al. 1993b), etc. In short, in geophysics, we are led
from the idea of fractal networks intersecting fractal
phenomena to that of multifractals detecting other
multifractals.

Since the observed field will be a product of the net-
work density and the actual field, multifractal correc-
tions for the bias are conceptually straightforward,
making the possibility of treating the sparse network
problem in an entirely multifractal way quite attractive.
Specific multifractal techniques for systematically cor-
recting measurements for the sparseness: “mutltifractal
objective analysis” (Tessier et al. 1993a; Salvadori et
al. 1994; Tessier 1993) have already been proposed.
However, before these can be taken too seriously, a
complete empirical study of the multifractal properties
of the network is needed including the range and type
of scaling, the range of singularities present, and the
existence of qualitative changes in the scaling for high
and low densities. Such a study is now possible for the
first time for several reasons: first, powerful new mul-
tifractal data analysis techniques (especially the prob-
ability distribution /multiple scaling technique, section
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3, and the double trace moment technique, section 7)
have been developed; second, there have been new
theoretical advances including universal multifractals
(Schertzer and Lovejoy 1987). Third is the quantifi-
cation of qualitative changes in behavior associated
with “multifractal phase transitions” (Schertzer et al.
1993; Schertzer and Lovejoy 1994, section 6). Finally,
when the fundamental aspect of the network is con-
sidered to be the station density, then the data require-
ments are very large; a total of about 8000 stations
turns out to be a very small number for this purpose.
This leads us to extend correlation methods (section
5) in order to more intensively exploit the available
data, but also to the necessity of performing multifractal
simulations in order to obtain fuller confidence in our
interpretation of the analyses (especially for the low-
density regions, see section 8).

2. Monofractal analysis

Before turning to multifractal analyses, following
Lovejoy et al. (1986a), we first repeat some of the
monofractal analyses. This confirms the scaling of the
slightly smaller network discussed here, which is of the
7983 synoptic stations that reported daily rainfall ac-
cumulation and whose data were archived at the Na-
tional Meteorological Center (NMC) of the National
Oceanographic and Atmospheric Administration
(NOAA) during 1983 (Fig. 1). Examination of the
figure shows that this distribution is far from being
homogeneous: in fact—not surprisingly—the inho-
mogeneity of the network is highly correlated with
landmasses and economics.

The fractal dimension D of a set can be estimated
from the variation of the (average) number of points
{n(L)) within a circle (or box) of size (L): {n(L))
oc LP. If the circle is centered uniformly with respect
to the set, D is the “box dimension” {an approximation
to the Hausdorft dimension, usually considered the
fractal dimension ). If the circles are centered on points
belonging to the fractal set, then D is the “correlation
dimension.” Because of the repeated sampling near
clusters of points that the latter introduces, the box
and correlation dimensions will not generally be iden-
tical (the latter is necessarily less than or equal to the
former).

To apply these definitions, we must account for the
curvature of the earth. Following Lovejoy et al.
(1986a), we take S(#) as the area of the spherical cap
defined by two points subtending an angle 4 at the
earth’s center (radius r) and then define the scale L(6):

4 1/2
L(0)=[;S(0)] = {2271 — cos(9)]}'2. (1)

This definition reduces to the usual great-circle dis-
tance (=rd) for small § and has the property that the
dimension of a network homogeneously distributed
over the earth’s surface network has the fractal dimen-
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F1G. 1. Position of the stations reporting daily rainfall accumulations in 1983 that
have been used in the analysis. Also plotted are the continent layouts for reference.

sion D = 2 as required. An estimate of the correlation
dimension is obtained by determining the average
number of pairs within a certain distance L (shown in
Fig. 2). The scaling is found to hold quite well over
the range of approximately 3-5000 km (a ratio of about
2000), which is nearly the maximum possible (the
range is probably a bit wider since the minimum of
about 3 km is the resolution of the data, possibly not
the true minimum of the scaling). This maximum can
be estimated by considering that if there are N stations
in the network that {(#)max = N/2 ~ 4000, {7 )min
~ 1/8000, hence the range {1 max/{ M Dmin ~ N?/2
= (Lmax/me) hence Lmax/me ~ 10 000.

The dlmensmn obtained here is also almost the same
as for the WMO network (approximately 1.79 com-
pared to 1.75), which is not surprising since both net-
works follow similar geographic and economic con-
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F1G. 2. Log of number of pairs of stations against the log of the
distance between two stations. The solid line is the mean-square
regression line fitting the data; the slope of this line gives the correlation
dimension of the rain gauge network.

straint for their location and most of the stations are
parts of both networks. We conclude that the slightly
smaller network used here has comparable scahng
properties to the WMO network.

3. The probability distribution /multiple scallng
technique

Monofractal techniques consider the measuring
network as a geometric set of points. However, this
only gives a very partial description since the clustering
of the stations will not be the same as the clustering of
the pairs, triplets, etc. Alternatively, more simply, a
full characterization involves the density of stations,
which is a field, and scaling fields are generally mul-
tifractals. We will now empirically show that the station
density is approximately the density of a scale-invariant
measure characterizing the actual station locations.
This treatment of the stations is similar to that used in
the characterization of strange attractors where the
multifractal probability measures define the probability
of finding the system in a given state. Whereas these
measures are stable under a change of initial conditions,
they are usually estimated by Calculatmg the detailed
distribution of points on a flow or mapping that may
vary greatly from one initial condition to another. For
general multifractals, an infinity of exponents (a scaling
function) is needed to characterize the scaling behavior,
one for each statistical moment.

A fundamental property of mulufractal fields
(Schertzer and Lovejoy 1987) is that the probability
distribution is given by

Pr(py > A7) = A7), (2)

where X is the resolution of the measure (i.e., the ratio
of the external scale L to the measurement scale /; A
= L/1); px is the intensity of the field measured at
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resolution X\ (in this case the density of stations); and
~ is the order of singularity corresponding to p,. The
equality is to within slowly varying (logarithmic) pre-
factors. Here ¢(y) is the important codimension func-
tion that characterizes the sparseness of the y-order
singularities. When c is less than the dimension of space
d (2 here), D(v) = d — ¢(+) has a geometric inter-
pretation as the corresponding fractal dimension. For
example, the network codimension found in the pre-
vious section is 2 — 1.79 =~ 0.2. The probability dis-
tribution /multiple scaling (PDMS) technique
(Schertzer and Lovejoy 1989; Lavallée et al. 1991) uses
histograms in order to directly estimate ¢(v). The
method is based on Eq. (2) and consists in plotting
logPr versus log A for v = logp,/logA constant, In this
manner it accounts for the slowly varying prefactors
in Eq. (2).

We chose to use grids such that each box has the
same area. This is easily accomplished by partitioning
the axis of the globe into slices of equal z (where z is
the length of the projection of the slice onto the axis
that goes from the center of the earth to the North
Pole) so that the area of the intersection of each slice
with the earth’s surface will be the same. Finally, we
partition the globe into slices of equal longitudes. The
intersection of these two partitions gives a grid with
elements (“boxes’’) of equal area (i.e., we have used a
sinusoidal projection ). Here, the finest resolution used
was 512 X 512 since, as we shall see, this is already
larger than the scaling range for the density (over a
scale ratio of about 100). We also tried displacing the
poles of this partition to check for possible north—south
east-west dependence on the grid chosen due to the
fact that the boxes do not all have the same shape
(boxes near the poles are elongated in the north-south
direction, whereas boxes near the equator are elongated
in the east—west direction). No significant differences
were observed. This coarse graining process is isotropic;

"<
A -1
~
=4
b
a
o
- .24
o
o
=
-3 : .
0.5 1.0 1.5 2.0
Logw

F1G. 3. PDMS analysis on the network. Log of the probability
against the log of the scale ratio A for different values of the singularity
order v (from top to bottom: v = 0.1, 0.4, 0.5, 0.6, 0.7, and 0.8).
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FiG. 4. The ¢(«) versus v for the network deduced from the pre-
vious graph. Also shown is the theoretical bare curve with universal
maultifractal parameters o = 0.9, C, = 0.3, and H = 0. The theoretical
dressed curve is equal to the bare curve for ¥ < ~0.6 after which it
follows the tangent (slope gp = 3.6 = 0.1, also shown).

in order to study the anisotropy, we need an anisotropic
technique such as that discussed in the appendix or in
Pflug et al. (1991, 1993).

Using the grid, we then estimated the density of sta-
tions p, using the equation p, = n/\ "2, where 7 is the
number of stations in the grid element and A2 is the
(nondimensionalized ) area. The nondimensional nor-
malized density obtained is then nondimensionalized
by dividing by the mean density so that final normal-
ized density has the property {p,y = 1 (the angle
brackets indicate ensemble average, here over all the
grid elements; only one network is available ). We then
estimated the different probabilities using histogrames;
some of the logPr versus logA curves are presented in
Fig. 3. We see that good scaling is observed for 0
< logX < 2.0 (i.e., from about 20 000 10 200 km). The
fact that over this scaling regime the slopes are not the
same indicates that the network density is multifractal
rather than monofractal. The corresponding multi-
fractal codimension function ¢(+y) is obtained from
the slope of these lines and is shown in Fig. 4. One
reason for this more limited range of scaling compared
to the monofractal analysis of section 2 is that by using
boxes, we have (Lmax/Lmin)” =~ N rather than N?/2
as for the correlation method; hence Lmax/Lmin
~ 8000 /1% ~ 150. In section 5, we attempt to improve
on this by using pairs of stations to estimate the his-
tograms.

Having established the multiscaling of the station
density, we now consider the possible behavior of ¢(v).
After a considerable period of debate (Kolmogorov
1962; Yaglom 1966; Mandelbrot 1974 ), it has become
clear (Schertzer and Lovejoy 1987, 1989, 1991; Brax
and Peschanski 1991) that multifractal processes pos-
sess stable and attractive universality classes. This
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means that if the stations distribution arises from a
scaling nonlinear process, then under fairly general
conditions, we expect ¢(+y ) to have the following form
involving only three basic parameters:

where

and 0 < a < 2 is the Levy index of the generator. It
characterizes the degree of multifractality of the field
(0 for a monofractal and 2 for a lognormal generator),
C, is the codimension of the mean and quantifies the
sparseness of the mean field, and H is the degree of
nonconservation of the field (see section 8). Note that
¢(vv) has the special property of having a fixed point
c(Cy — H) = C, and at the fixed point, ¢'(C; — H)
= 1.

To test the universality hypothesis and to estimate
the different universal multifractal parameters we tried
to directly fit Eq. (3) with the data of Fig. 4. Nonlinear
curve-fitting algorithms such as the Levenberg-Mar-
quant (see Press et al. 1992) or the simplex method
(see Grifhiths and Hill 1985) failed badly to converge
to a solution. The regressions problems are due to the
high degree of correlation between the parameters and
the limited range of v’s accessible to our analysis. The
theoretical curve shown on the same figure was cal-
culated using the parameters obtained with the double
trace moment technique described in section 7; «
~ 09, C ~03 H=~Q0.

A few characteristics of Fig. 4 are worth mentioning.
First, as expected from the results of the previous sec-
tion, the minimum codimension ¢(ymin) =~ 0.2 cor-
responds to the codimension of the network (section
2), which is in good agreement with Fig. 4, with vy,
~ 0.3. Turning to the large v region, we note that for
values of ¥ > v, =~ 0.6, instead of following universal
relations (the curved line) we observe qualitative
change in behavior; a roughly linear behavior with
slope gp =~ 3.6 = 0.1. As we shall see in section 6 this
qualitative change in behavior is a theoretically ex-
pected “multifractal phase transition.” Another char-
acteristic of Fig. 4 worth noting for future reference is
the value 4, which is the maximum attainable sin-
gularity with a single two-dimensional sample and sat-
isfies ¢(v4s) = 2 (the dimension of the surface); by
inspection, we find v, =~ 0.8 (see section 6). Finally,
by using the fixed point property of Eq. (3), we can
graphically estimate H ~ 0.0 [see Lovejoy and
Schertzer (1990) for a discussion of this technique; we
have used the above value C; = 0.3 since the curve is
very noisy for the corresponding low v’s].
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4. Trace moments

An alternative to the probability distribution de-
scription presented in section 3 is the use of statistical
moments. Both descriptions are equivalent and related
by a Legendre transform (Parisi and Frisch 1985). If
we express the scaling of the moments by

(pX) ~ K@, (4)
where K(g) is the moment scaling function, it is given
by

K(q) = min,[gy — c(¥)];
c(y) = min,[¢qy — K(g)], (5a)

which leads to a one-to-one relation between singular-
ities and moments:

g=c(v); v=K'(g). (5b)

Using Eq. (5a), K(gq) we obtain the following uni-
versal relation equivalent to Eq. (4):

Cy
a—1

Ciq log(q),

(g“—q), a#1

K(q) + gH = (6)

a=1.

The trace moment technique (Schertzer and Lovejoy
1987) estimates K(g) by generalizing the (determin-
istic) partition function approach of Halsey et al.
(1986); to deal with stochastic multifractal processes,
it generally involves ensemble averaging, although here
we analyze a single network so the partition function
and trace moment will be identical. Just as with the
PDMS method, no a priori assumptions about the
scaling of the process are necessary; the accuracy of
the scaling is determined by the goodness of fit of the
log-log regressions of moment versus scale.

To estimate the statistical moments of order g at
different resolutions we use the same projection as de-
scribed in section 3. At a given box size A for a series
of values of g we estimate

s ()

7
wmn A\ 7

where the sum is over the NV, boxes needed to disjoint-
edly cover the set (indexed by i). Then we repeat the
procedure for different box sizes A. Figure 5 shows the
results of this analysis on a 512 X 512 grid for various
values of g. We can see that as expected from analysis
of the histograms, the scaling is observed in the range
0 < logh < 2.0 (approximately 20 000 to 200 km:
roughly the same as before). From the slopes of the
curves of Fig. 5 in the scaling region we can deduce
the K(g) function (Fig. 6).

Once again we used the Levenberg-Marquant
method to fit the K(g) function to the form given by
Eq. (6) (by using the portion of the curve expected to
follow this relation, g < ¢p, see below). We obtained
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FI1G. 5. Log of the statistical moments against log of the scale ratio
X for the network for moments of order g = 0.5 (empty squares), g
= 1.0 (filled circles), and g = 1.5 (filled squares). The arrows indicate
the limits of the scaling region. Here A = 1 corresponds approximately
to 20 000 km.

a =~ 0.9, C, = 0.3, and H =~ 0 but with 95% confidence
interval on « larger than the allowed range. This is
actually fairly close to the values estimated by the more
robust technique described in the next section. The
theoretical curve for these parameters is also shown in
Fig. 6 (using « = 0.9, C; = 0.3, and H = 0 from section
8). Once again, for ¢ > qp ~ 3.6, we observe a linear
behavior. This change is because the universal relations
[Egs. (3) and (6)] are followed only for a finite range
of ¢ and v; we have multifractal phase transitions ( sec-
tion 6). For low ¢ (gmin =~ 0.7), we also observe a
linear behavior with intercept at ~c(ymin) =~ —0.35
[see Eq. (8)]. This change in the second derivative of
K is also a phase transition and can be readily under-
stood from Eq. (5a) by considering the effect of a re-
striction on the available v’s. In this case, then the
mintmization in Eq. (5a) will be over a finite range of
v’s, and we anticipate that they will lead to regions
with linear behavior in K(g) [the ymi, will dominate
all estimates of moments less than gnin = ¢ (Ymin)]-
Specifically, if due to the finite number of stations,
there is a minimum nonzero p,_ ., then Y
= logp,,,./logA thus implies ¥ > yuin, and hence for
g < gmin = ¢ (Ymin)K(g) is linear (with slope Ymin
=~ 0.3, close to the value estimated in section 3). For
q < gmin, We Obtain

K(q) = Ymin (g — Gmin) + K(gmin) = Ymingd — ¢(¥Ymin);

4 < gmin- (8)
In section 6 we discuss this phenomenon in more
detail.
5. Correlation method

We have seen that our statistics are limited due to
the fact that as far as estimating densities of stations is
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concerned, the 8000 available stations is a small num-
ber. Furthermore, we obtained a slightly different but
more limited scaling range of approximately 200 to
20 000 km for the density compared to about 3 to 5000
for the individual stations; this is at least partly due to
the fact that whereas the correlation method involves
approximately N2/2 pairs, the grid methods involve
only N points. This suggests the possibility of using a
variation on the trace moments technique obtained by
an extension of the method used to estimate the cor-
relation dimension: the correlation method. Of course
the disadvantages are that while it is true that there are
many more point pairs than points, many are corre-
lated, and the method is computationally more de-
manding. It also will involve a bias since it investigates
regions around points that are part of the fractal set
(generally one is more likely to find points belonging
to the set near points already part of the set and this
bias must be removed ).

K(q)

0.50

0.25 1

K(q)

0.00 1

-0.25 1

'0.50 o T v T T

0.0 2.0

q

FiG. 6. The scaling exponent K(g) versus ¢ for the regular grid
method with the fitting curve having scaling parameters o = 0.9 and
C, = 0.3. On the top figure the asymptotic linear region (after a
multifractal phase transition) is fitted to a straight line of slope v,
= (.7 = 0.1. On the bottom figure, the linear region for small q is
fitted to a straight of slope Y, = 0.3 + 0.1.
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We consider each station in turn and calculate the
distance [defined by Eq. (1)] to successively all other
stations. We then calculate histograms of the number
of stations in logarithmically spaced annuli surround-
ing each station. For convenience, ten annuli per order
of magnitude were used. Starting from the smallest an-
nuli, we integrated, determining the total number of
stations within the corresponding circles. From these
histograms we can calculate the moments (p‘{) for
scale A. By successively considering each station as a
center, we can build up histograms at each distance of
the total frequency of occurrence of a given number
of stations. Before doing so we must correct for the
bias introduced by using the stations’ nonuniformly
randomly placed centers in order to determine the
equivalent of an analysis on a regular grid. We know
that there are n(n — 1)/2 ~ n? pairs in balls of radius
A with # points; this will lead to more robust statistics
and this tells us that the first correction we have to do
is to correct for the oversampling in regions with many
stations; they will each be sampled approximately »
times too often.

To quantify this precisely, consider a box size A. We
observe N,(#) boxes with # stations. With the corre-
lation method we will perform the same observation
approximately # times (once with each of the stations
as centers), obtaining the frequency N,.:(n). Hence
the corresponding frequency that would have been ob-
served on a regular grid is given by

N)\cor( n)
—__n .

Ni(n) ~ (9)

Denoting the probability of a box at scale A having »
points by p\(#n), we have

0 E
T -2
A
o_c<
- -4
EO
g -6
]
-8 N T —T L
-5 -4 -3 - -1
log P
10

FI1G. 7. Log of the probability of finding a density of station greater
than p in a circle of 800 km against logp. The asymptotic slope gives
directly the exponent g, that we estimate to be 3.7 = 0.1.
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FIG. 8. Log of the statistical moments against log A for the network
using the correlation method for moments of order ¢ = 0.5 (empty
squares), g = 1.0 (filled diamonds), and g = 1.5 (filled squares).
Here A = 1 corresponds approximately to 20 000 km.

Ny(n)

; (10)
N)\tol

n(n) =

where Ny =~ AP is the total number of nonempty
boxes at resolution A (D is the box dimension, about
1.8 here). Recalling that p, oc n\?, we obtain

Mator

<P§> o A2 21 NXcor(n)nq—l~ (11)

With this method we obtained the log{p3) versus
log A curves shown in Fig. 8. From this we deduce that
the scaling region is approximately 0.4 < log\ < 2.2,
so the scaling range reaches slightly larger A for the
correlation method (note, however, that the definition
of scale is slightly different in both cases). From these
we deduce the K(g) curve shown in Fig. 9. We fitted
the K(g) functions to the form given by Eq. (6) by the
Levenberg-Marquant method and we obtained «
=~ 1.0, C, = 0.2, and H =~ 0.1 with once again very
large confidence intervals.

With this method we estimate from the linear part
of the low-g region that phase transitions occur for guin
= 0.7 £ 0.1 (ymin = 0.26), and from the intercept at
g = 0, we deduce ¢(ymin) = 0.28. At large ¢, the slope
of the asymptotic region gives us v, = 0.82 + 0.05
[see the next section, Eq. (15)]. We can see from Figs.
6 and 9 that as expected because of its somewhat more
intensive sampling of the low-density regions, in the
low-g region the correlation method is slightly more
sensitive to low-order moments, yielding lower vyyip,
dmin (see Table 1 for an overall comparison). On Fig.
10, we see that we get similar results for both methods.
Comparison of the grid and correlation method shows
that the effective increase in the accessible range of v
is small: roughly, Ymi, is reduced from 0.35 to 0.26,
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FIG. 9. The scaling exponent K(q) versus g for the correlation grid
method with the fitting curve having scaling parameters « = 0.9 and
C; = 0.3. On the top figure the asymptotic linear region (after a
multifractal phase transition) is fitted to a straight line of slope v,
= 0.8 + 0.1. On the bottom figure, the linear region for small q is
fitted to a straight of slope ymin = 0.2 £ 0.1.

and the maximum (v,;) increases slightly from 0.7
to0 0.8.

6. Multifractal phase transitions

We have already noted the appearance of various
linear regions in the empirical ¢(+y) and K(g) functions.
These are associated with discontinuities in the cor-
responding first or second derivatives. Since there is a
formal analogy between thermodynamics and multi-
fractals (see, e.g., Schuster 1988), with c(y) the entropy
analog, K(g) the Massieu potential analog, and ¢~',
the temperature analog, such discontinuities are called
“multifractal phase transitions.” Scale-breaking mech-
anisms in deterministic multifractals leading to such
transitions have been proposed (e.g., Szépfalusy et al.
1987), but those that are likely relevant here are the
two statistical mechanisms recently proposed by
Schertzer et al. (1993) and Schertzer and Lovejoy
(1994). Both mechanisms depend on finite sample size,
and one also depends on the dimension of the observing
space.
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F1G. 10. The K(g) versus g calculated with the regular grid method
(empty squares)-and with the correlation method (filled diamonds)
together with the theoretical curve obtained with the double trace
moment technique, i.e., with parameters o = 0.9 and C;, = 0.3.

The relation between K(g) and c(v) is given by a
Legendre transform [Eq. (5)]. The v that maximizes
gy — ¢(v) is v, and is the solution of ¢'(v,) = ¢. Sim-
ilarly, the value of ¢ that maximizes gy — K(q) is ¢,
and is the solution of K’(g) = 4. There is a one to one
correspondence between moments and orders of sin-
gularities (see Figs. 11 and 12). Note that if v is
bounded by ymax (Which can be ys or vp) there is a
Gmax = €'(Ymax) such that for ¢ > gmayx, K(¢Y) = q¥max
— ¢(ymax); that is, K(g) becomes linear in g (see
Fig. 13).

Consider Ng independent realizations of a multi-
fractal process, each on a space dimension D and each
covering a range of scales A. With more realizations
(increasing N;), a larger and larger portion of the prob-
ability space will be explored. Extreme but rare events
that were missed with a smaller sample will eventually

K(a) 4

K(q)

slope y

9y

F1G. 11. Graphical construction of the Legendre transform
starting from K(g).
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F1G. 12. Graphical construction of the Legendre transform
starting from c(vy).

be encountered. The extent of the portion of the prob-
ability space sampled can be quantified by the sampling
dimension D, (Schertzer and Lovejoy 1989; Lavallée
etal. 1991). Using the fact that there are a total of NN;
= AP*Ds structures in the sample, the dimension cor-
responding to the highest order of singularity likely
observed (v,) with N, independent realizations is given
by

. log N
c(y) =D+ D, = A; Dy ~ 25
log\

where A, is the overall effective dimension.

If we now estimate K(g), we must restrict the Le-
gendre transform of c(v) to v < v,, for g > q; gs
= ¢’(~,) and this leads to a spurious linear estimate
K instead of the nonlinear K; g, is the maximum mo-
ment that can accurately be estimated:

vs(q — qs) + K(g5), q=¢s
K(q)a ' q < g.

This is a second-order phase transition associated with
a jump in the second derivative of K(g); AK"(g;)
= —K"(g;).

To see how first-order transitions can occur, consider
Fig. 4, which suggests a discontinuity in ¢”(y ) followed
by linear behavior in ¢(v) for ¥ > vyp. This behavior
arises when (“bare”) multifractal processes proceeding
to very small scales are integrated (averaged ) over much
larger scales. In this case, the resulting “dressed” c,(y)
will display the following second-order transition:

(12)

Ki(q) = { (13)

ap(y —vp) Y ¢(vp), Y=o
c(v), Y < Yp;

where gp = ¢’(7vp) and is the absolute slope of the
algebraic falloff of the dressed probability distribution;

caly) = [ (14)
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it is the critical order of divergence of statistical mo-
ments [(e?) = oo; K,(q) = ©, ¢ = gp]. When ~,
< 7vp, the distinction between the bare and dressed
c(v)’s is not noticeable, but when the sample size is
large enough so that v, > vp, it is the maximum ob-
servable dressed singularity vy, [it is the solution of
Ags = c4(7ya4s)], which restricts the Legendre transform
[not A; = c7'(v,)]. We thus obtain

vas(a = ap) + K(ap), 4> ap
K(q), q < 4qp,

which is a discontinuity in the first derivative of K.

To obtain more convincing evidence that we really
do observe a second-order transition in ¢(v ) [and hence
a first-order transition in K(g)], we examine more
closely one of the histograms that was used in esti-
mating c(v), choosing one that while lying in the scal-
ing region, still has a large number of events associated
with it (i.e., it goes to low probability levels; for this
figure we used grid elements of approximately 800 km
X 800 km). In Fig. 7 we show log,o Pr(p, > P) versus
logo P, where P is the threshold; from the tail behavior,
we have a clear indication that g, = 3.7 + 0.1, showing
that v, > vp. Indeed, Table 1 indicates that while v,
~ 0.6, v45 =~ 0.8.

Kas(g) = { (15)

7. Double trace moment analysis of the network

We have seen that due to multifractal phase tran-
sitions and ill-posed nonlinear regressions, it 1s difficult
to directly estimate the universality parameters from
Egs. (3) or (5). We now turn to a robust technique
that estimates C;, « directly: the double trace moment
(DTM) technique (Lavallée et al. 1991; Lavaliée et al.
1992). This is done by generalizing the single trace
moment by taking the n power of a multifractal field
@, at the largest available scale ratio A. Then the g, 5
double trace moment at resolutions A and A is defined
as

slope q 5, Gy

c(Y) (1)
K(q) K(q)= quax -C (Ymax )
(for q 5, Qeuar)
E\C‘ Y max )= Qo
—+ >y
Ymax
qY

FIG. 13. Graphical construction of the Legendre transform showing
the effect of the existence of a maximum order of singularity v max-
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TABLE 1. Comparison of parameter estimates from different
multifractal estimation techniques.

Trace Double trace
PDMS moments Trace moments moments
method (grid) (correlation) (grid, g = 0.5)
Ymin 0.3 0.35 0.26 —
Gmin 2 0.7 0.8 ~0.8°
(Ymin)© 0.2 0.3 0.28 —
Yds 0.8 0.7 0.8 —
Yp 0.6 — — —
a° 3.6 3.5 4.0 ~3°
« — 0.9 1.0 0.9
G — 0.3 0.2 0.3
H 0 ¢ 0.1 0.057

2 The low v part of the curve is not accurate enough to estimate
Gmin = ci(Vmin)

® Estimated from the bounds of the linear region of Fig. 15.

¢ Monofractal analyses give ¢(Ymin) = 0.2.

4 Direct use of probability distributions (see Fig. 7) gives gp ~ 3.7.

¢ The gridded trace moment cannot estimate H.

fThe DTM in conjunction with power spectra.

Tr(@i)? = <2 (f (p:’\de)q> o AK@m—e-0D
Bui

(16)

where the sum is over all the A resolution boxes B, ;
(dimension D) required to cover the multifractal, K(q,
1) is the (double) scaling exponent, and K(g, 1) is the
usual scaling exponent. Although it looks complicated,
applying Eq. (16) to the field of interest simply consists
of taking various powers n of the field at its highest
resolution (A), then degrading the result to a lower
resolution (), finally averaging the gth power of the
result.

The scaling exponent K(g, n) satisfies the following
relation:

K(q,n) = K(q,n) — gK(n, 1), (17)

where the term gK(n, 1) arises due to the normaliza-
tion. The DTM is useful for universal multifractals
since, in that case, we obtain the simple relation:

K(g,n) =n"K(g, 1), (18)

which can readily be used to estimate o by fixing g and
varying 7.

The first step in applying the DTM technique is to
check the scaling range of various moments. Figure 14
shows logTr[(¢})?] versus logA for ¢ = 2. We used a
512 X 512 regular grid (sinusoidal projection) to an-
alyze the density of stations. As we can see, scaling is
observed for logTr{(¢})?) versus log\ (for different
values of g, 7 = 1) in the range 0 < log\ < 2.0, which,
as expected, is the same as that deduced from Fig. 5.
From these curves we have a plot log| K(q, n)| versus
logn and obtain «, C, by linear regression over the
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FIG. 14. Log[Tr,(¢})¢] versus log\ for several values of 5 (from
top to bottom: » = 1.2, 0.7, 0.3, 0.1) for the network. We used g
= 2 and the scale ratio A = 1 for a distance of 20 000 km.

power-law region of the double trace moment that we
show on Fig. 15:« = 0.9+ 0.2and C, = 0.3 £ 0.1.
Due to the phase transitions Eq. (5), hence (18),
breaks down for low and high #, specifically for min (7,
qn) < Gmin and max(7, gn) > gp, respectively (since g
= 2.0 here for n =~ <0.3,and n = >1.8). To gain more
confidence in these results, on the same figure we have
plotted the result of the analysis for a simulated field
using the estimated parameters with an infinite number
of stations (the straight line) and a simulated network
consisting of only a finite number (7077 stations) gen-
erated from a simulated density field (details of which

0.5
=
S: 0.0 -
X
Qo
2 05 -
-]
-1.0 T T v T L
10 05 00 05 1.0 15
Log 0o "

FI1G. 15. Log| K(q, n)| versus logn for the network (filled squares),
a field (without any minimum thresholding) having the same pa-
rameters as the network (filled circles), and a simulated network
obtained from the simulated field (empty squares).
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FIG. 16. Position of the 7077 stations for the simulated network
used for testing the different analysis methods.

are given in the next section ). Whereas the large n be-
havior is well reproduced from the model simply due
to the fact that it is a unique realization (yielding a
second-order high phase transition ), the finite number
of stations clearly gives rise to a low phase transition
with very nearly the same transition point as for the
data.

We can now use the DTM results to estimate the
final universal multifractal parameter H. We men-
tioned that one of the basic ingredients of multifractal
processes is the presence of a quantity that is conserved
from one scale to the next. There is no a priori reason
to think that the density field has such properties but
we can introduce a field ¢, that has the conservation
property <<p>\> is constant (independent of scale). The
density field (p,) is related to this field by

pr= eI, (19)

No theory tells us which field is ¢, or the corre-
sponding value of a; however, changing a will simply
give us a different but equivalent representation of the
conserved multifractal process. Therefore H is a mea-
sure of nonconservation of the field. It specifies the
order of fractional integration required to obtain p,
from ¢, . For a self-similar (isotropic) scaling process,
the energy (power) spectrum E(k) for wavenumber k
is of the form E(k) ~ k~*, with spectral exponent £,
that is, it is also linear in a log-log plot. The DTM is
insensitive to the value of H as long as § is less than
that of a conserved process [i.e., 8 < 1 —K(2), see
Lavallée (1991), Lavallée et al. (1993) for a discus-
sion]. To evaluate the parameter H, we used the es-
timate of a and C; from the DTM, and the order of
fractional integration needed to obtain the noncon-
served process from the conserved one is given by

B-1+K(2)_f-1, C(2°—2)
2 "2 T 2(a- 1)

H= (20)

Since the field for the density of stations is distributed
on a sphere, we should really use a decomposition into
spherical harmonics rather than Fourier analysis; how-
ever, for simplicity, we performed the analysis on equal
area projections of portions of the earth and use stan-
dard spectra. For each projection we generated 10 maps
of 8000 km X 8000 km sections of the earth (five in
the Northern Hemisphere and five in the southern)
centered 72° of longitude apart. We then calculated
the power spectrum from this ensemble. For the range
of scales greater than or equal to 200 km, we estimated
the spectral slope 8 ~ 0.63 =+ 0.13. Using this value
in conjunction with « = 0.9+ 0.2 and C, = 0.3 = 0.1
and with Eq. (20), we obtain H ~ 0.05 £ 0.1.

8. Simulation of the network

In the previous section we presented some results
for a simulated network. This simulation was mainly
used to test the different methods and to verify our
understanding of the different techniques; particularly
of concern are the inner limit of the scaling, the min-
imum order of singularity associated with the finite
number of stations, and the accuracy of the estimates
of the universal multifractal parameters. In this section
we will present some more details on the method used
to produce the simulation and some further results.
We show an example of a simulated network in
Fig. 16.

The simulations were performed using a discrete
cascade (Schertzer and Lovejoy 1987) on a 256 X 256
grid [this is roughly the observed range of scaling found
empirically for the network (see Fig. 14), approximately
200 to 20 000 km]. The discreteness (only factors of
2 in scale are used) accounts for the appearance of
unrealistic straight line structures; since this work was
performed, Pecknold et al. (1993 ) have shown how to
extend continuous cascades to the case a < 1, but the
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FIG. 17. Log of the statistical moments against logA using the
correlation method for the real network (empty symbols) and for
the simulated network (filled symbols) for ¢ = 0.5 (squares), ¢
= 1.0 (circles), and ¢ = 1.5 (triangles). The arrows indicate the
expected scaling region.

Log, o *

statistics of interest here will be essentially the same.
The field produced by the simulation with the param-
eters deduced by the DTM method was taken as the
density field. We multiplied this field by the expected
total number of stations Nyor in order to obtain a sim-
ulated network with a total number of stations near to
that observed. With the same total number of stations
we should be able to reproduce roughly the same i,
as the real network since yYmin =~ 10g0x min/l0g\ (in
particular, low values Ntor pa < 0.5 were set to zero).
We rounded the number of stations in each box to the
nearest integer value. Within each box we then dis-
tributed the number of stations according to a uniform
random distribution and then extracted a database with
the same resolution as the real network, Note that both
the total scaling range as well as the total number of
stations are important parameters in the simulation.
We estimated the usual statistical moments using
both the regular grid and the correlation estimates of
the trace moments (Fig. 17). The simulation is in very
good agreement with the scaling properties of the real
network. We were even able to reproduce the scaling
break due to the finite number of stations (introducing
the homogeneity scale) confirming that it really is the
limited number of stations that is responsible for the
break. Figure 18 shows the ¢(v) curve obtained by the
PDMS method. Here again the empirical and simulated
curves are in good agreement. From the statistical mo-
ments on a regular grid of Fig. 17 we produced the
K(q) curve for both networks (Fig. 19). We can see
that except for small differences for large ¢, both curves
fall on top of one another. It is also the case for the
DTM technique shown in the previous section (Fig.
15). The departure from the theoretical curve is due
to the finite number of stations that result in a mini-
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FIG. 18. The () versus + for the real network ({ filled circles) and
for the simulated network (empty squares). The solid line is the
theoretical curve for the K(g) function using the parameters deter-
mined by the double trace method, i.e., « = 0.9 and C, = 0.3.

mum value of ¢ and v where the analysis is valid (as
discussed in previous sections). The simulations in-
dicate a gmn close to that observed showing that this
feature can also be explained by the finite number of
stations. As a final note, the simulation did not have
the same ¢p; hence the phase transition in the simu-
lation at large ¢ is due to g, not gp.

9. Conclusions

The estimation of geophysicat fields from inhomo-
geneous geophysical networks has always been a dif-
ficult problem. The techniques required to solve the

K(q)

-1 T T L
0 1 2 3 4

q

F1G. 19. The K(q) versus ¢ for a simulated network of 7077 stations
having parameters & = 0.9 and C; = 0.3 (diamonds) and the same
function for the real network (empty squares). We also show the
theoretical curve for o = 0.9 and C; = 0.3.
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problem depend critically on the statistical assumptions
that are made about the network, particularly its be-
havior as a function of scale and as a function of the
density of the network at a given scale. Since a priori
there is no length scale associated with the process that
produced the network, the simplest (and in the absence
of other information, the only) assumption possible is
that it is scaling. Early scaling attempts treated the
problem by considering the location of stations as a
geometric set of points with fractal properties. Here we
propose an approach based on the density of stations,
which is a scaling field; hence it is multifractal (i.e.,
the scaling of the high- and low-density regions are
different). We empirically verify this for the global rain
gauge network using a series of analysis techniques over
the range of scales of approximately 200-20 000 km.
First, the probability distribution /multiple scaling and
then trace moments techniques are applied, the latter
both with a grid and using a new technique without a
grid (a “correlation method™). We find that qualitative
changes occur first for low-density regions (due to the
finite number of stations) and, second, at the high-
density regions, where a new “hard” multifractal be-
havior is observed. These qualitative changes in the
scaling exponents (which we find occur at g, =~ 0.7,
and gp =~ 3.6) are “multifractal phase transitions.” We
also apply the double trace moment technique to argue
that the density is a universal multifractal—the generic
result of a scaling nonlinear process. This method,
combined with spectral analysis, allows us to estimate
the three universal multifractal parameters: « = 0.9
+0.2,C, =03 +0.1,and H = 0.05 % 0.1. Finally,
by numerically simulating a network with these pa-
rameters, we quantitatively showed that both the finite
range of scaling, as well as the low-density phase tran-
sition, were the results of the finite number of stations.

The multifractal character of geophysical networks
is important since many geophysical fields have already
been found to be multifractal, and others are likely to
be. If this is true, then the densities of these fields es-
timated from the network are simply the product of
the true field values and the station density; correcting
for the bias (“multifractal objective analysis”) is re-
duced to the problem of the product of multifractals.
Some attempts to solve this problem have been made
by Tessier (1993), Tessier et al. ( 1993a), and Salvadori
et al. 1994, and will be detailed in future publications.

APPENDIX
The Anisotropy of the Network

To quantify the anisotropy in the scaling of the mea-
suring network, we partitioned the axis of the globe
into slices of equal z (where z is the length of the pro-
jection of the slice onto the axis that goes from the
center of the earth to the North Pole) so that the area
of the intersection of each slice with the earth’s surface
will be the same. We partition the earth in such a fash-
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ion because we need to perform the analysis on one-
dimensional intersections of the original set. The codi-
mensions are invariant under intersection, so that cor-
responding dimensions will simply be reduced by 1.
In contrast, taking one-dimensional projections (i.e.,
just considering the latitudes of stations irrespective of
longitude) will have dimension (since the measuring
stations have dimension greater than 1) and hence will
be uninteresting. We performed a regular box-counting
analysis on each slice using the definition of distance
that L = |6, — 6| and then we averaged the N(L)
value for all slices. We then rotated the coordinate sys-
tem and performed the same analysis in the other di-
rection. For both analyses the results are shown in Fig.
Al. It can be seen that there is a small anisotropy in
the measuring network since the fractal dimension cal-
culated in the north-south and in the east—west direc-
tion i1s, respectively, 0.85 and 0.77. The anisotropy of
the network could further be characterized by the use
of the elliptical dimension D, (Lovejoy et al. 1987;
Schertzer and Lovejoy 1985, 1987), which in this case
is given by

Cus 0.185 + 0.0035
D=1+ =
: Cew 0.23 + 0.005
= 1.70 £ 0.06, (Al)

where Cn_s and Cg_w are the codimension in the north—
south and east-west directions, respectively; the codi-
mension is the difference between the dimension of the
embedding space (in our case 1.0) and the fractal di-
mension. If the network was isotropic we would have
obtained D, = 2.0. The accuracy of Dy, is evaluated
by assuming an accuracy of 1% on individual points
from which we evaluated a minimum X? line.

0
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FiG. Al. Log of the number of pairs of stations divided by the
total number of boxes within a certain “slice” averaged over all slices
against the log of the distance for north—south-oriented slices (empty
squares) and east-west-oriented slices (filled diamonds).
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